Syllabus and Scheme

B.Tech. in Computer Science (AI)

(2022-23)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	Hours		rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
			and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations - First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (AI) 2nd Year - III Semester

			THEO	RY							
SN	Categ ory		Course	Contact hrs/week				M	arks		Cr
		Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CAI2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3CAI1-02/ 3CAI1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3CAI3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3CAI4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3CAI4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3CAI4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
											•
			PRACTICAL &	SESS	ION	AL					
7		3CAI4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
8	PCC	3CAI4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
9		3CAI4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
10		3CAI4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
11	PSIT	3CAI7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3CAI8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	13					7.5
		ТС	OTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SEMESTER-III & IV

Syllabus

NOT THE REAL PROPERTY OF THE R

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI2-01: Advanced Engineering Mathematics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Random Variables: Discrete and Continuous random variables, Joint distribution, Probability distribution function, conditional distribution.Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis.	7
2	Binomial distribution , Normal Distribution, Poisson Distribution and their relations, Uniform Distribution, Exponential Distribution. Correlation: Karl Pearson's coefficient, Rank correlation. Curve fitting. Line of Regression.	5
3	Historical development , Engineering Applications of Optimization, Formulation of Design Problems as a Mathematical Programming Problems, Classification of Optimization Problems	8
4	Classical Optimization using Differential Calculus: Single Variable and Multivariable Optimization with & without Constraints, Langrangian theory, Kuhn Tucker conditions	6
5	Linear Programming: Simplex method, Two Phase Method and Duality in Linear Programming. Application of Linear Programming: Transportation and Assignment Problems.	14
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI1-02/4CAI1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI1-03/ 4CAI1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI3-04: Digital Electronics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Fundamental concepts: Number systems and codes, Basic logic Gates and Boolean algebra: Sign & magnitude representation, Fixed point representation, complement notation, various codes & arithmetic in different codes & their inter conversion. Features of logic algebra, postulates of Boolean algebra.Theorems of Boolean algebra.	8
2	Minimization Techniques and Logic Gates: Principle of Duality - Boolean expression -Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization.	8
3	Digital Logic Gate Characteristics: TTL logic gate characteristics. Theory & operation of TTL NAND gate circuitry. Open collector TTL. Three state output logic. TTL subfamilies.MOS& CMOS logic families. Realization of logic gates in RTL, DTL, ECL, C-MOS & MOSFET.	8
4	Combinational Circuits: Combinational logic circuit design, adder, subtractor, BCD adder encoder, decoder, BCD to 7-segment decoder, multiplexer demultiplexer.	*
5	Sequential Circuits: Latches, Flip-flops - SR, JK, D, T, and Master-Slave Characteristic table and equation,counters and their design, Synchronous counters – Synchronous Up/Down counters – Programmable counters – State table and state transition diagram ,sequential circuits design methodology. Registers –shift registers.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-05: Data Structures and Algorithms

Credit-3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.	8
2	Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues. Linked Lists:Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list.	10
3	Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.	7
4	Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.	7
5	Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms.Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-06: Object Oriented Programming

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction to different programming paradigm, characteristics of OOP, Class, Object, data member, member function, structures in C++, different access specifiers, defining member function inside and outside class, array of objects.	8
2	Concept of reference, dynamic memory allocation using new and delete operators, inline functions, function overloading, function with default arguments, constructors and destructors, friend function and classes, using this pointer.	8
3	Inheritance, types of inheritance, multiple inheritance, virtual base class, function overriding, abstract class and pure virtual function	9
4	Constant data member and member function, static data member and member function, polymorphism, operator overloading, dynamic binding and virtual function	9
5	Exception handling, Template, Stream class, File handling.	6
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-07: Software Engineering

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction, software life-cycle models, software requirements specification, formal requirements specification, verification and validation.	8
2	Software Project Management: Objectives, Resources and their estimation, LOC and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project scheduling.	8
3	Requirement Analysis: Requirement analysis tasks, Analysis principles. Software prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured Analysis: Data and control flow diagrams, control and process specification behavioral modeling	8
4	Software Design: Design fundamentals, Effective modular design: Data architectural and procedural design, design documentation.	8
5	Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling. Object Oriented Design: OOD concepts, Class and object relationships, object modularization, Introduction to Unified Modeling Language	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-21: Data Structures and Algorithms Lab

Credit-1.5 0L+0T+3P Max. Marks :100 (IA:60, ETE:40)

SN	CONTENTS
211	Write a simple C program on a 32 bit compiler to understand the concept of
1	array storage, size of a word. The program shall be written illustrating the
	concept of row major and column major storage. Find the address of element
	and verify it with the theoretical value. Program may be written for arrays up to
	4-dimensions.
	Simulate a stack, queue, circular queue and dequeue using a one dimensional
2	array as storage element. The program should implement the basic addition,
	deletion and traversal operations.
	Represent a 2-variable polynomial using array. Use this representation to
3	implement addition of polynomials
	Represent a sparse matrix using array. Implement addition and transposition
4	operations using the representation.
	Implement singly, doubly and circularly connected linked lists illustrating
5	operations like addition at different locations, deletion from specified locations
	and traversal.
6	Repeat exercises 2, 3 & 4 with linked structure.
7	Implementation of binary tree with operations like addition, deletion, traversal.
	Depth first and breadth first traversal of graphs represented using adjacency
8	matrix and list.
9	Implementation of binary search in arrays and on linked Binary Search Tree.
	Implementation of different sorting algorithm like insertion, quick, heap, bubble
10	and many more sorting algorithms.

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-22 : Object Oriented Programming Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
1	Understand the basics of C++ library, variables, data input-output.
2	C++ program using with the concept of structures.
3	Implement class and object concepts and function overloading.
4	Write programs to understand dynamic memory allocation and array of objects.
5	Program to understand different types of constructors and destructor.
6	Implement friend function to access private data of a class and usage of this
0	pointer.
7	Write programs to understand the usage of constant data member and member
1	function, static data member and member function in a class.
8	Implement different types of inheritance, function overriding and virtual
ð	function
9	Implement Operator overloading concepts.
10	Write programs to understand function template and class template.
11	Write programs to understand exception handling techniques.
12	Write programs to understand file handling techniques.

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-23: Software Engineering Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

CONTENTS
Development of requirements specification, function oriented design using
SA/SD, object-oriented design using UML, test case design, implementation
using Java and testing. Use of appropriate CASE tools and other tools such as
configuration management tools, program analysis tools in the software life
cycle.
Develop Software Requirements Specification (SRS) for a given problem in IEEE
template.
Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.
Develop structured design for the DFD model developed.
Developed all Structure UML diagram of the given project.
Develop Behavior UML diagram of the given project.
Manage file, using ProjectLibre project management software tool.

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-24: Digital Electronics Lab

Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also
1	to verify truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gateswith 2, 3,
	& 4 inputs).
2	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized usingNAND&
4	NOR gates.
3	To realize an SOP and POS expression.
4	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR
4	gatesand to verify their truth tables.
5	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor&
Э	basic Full Adder/ Subtractor.
	To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize
6	the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer
0	and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4
	demultiplexer.
7	Design & Realize a combinational circuit that will accept a 2421 BCD code and
1	drive a TIL -312 seven-segment display.
8	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without
0	clock signal and verify their truth table.
9	Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary
9	counter and ring counter for a particular output pattern using D flip flop.
	Perform input/output operations on parallel in/Parallel out and Serial in/Serial
	out registers using clock. Also exercise loading only one of multiple values into
10	the register using multiplexer. Note: As far as possible, the experiments shall be
	performed on bread board. However, experiment Nos. 1-4 are to be performed on
	bread board only.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Credit-1.5 **0L+0T+3P**

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (AI) 2nd Year - IV Semester

			THEO	RY								
SN	Categ		Course	Contact hrs/week			Marks				Cr	
		ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4CAI2-01	Discrete Mathematics Structure	3	0	0	3	30	70	100	3	
2	HSMC	4CAI1-03/ 4CAI1-02	Managerial Economics and Financial Accounting /Technical Communication	2	0	0	2	30	70	100	2	
3	ESC	4CAI3-04	Microprocessor & Interfaces	3	0	0	3	30	70	100	3	
4		4CAI4-05	Database Management System	3	0	0	3	30	70	100	3	
5	PCC	4CAI4-06	Theory of Computation	3	0	0	3	30	70	100	3	
6		4CAI4-07	Data Communication and Computer Networks	3	0	0	3	30	70	100	3	
			Sub Total	17	0	0					17	
			PRACTICAL &	SESS	ION	AL						
7		4CAI4-21	Microprocessor & Interfaces Lab	0	0	2		60	40	100	1	
8	PCC	4CAI4-22	Database Management System Lab	0	0	3		60	40	100	1.5	
9		4CAI4-23	Network Programming Lab	0	0	3		60	40	100	1.5	
10		4CAI4-24	Linux Shell Programming Lab	0	0	2		60	40	100	1	
11		4CAI4-25	Java Lab	0	0	2		60	40	100	1	
12	SODE CA	4CAI8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5	
			Sub- Total	0	0	12					6.5	
		TO	TAL OF IV SEMEESTER	17	0	12					23.5	

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI2-01: Discrete Mathematics Structure

	Credit: 3 Max. Marks: 100(IA:30, ETI 3L+0T+0P End Term Exam: 3 H				
Hou	Contents	SN			
1	Introduction: Objective, scope and outcome of the course.	1			
7	 Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality (Inclusion-Exclusion & Addition Principles) Venn Diagrams, proofs of some general identities on sets. Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem. Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction. Composition of Functions. The Pigeonhole and Generalized Pigeonhole Principles. 	2			
8	Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2 way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.	3			
8	 Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions. 	4			
8	Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.	5			
8	Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching vertex/edge covering	6			
irs 40	Office of Dean Acadomic Affa				

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI1-03/3CAI1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI1-02/3CAI1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication - Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI3-04: Microprocessor & Interfaces

Credit: 3

3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Microprocessors, microcontroller; 8085 Microprocessor Architecture, pin description, Bus concept and organization; concept of multiplexing and de-multiplexing of buses; concept of static and dynamic RAM, type of ROM, memory map.	7
3	Software architecture registers and signals, Classification of instruction, Instruction set, addressing modes, Assembly Language Programming and Debugging, Programming Technique, instruction Format and timing.	8
4	Advance Assembly Language Programming, Counter and time delay; types of Interrupt and their uses, RST instructions and their uses, 8259 programmable interrupt controller; Macros, subroutine; Stack- implementation and uses with examples; Memory interfacing.	8
5	8085 Microprocessor interfacing:, 8255 Programmable Peripheral Interface, 8254 programmable interval timer, interfacing of Input/output device, 8279 Key board/Display interface.	8
6	Microprocessor Application: Interfacing scanned multiplexed display and liquid crystal display, Interfacing and Matrix Keyboard, MPU Design; USART 8251, RS232C and RS422A, Parallel interface- Centronics and IEEE 488.	8
	Total	40

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-05: Database Management System

	lit: 3 Max. Marks: 100(IA:30, I 0T+0P End Term Exam: 3	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to database systems: Overview and History of DBMS. File System v/s DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries in DBMS.Structure of a DBMS.	
	Entity Relationship model: Overview of Data Design Entities, Attributes and Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key Constraints, Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation v/s ternary Relationship Conceptual Design for a Large Enterprise.	7
3	 Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus. SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL, ODBC and JDBC, Triggers and Active Databases. 	8
4	Schema refinement and Normal forms: Introductions to Schema Refinement, Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-Decomposition into BCNF Decomposition into 3-NF.	8
5	Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent Executions. Need of Serializability, Conflict vs. View Serializability, Testing for Serializability, Recoverable Schedules, Cascadeless Schedules.	8
6	 Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-based protocols, Validation-based protocols, Deadlock handling, Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow Paging and Log-based Recovery, Recovery with Concurrent transactions. 	8
	Total	40

Office of Dean Academic Affairs Rajasthan Technical University, Kota

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

Credit: 3

4CAI4-06: Theory Of Computation

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

3L+0T+0P End Term Exam: 3 H			
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	1	
2	Finite Automata & Regular Expression: Basic machine, Finite state machine, Transition graph, Transition matrix, Deterministic and non- deterministic finite automation, Equivalence of DFA and NDFA, Decision properties, minimization of finite automata, Mealy & Moore machines.		
	Alphabet, words, Operations, Regular sets, relationship and conversion between Finite automata and regular expression and vice versa, designing regular expressions, closure properties of regular sets, Pumping lemma and regular sets, Myhill- Nerode theorem, Application of pumping lemma, Power of the languages.	7	
3	Context Free Grammars (CFG), Derivations and Languages, Relationship between derivation and derivation trees, leftmost and rightmost derivation, sentential forms, parsing and ambiguity, simplification of CFG, normal forms, Greibach and Chomsky Normal form , Problems related to CNF and GNF including membership problem.	8	
4	Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA, Deterministic PDA, and Deterministic PDA and Deterministic CFL, The pumping lemma for CFL's, Closure Properties and Decision properties for CFL, Deciding properties of CFL.	8	
5	 Turing Machines: Introduction, Definition of Turing Machine, TM as language Acceptors and Transducers, Computable Languages and functions, Universal TM & Other modification, multiple tracks Turing Machine. Hierarchy of Formal languages: Recursive & recursively enumerable languages, Properties of RL and REL, Introduction of Context sensitive grammars and languages, The Chomsky Hierarchy. 	8	
6	Tractable and Untractable Problems: P, NP, NP complete and NP hard problems, Un-decidability, examples of these problems like vertex cover problem, Hamiltonian path problem, traveling sales man problem.	8	
	Total	40	

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-07: Data Communication and Computer Networks

Credit: 3	Max. Marks: 100(IA:30, ETE:70
3L+0T+0P	End Term Exam: 3 Hour
<u>en</u>	Contents

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introductory Concepts: Network hardware, Network software, topologies, Protocols and standards, OSI model, TCP model, TCP/IP model, Physical Layer: Digital and Analog Signals, Periodic Analog Signals, Signal Transmission, Limitations of Data Rate, Digital Data Transmission, Performance Measures, Line Coding, Digital Modulation, Media and Digital Transmission System	7
3	Data Link Layer: Error Detection and Correction, Types of Errors, Two dimensional parity check, Detection verses correction, Block Coding, Linear Block Coding, Cyclic Codes, Checksum, Standardized Polynomial Code, Error Correction Methods, Forward Error Correction, Protocols: Stop and wait, Go-back-N ARQ, Selective Repeat ARQ, Sliding window, Piggy backing, Pure ALOHA, Slotted ALOHA, CSMA/CD, CSMA/CA	9
4	Network Layer: Design issues, Routing algorithms: IPV4, IPV6, Address mapping: ARQ, RARQ, Congestion control, Unicast, Multicast, Broadcast routing protocols, Quality of Service, Internetworking	8
5	Transport Layer: Transport service, Elements of transport protocols, User Datagram Protocol, Transmission Control Protocol, Quality of service, Leaky Bucket and Token Bucket algorithm	8
6	Application Layer: WWW, DNS, Multimedia, Electronic mail, FTP, HTTP, SMTP, Introduction to network security	7
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-21: Microprocessor & Interfaces Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

Office of Dean Academic Affairs Rajasthan Technical University, Kota

List of Experiments:

- 1. Add the contents of memory locations XX00 &XX01 & place the result in memory location XX02.
- 2. Add the 16 bit numbers stored in memory location & store the result in another memory location.
- 3. Transfer a block of data from memory location XX00 to another memory location XX00 in forward & reverse order.
- 4. Write a program to swap two blocks of data stored in memory.
- 5. Write a program to find the square of a number.
- 6. Write a main program and a conversion subroutine to convert Binary to its equivalent BCD.
- 7. Write a program to find largest & smallest number from a given array.
- 8. Write a program to Sort an array in ascending & descending order.
- 9. Write a program to multiply two 8 bit numbers whose result is 16 bit.
- 10. Write a program of division of two 8 bit numbers.
- 11. Generate square wave from SOD pin of 8085 & observe on CRO.
- 12. Write a program to perform traffic light control operation.
- 13. Write a program to control the speed of a motor.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-22: Database Management System Lab

Credit: 1.5 0L+0T+3P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- 3. Write a SQL statement for implementing ALTER, UPDATE and DELETE.
- 4. Write the queries to implement the joins.
- 5. Write the query for implementing the following functions: MAX (), MIN (), AVG () and COUNT ().
- 6. Write the query to implement the concept of Integrity constrains.
- 7. Write the query to create the views.
- 8. Perform the queries for triggers.
- 9. Perform the following operation for demonstrating the insertion , updation and deletion
- 10.Using the referential integrity constraints.
- 11.Write the query for creating the users and their role.

Data Base Designing Project:

For better understanding students (group of 3-4 students) should design data base for any data base project, understand the requirement and design methodology of project by its own.

Some example of data base design project like:

College management system, Inventory management system and Hospital management system.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-23: Network Programming Lab

Credit: 1.5 0L+0T+3P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Study of Different Type of LAN& Network Equipments.
- 2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- 3. LAN installations and Configurations.
- 4. Write a program to implement various types of error correcting techniques.
- 5. Write a program to implement various types of framing methods.
- 6. Write two programs in C: hello_client and hello_server
 - a. The server listens for, and accepts, a single TCP connection; it reads all the data it can from that connection, and prints it to the screen; then it closes the connection
 - b. The client connects to the server, sends the string "Hello, world!", then closes the connection
- 7. Write an Echo_Client and Echo_server using TCP to estimate the round trip time from client to the server. The server should be such that it can accept multiple connections at any given time.
- 8. Repeat Exercises 6 & 7 for UDP.
- 9. Repeat Exercise 7 with multiplexed I/O operations.
- 10. Simulate Bellman-Ford Routing algorithm in NS2.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-24: Linux Shell Programming Lab

Credit: 1

Max. Marks: 100(IA:60, ETE:40)

0L+0)T+2P
List	of Experiments:
1.	Use of Basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch,
	file, wc, sort, cut, grep, dd, dfspace, du, ulimit.
2.	Commands related to inode, I/O redirection and piping, process control
	commands, mails.
3.	Shell Programming: Shell script based on control structure- If-then-fi, if-then-
	else-if, nested if-else, to find:
	3.1 Greatest among three numbers.
	3.2 To find a year is leap year or not.
	3.3 To input angles of a triangle and find out whether it is valid triangle or not.
	3.4 To check whether a character is alphabet, digit or special character.
	3.5 To calculate profit or loss.
4.	Shell Programming - Looping- while, until, for loops
	4.1 Write a shell script to print all even and odd number from 1 to 10.
	4.2 Write a shell script to print table of a given number
	4.3 Write a shell script to calculate factorial of a given number.
	4.4 Write a shell script to print sum of all even numbers from 1 to 10.
	4.5 Write a shell script to print sum of digit of any number.
5.	Shell Programming - case structure, use of break
	5.1 Write a shell script to make a basic calculator which performs addition,
	subtraction,
	Multiplication, division
	5.2 Write a shell script to print days of a week.
-	5.3 Write a shell script to print starting 4 months having 31 days.
6.	Shell Programming - Functions
	6.1 Write a shell script to find a number is Armstrong or not.
	6.2 Write a shell script to find a number is palindrome or not.
	6.3 Write a shell script to print Fibonacci series.
	6.4 Write a shell script to find prime number.
7	6.5 Write a shell script to convert binary to decimal and decimal to binary
7.	Write a shell script to print different shapes- Diamond, triangle, square,
0	rectangle, hollow square etc.
8.	Shell Programming – Arrays
	8.1 Write a C program to read and print elements of array.
	8.2 Write a C program to find sum of all array elements.
	8.3 Write a C program to find reverse of an array.
	8.4 Write a C program to search an element in an array.
	8.5 Write a C program to sort array elements in ascending or descending order.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-25: Java Lab

	edit: 1 Max. Marks: 100(IA:60, ETE:40)
	+0T+2P
	t of Experiment: Develop an in depth understanding of programming in Java: data types, variables, operators, operator precedence, Decision and control statements, arrays, switch statement, Iteration Statements, Jump Statements, Using break, Using continue, return.
2.	Write Object Oriented programs in Java: Objects, Classes constructors, returning and passing objects as parameter, Inheritance, Access Control, Using super, final with inheritance Overloading and overriding methods, Abstract classes, Extended classes.
3.	Develop understanding to developing packages & Interfaces in Java: Package, concept of CLASSPATH, access modifiers, importing package, Defining and implementing interfaces.
4.	Develop understanding to developing Strings and exception handling: String constructors, special string operations, character extraction, searching and comparing strings, string Buffer class. Exception handling fundamentals, Exception types, uncaught exceptions, try, catch and multiple catch statements. Usage of throw, throws and finally.
5. 6.	Develop applications involving file handling: I/O streams, File I/O. Develop applications involving concurrency: Processes and Threads, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Joins, and Synchronization.
	Indicative List of exercises:
7.	Programs to demonstrate basic concepts e.g. operators, classes, constructors, control & iteration statements, recursion etc. such as complex arithmetic, matrix arithmetic, tower of Hanoi problem etc.
8.	Development of programs/projects to demonstrate concepts like inheritance, exception handling, packages, interfaces etc. such as application for electricity department, library management, ticket reservation system, payroll system etc.
9. 10.	Development of a project to demonstrate various file handling concepts. Develop applications involving Applet: Applet Fundamentals, using paint method and drawing polygons. It is expected that each laboratory assignments to given to the students with an aim to In order to achieve the above objectives.

SEMESTER-V & VI

Teaching & Examination Scheme B.Tech Computer Science and Engineering (Artificial Intelligence) 3rd Year - V Semester

			THEORY	Y										
	Course Contact													
SN	Category			hrs/week		hrs/week		hrs/w			M	arks	1	Cr
		Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total				
1	PCC	5CAI3-01	Data Mining- Concepts and Techniques	2	0	0	3	30	70	100	2			
2		5CAI4-02	Compiler Design	3	0	0	3	30	70	100	3			
3		5CAI4-03	Operating System	3	0	0	3	30	70	100	3			
4	PCC	5CAI4-04	Computer Graphics & Multimedia	3	0	0	3	30	70	100	3			
5		5CAI4-05	Analysis of Algorithm	3	0	0	3	30	70	100	3			
6		5CAI5-11	Fundamentals of Blockchain	2	0	0	3	30	70	100	2			
7	PEC	5CAI5-12	Mathematical Modelling for Data Science											
8		5CAI5-13	Programming for Data Sciences											
			Sub Total	16	0	0					16			
				2001	<u></u>	-								
9		5CAI4-21	PRACTICAL & SE Computer Graphics & Multimedia Lab	0		L 2	2	60	40	100	1			
10		5CAI4-22	Compiler Design Lab	0	0	2	2	60	40	100	1			
11	PCC	5CAI4-23	Analysis of Algorithm Lab	0	0	2	2	60	40	100	1			
12		5CAI4-24	Advanced Java Lab	0	0	2	2	60	40	100	1			
13	PSIT	5CAI7-30	Industrial Training	0	0	1		60	40	100	2.5			
14	SODECA	5CAI8-00	Social Outreach, Discipline & Extra Curricular Activities						100	100	0.5			
			Sub- Total	0	0	9					7			
		TC	DTAL OF V SEMESTER	16	0	9					23			

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

5CAI3-01: Data Mining-Concepts and Techniques

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. To introduce the fundamental processes data warehousing and major issues in data mining
- 2. To impart the knowledge on various data mining concepts and techniques that can be applied to text mining, web mining etc.
- 3. To develop the knowledge for application of data mining and social impacts of data mining.

Course Outcomes: After completion of the course, students would be able to:

- 1. Interpret the contribution of data warehousing and data mining to the decision-support systems.
- 2. Prepare the data needed for data mining using pre-processing techniques.
- 3. Extract useful information from the labelled data using various classifiers.
- 4. Compile unlabeled data into clusters applying various clustering algorithms.
- 5. Discover interesting patterns from large amounts of data using Association Rule Mining
- 6. Demonstrate capacity to perform a self-directed piece of practical work that requires the application of data mining techniques.

Detailed Syllabus: (per session plan)

UNIT	Contents
1	Introduction to Data Mining: Introduction to data mining-Data mining functionalities-Steps in data mining process- Classification of data mining systems, Major issues in data mining. Data Wrangling and Preprocessing: Data Preprocessing: An overview-Data cleaning-Data transformation and Data discretization
2	Predictive Modeling: General approach to classification-Decision tree induction- Bayes classification methods- advanced classification methods: Bayesian belief networks-Classification by Backpropagation- Support Vector Machines-Lazy learners
3	Descriptive Modeling: Types of data in cluster analysis-Partitioning methods- Hierarchical methods-Advanced cluster analysis: Probabilistic model-based clustering- Clustering high-dimensional data-Outlier analysis
4	Discovering Patterns and Rules: Frequent Pattern Mining: Basic Concepts and a Road Map - Efficient and scalable frequent item set mining methods: Apriori algorithm, FP-Growth algorithm- Mining frequent itemsets using vertical data format- Mining closed and max patterns- Advanced Pattern Mining: Pattern Mining in Multilevel, Multidimensional Space
5	Data Mining Trends and Research Frontiers: Other methodologies of data mining: Web mining-Temporal mining-Spatial mining-Statistical data mining- Visual and audio data mining- Data mining applications- Data mining and society: Ubiquitous and invisible data mining- Privacy, Security, and Social Impacts of data mining

TEXT BOOKS:

- 1. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, third edition ,2013
- 2. Pang-Ning Tan,Michael Steinbach, Anuj Karpatne, Vipin Kumar, Introduction to Data Mining, second edition, Pearson, 2019

REFERENCE BOOKS:

- 1. Ian.H.Witten, Eibe Frank and Mark.A.Hall, Data Mining:Practical Machine Learning Tools and Techniques,third edition , 2017
- 2. Alex Berson and Stephen J. Smith, Data Warehousing, Data Mining & OLAP, Tata McGraw Hill Edition, Tenth Reprint, 2008.
- 3. Hand, D., Mannila, H. and Smyth, P. Principles of Data Mining, MIT Press: Massachusets. third edition, Pearson, 2013

5CAI4-02: Compiler Design

Credit: 3

Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam	m: 3 Hours
SN Contents	Hours
1 Introduction: Objective, scope and outcome of the course.	01
2 Introduction: Objective, scope and outcome of the course. Compiler, Translator, Interpreter definition, Phase of compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling.	06
3 Review of CFG Ambiguity of grammars: Introduction to parsing. Top down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, Bottom up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of automatic parser generator: YACC error handling in LR parsers.	10
4 Syntax directed definitions; Construction of syntax trees, S- Attributed Definition, L-attributed definitions, Top down translation. Intermediate code forms using postfix notation, DAG, Three address code, TAC for various control structures, Representing TAC using triples and quadruples, Boolean expression and control structures.	10
5 Storage organization; Storage allocation, Strategies, Activation records, Accessing local and non-local names in a block structured language, Parameters passing, Symbol table organization, Data structures used in symbol tables.	08
6 Definition of basic block control flow graphs; DAG representation of basic block, Advantages of DAG, Sources of optimization, Loop optimization, Idea about global data flow analysis, Loop invariant computation, Peephole optimization, Issues in design of code generator, A simple code generator, Code	07
generation from DAG.	

5CAI4-03: Operating System

	Credit: 3 Max. Marks: 100(IA:30, ET) 3L+0T+0P End Term Exam: 3 I		
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction and History of Operating systems: Structure and operations; processes and files Processor management: inter process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling and algorithms, critical sections, threads, multithreading	04	
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study	05	
4	 Deadlock: Shared resources, resource allocation and scheduling, resource graph models, deadlock detection, deadlock avoidance, deadlock prevention algorithms Device management: devices and their characteristics, device drivers, device handling, disk scheduling algorithms and policies 	15	
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication	07	
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS	08	
	Total	40	

5CAI4-04: Computer Graphics & Multimedia

Credit: 3 Max. Marks: 100(IA:30, E' 3L+0T+0P End Term Exam: 3		
SN Contents		Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Basic of Computer Graphics: Basic of Computer Graphics, Applications of computer graphics, Display devices, Random and Raster scan systems, Graphics input devices, Graphics software and standards	06
3	Graphics Primitives: Points, lines, circles and ellipses as primitives, scan conversion algorithms for primitives, Fill area primitives including scan- line polygon filling, inside-outside test, boundary and flood-fill, character generation, line attributes, area-fill attributes, character attributers. Aliasing, and introduction to Anti Aliasing (No anti aliasing algorithm).	07
4	Two Dimensional Graphics: Transformations (translation, rotation, scaling), matrix representation, homogeneous coordinates, composite transformations, reflection and shearing, viewing pipeline and coordinates system, window-to-viewport transformation, clipping including point clipping, line clipping (cohen-sutherland, liang- bersky, NLN), polygon clipping	08
5	Three Dimensional Graphics: 3D display methods, polygon surfaces, tables, equations, meshes, curved lies and surfaces, quadric surfaces, spline representation, cubic spline interpolation methods, Bazier curves and surfaces, B-spline curves and surfaces.3D scaling, rotation and translation, composite transformation, viewing pipeline and coordinates, parallel and perspective transformation, view volume and general (parallel and perspective) projection transformations.	08
6	Illumination and Colour Models: Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection.	06
7	 Animations &Realism:Design of Animation sequences – animation function – raster animation – key frame systems – motion specification – morphing – tweening. ComputerGraphics Realism: Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing. 	06
	Total	42

5CAI4-05: Analysis of Algorithms

Credit: 3 Max. Marks: 100(IA:30, B 3L+0T+0P End Term Exam:		
SN	T+OP End Term Exam Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	 Background: Review of Algorithm, Complexity Order Notations: definitions and calculating complexity. Divide And Conquer Method: Binary Search, Merge Sort, Quick sort and Strassen's matrix multiplication algorithms. 	06
3	 Greedy Method: Knapsack Problem, Job Sequencing, Optimal Merge Patterns and Minimal Spanning Trees. Dynamic Programming: Matrix Chain Multiplication. Longest CommonSubsequence and 0/1 Knapsack Problem. 	10
4	 Branch And Bound: Traveling Salesman Problem and Lower Bound Theory. Backtracking Algorithms and queens problem. Pattern Matching Algorithms: Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms. 	08
5	 Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem. Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multicommodity flow, Flow shop scheduling and Network capacity assignment problems. 	08
6	Problem Classes Np, Np-Hard And Np-Complete: Definitions of P, NP-Hard and NP-Complete Problems. Decision Problems.Cook's Theorem. Proving NP-Complete Problems - Satisfiability problem and Vertex Cover Problem. Approximation Algorithms for Vertex Cover andSet Cover Problem.	08
	Total	41

5CAI5-11: Fundamentals of Blockchain

Credit: 2	
2L+0T+0P	

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. The students should be able to understand a broad overview of the essential concepts of blockchain technology.
- 2. To familiarize students with Bitcoin protocol followed by the Ethereum protocol to lay the foundation necessary for developing applications and programming.
- 3. Students should be able to learn about different types of blockchain and consensus algorithms.

Course Outcomes: After completion of the course, students would be able to:

- 1. To explain the basic notion of distributed systems.
- 2. To use the working of an immutable distributed ledger and trust model that defines blockchain.
- 3. To illustrate the essential components of a blockchain platform.

Detailed Syllabus: (per session plan)

UNIT	Contents
1	Basics: The Double-Spend Problem, Byzantine Generals' Computing Problems, Public- Key Cryptography, Hashing, Distributed Systems, Distributed Consensus.
2	Technology Stack: Blockchain, Protocol, Currency. Bitcoin Blockchain: Structure, Operations, Features, Consensus Model, Incentive Model
3	Ethereum Blockchain: Smart Contracts, Ethereum Structure, Operations, Consensus Model, Incentive Model.
4	Tiers of Blockchain Technology: Blockchain 1.0, Blockchain 2.0, Blockchain 3.0, Types of Blockchain: Public Blockchain, Private Blockchain, Semi-Private Blockchain, Sidechains.
5	Types of Consensus Algorithms: Proof of Stake, Proof of Work, Delegated Proof of Stake, Proof Elapsed Time, Deposite-Based Consensus, Proof of Importance, Federated Consensus or Federated Byzantine Consensus, Practical Byzantine Fault Tolerance. Blockchain Use Case: Supply Chain Management.

TEXT BOOKS:

- 1. Kirankalyan Kulkarni, Essentials of Bitcoin and Blockchain, Packt Publishing.
- 2. Anshul Kaushik, Block Chain & Crypto Currencies, Khanna Publishing House.
- 3. Tiana Laurence, Blockchain for Dummies, 2nd Edition 2019, John Wiley & Sons.
- 4. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks by Imran Bashir, Packt Publishing (2017).

REFERENCE BOOKS:

1. Blockchain: Blueprint for a New Economy by Melanie Swan, Shroff Publisher O'Reilly Publisher

Media; 1st edition (2015).

2. Mastering Bitcoin: Programming the Open Blockchain by Andreas Antonopoulos.

5CAI5-12: Mathematical Modelling for Data Science

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) **End Term Exam: 3 Hours**

Course Objectives:	1 1
1. To introduce the various mathematical concepts and models, and provide skills required to imp	lement the
models.	
2. To undertake a critical evaluation of a wide range of numerical and data.	
3. To develop designing skills for modeling non-deterministic problems.	
Expected Course Outcome:	
1. Demonstrate understanding of basic mathematical concepts in data science, relating to linear a	igebra,
probability, and calculus and employ them.	
2. Apply linear models for regression and linear models for classification	
3. Employ kernel models, SVM and RVM	
4. Conceptualize problems as graphical models, mixture models and analyse using estimation-ma	ximation
algorithms	
5. Demonstrate with illustrative examples PCA	
Unit:1 Linear Algebra	3 hours
Matrices, solving linear equations, vector spaces, linear independence, basis and rank, linear map	
affine spaces, norms, inner products, orthogonality, orthonormal basis, inner product of functions	',
orthogonal projections	1
Unit:2 Matrix Decompositions	4 hours
Determinant and trace, Eigen values and Eigen vectors, Cholesky decomposition, Eigen decompo	osition,
Singular value decomposition, matrix approximation	-
Unit:3 Vector Calculus	4 hours
Differentiation of Univariate Functions, Partial Differentiation and Gradients, Gradients of Vector	r-Valued
Functions, Gradients of Matrices, Useful Identities for Computing Gradients, Backpropagation and	
Automatic Differentiation, Higher-Order Derivatives, Linearization and Multivariate Taylor Serie	es.
Unit:4 Probability, Distributions and optimizations	4 hours
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product R	ule, and
Bayes' Theorem, Summary Statistics and Independence, Gaussian Distribution, Conjugacy and the	ne
Exponential Family, Change of Variables/Inverse Transform, Continuous Optimization, Optimization,	ation Using
Gradient Descent, Constrained Optimization and Lagrange Multipliers, Convex Optimization	
Unit:5 Data Models	4 hours
Data, Models, and Learning, Empirical Risk Minimization, Parameter Estimation, Probabilistic Mode	ling and
Inference, Directed Graphical Models, Model Selections	-
Text Book(s)	
1. Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, Mathematics for Machine Learning	ng,
Cambridge University Press, 2020.	
Reference Books	

Reference Books

1. Matthias Dehmer, Salissou Moutari, Frank Emmert-Streib, Mathematical Foundations of Data Science Using R, De Gruyter Oldenbourg, 2020.

2. Norman Matloff, Probability and Statistics for Data Science: Math + R + Data, CRC Data Science Series, 2019.

5CAI5-13: Programming for Data Science

Credit: 2
2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

	Objectives:	L 1
.	wide necessary knowledge on data manipulation and to perform analysis on the practical pro-	blems
0	tistical and machine learning approach	
	herate report and visualize the results in graphical form using programming tool	
<u> </u>	l Course Outcome:	
	to gain basic knowledge on data science	
	rt the real time data into suitable form for analysis	
	he insights from the data through statistical inferences	
	op suitable models using machine learning techniques and to analyze its performance	
	y the requirement and visualize the results	
	ze on the performance of the model and the quality of the results	
Unit:1	INTRODUCTION	4 hours
Data Scie	ence: Introduction to Data Science - Digital Universe - Sources of Data - Information Comm	nons –
Data Scie	ence Project Life Cycle: OSEMN Framework	T
Data Scie Unit:2 Introduct	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values –	
Data Scie Unit:2 Introduct Manipula Approxim	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination	6 hours
Data Scie Unit:2 Introduct Manipula	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination	
Data Scie Unit:2 Introduct Manipula Approxir Algorithr Unit:3	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R	stic
Data Scie Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n	stic
Data Scie Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab	stic 8 hour el
Data Scie Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressio	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction	stic 8 hour el 8 hour
Data Scie Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressio	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SVI	stic 8 hour el 8 hour
Data Scie Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressio Random I Unit:5 Data visu	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SVI Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection	stic 8 hour el 8 hour M and 6 hour
Data Scie Unit:2 Introduct Manipula Approxin Algorithm Unit:3 R Basics Encoding Unit:4 Regressio Random I Unit:5 Data visu Balancing	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SVI Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection	stic 8 hour el 8 hour M and 6 hour n – Data
Data Scie Unit:2 Introduct Manipula Approxin Algorithm Unit:3 R Basics Encoding Unit:4 Regressic Random I Unit:5 Data visu Balancing Unit:6	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination n ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SVI Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection	stic 8 hour el M and 6 hour n – Data 4 hour

Text Book(s)

- 1. Ethem Alpaydin, Introduction to Machine Learning, Fourth Edition, MIT Press, 2020
- 2. Hadley Wickham, Garrett Grolemund, R for data science : Import, Tidy, Transform, Visualize, And Model Data Paperback, 2017

Reference Books

- 1. Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan Kaufmann. 2011
- 2. Carl Shan, Henry Wang, William Chen, Max Song. The Data Science Handbook: Advice and Insight from 25 Amazing Data Scientists. The Data Science Bookshelf. 2016
- 3. James, G., Witten, D., T., Tibshirani, R. An Introduction to statistical learning with applications in R. Springer. 2013

5CAI4-21: Computer Graphics & Multimedia Lab

Credit: 1 0L+0T+2P

Max. Marks:100 (IA:60, ETE:40) End Term Exam: 2 Hours

,+UT	+2P End Term Exam: 2 Hours
SN	List of Experiments
1	Implementation of Line, Circle and ellipse attributes
2	To plot a point (pixel) on the screen
3	To draw a straight line using DDA Algorithm
4	Implementation of mid-point circle generating Algorithm
5	Implementation of ellipse generating Algorithm
6	Two Dimensional transformations - Translation, Rotation, Scaling, Reflection, Shear
7	Composite 2D Transformations
8	Cohen Sutherland 2D line clipping and Windowing
9	Sutherland – Hodgeman Polygon clipping Algorithm
10	Three dimensional transformations - Translation, Rotation, Scaling
11	Composite 3D transformations
12	Drawing three dimensional objects and Scenes
13	Generating Fractal images

Credit: 1

RAJASTHAN TECHNICAL UNIVERSITY, KOTA B.Tech Computer Science and Engineering (Artificial Intelligence)

5CAI4-22: Compiler Design Lab

Max. Marks: 100 (IA:60, ETE:40)

+ 0 T+	2P End Term Exam: 2 Hours
SN	List of Experiments
1	Introduction: Objective, scope and outcome of the course.
2	To identify whether given string is keyword or not.
3	Count total no. of keywords in a file. [Taking file from user]
4	Count total no of operators in a file. [Taking file from user]
5	Count total occurrence of each character in a given file. [Taking file from user]
6	Write a C program to insert, delete and display the entries in Symbol Table.
7	 Write a LEX program to identify following: 1. Valid mobile number 2. Valid url 3. Valid identifier 4. Valid date (dd/mm/yyyy) 5. Valid time (hh:mm:ss)
8	Write a lex program to count blank spaces, words, lines in a given file.
9	Write a lex program to count the no. of vowels and consonants in a C file.
10	Write a YACC program to recognize strings aaab,abbb using a^nb^n, where b>=0.
11	Write a YACC program to evaluate an arithmetic expression involving operators +,-,* and /.
12	Write a YACC program to check validity of a strings abcd,aabbcd using grammar a^nb^nc^md^m, where n , m>0
13	Write a C program to find first of any grammar.

5CAI4-23: Analysis of Algorithms Lab

edit: +0T+						
SN	List of Experiments					
1	Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.					
2	Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.					
3	a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.					
4	Implement 0/1 Knapsack problem using Dynamic Programming.					
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.					
6	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.					
7	a. Print all the nodes reachable from a given starting node in a digraph using BFS method. b. Check whether a given graph is connected or not using DFS method.					
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Primalgorithm.					
9.	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.					
10	Implement N Queen's problem using Back Tracking.					

5CAI4-24: Advance Java Lab

Cred	lit: 1 Max. Marks: 100 (IA:60, ETE:40)
L+01	Y+2PEnd Term Exam: 2 Hours
SN	List of Experiments
1	Introduction To Swing, MVC Architecture, Applets, Applications and Pluggable Look and Feel, Basic swing components : Text Fields, Buttons, Toggle Buttons, Checkboxes, and Radio Buttons
2	Java database Programming, java.sql Package, JDBC driver, Network Programming With java.net Package, Client and Server Programs, Content And Protocol Handlers
3	RMI architecture, RMI registry, Writing distributed application with RMI, Naming services, Naming And Directory Services, Overview of JNDI, Object serialization and Internationalization
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform, HTTP protocol, web application, Web containers and Application servers
5	Server side programming with Java Servlet, HTTP and Servlet, Servlet API, life cycle, configuration and context, Request and Response objects, Session handling and event handling, Introduction to filters with writing simple filter application
6	JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag Extension API, Tag handlers, JSP Fragments, Tag Files, JSTL, Core Tag library, overview of XML Tag library, SQL Tag library and Functions Tag library

Teaching & Examination Scheme B.Tech Computer Science and Engineering (Artificial Intelligence) 3rd Year - VI Semester

	1	1	THEC	RY			-						
SN	Category		Course	Contact hrs/week					Marks				Cr
		Code	Title	L	Т	Р	Exam Hrs	IA	ETE	Total			
1	ESC	6CAI3-01	Digital Image Processing	2	0	0	3	30	70	100	2		
2		6CAI4-02	Machine Learning	3	0	0	3	30	70	100	3		
3		6CAI4-03	Information Security Systems	2	0	0	3	30	70	100	2		
4	PCC	6CAI4-04	Computer Architecture and Organization	3	0	0	3	30	70	100	3		
5		6CAI4-05	Principles of Artificial Intelligence	2	0	0	3	30	70	100	2		
6		6CAI4-06	Cloud Computing	3	0	0	3	30	70	100	3		
7		6CAI5-11	Artificial Neural Network										
8	PEC	6CAI5-12	Natural Language Processing (NLP)	2	0	0	3	30	70	100	2		
9		6CAI5-13	Predictive Modeling and Analytics										
			Sub Total	17	0	0					17		
	Г		PRACTICAL &	SES	SIOI	NAL			1				
8		6CAI4-21	Digital Image Processing Lab	0	0	3	2	60	40	100	1.5		
9	PCC	6CAI4-22	Machine Learning Lab	0	0	3	2	60	40	100	1.5		
10		6CAI4-23	Python Lab	0	0	3	2	60	40	100	1.5		
11		6CAI4-24	Mobile Application Development Lab	0	0	3	2	60	40	100	1.5		
12	SODECA	6CAI8-00	Social Outreach, Discipline & Extra Curricular Activities						100	100	0.5		
			Sub- Total	0	0	12					6.5		
		тота	L OF III SEMESTER	17	0	12					23.5		

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

6CAI3-01: Digital Image Processing

	Credit: 2 Max. Marks: 100(IA:30 2L+0T+0P End Term Exam		
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation.	04	
3	Image Transformation & Filtering: Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, frequency domain filters, colour models, Pseudo colouring, colour transforms, Basics of Wavelet Transforms.	06	
4	Image Restoration: Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering.	07	
5	Image Compression: Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression.	05	
6	Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors.	05	
	Total	28	

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA B.Tech Computer Science and Engineering (Artificial Intelligence)

6CAI4-02: Machine Learning

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

: 3 Hou	3L+OT+OP End Term Exam:	
Hours	Contents	SN
01	Introduction: Objective, scope and outcome of the course.	1
09	Supervised learning algorithm: Introduction, types of learning, application, Supervised learning: Linear Regression Model, Naive Bayes classifier Decision Tree, K nearest neighbor, Logistic Regression, Support Vector Machine, Random Forest algorithm	2
08	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model.	3
08	Introduction to Statistical Learning Theory , Feature extraction - Principal component analysis, Singular value decomposition. Feature selection – feature ranking and subset selection, filter, wrapper and embedded methods, Evaluating Machine Learning algorithms and Model Selection.	4
08	Semi supervised learning, Reinforcement learning: Markov decision process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA), Model-based Reinforcement Learning.	5
08	Recommended system, Collaborative filtering, Content-based filtering Artificial neural network, Perceptron, Multilayer network, Backpropagation, Introduction to Deep learning.	6
42	Total	

6CAI4-03: Information Security System

Credit:2 2L+0T+0P	Max. Marks: 100(IA:3 End Term Exar	
SN Conte		Hours
1 Introduction: Object	ive, scope and outcome of the course.	01
classical encryption	curity attacks: services and mechanism, n techniques- substitution ciphers and , cryptanalysis, stream and block ciphers.	06
standard (DES) with	ers : Block Cipher structure, Data Encryption example, strength of DES, Design principles of th structure, its transformation functions, key nd implementation.	06
	and triple DES, Electronic Code Book, Cipher e, Cipher Feedback mode, Output Feedback	
	ystems with Applications: Requirements and cryptosystem, Rabin cryptosystem, Elgamal curve cryptosystem.	06
functions, its require	Functions, their applications: Simple hash ments and security, Hash functions based on g, Secure Hash Algorithm (SHA).	
based on Hash Fund Signature, its propert	on Codes, its requirements and security, MACs ctions, Macs based on Block Ciphers. Digital ties, requirements and security, various digital Elgamal and Schnorr), NIST digital Signature	05
using symmetric and keys, X.509 certifica authentication with s	and distribution: symmetric key distribution asymmetric encryptions, distribution of public ates, Public key infrastructure. Remote user ymmetric and asymmetric encryption, Kerberos	04
	ts and approaches, SSL architecture and yer security, HTTPS and SSH.	
	Total	28

6CAI4-04: Computer Architecture and Organization

Credit: 3 3L+0T+0		
SN		Hours
1 Intro	oduction: Objective, scope and outcome of the course.	01
Com Micr lang Bus Micr unit Com Instr and	puter Data Representation: Basic computer data types, plements, Fixed point representation, Register Transfer and o-operations: Floating point representation, Register Transfer uage, Register Transfer, Bus and Memory Transfers (Tree-State Buffers, Memory Transfer), Arithmetic Micro-Operations, Logic o-Operations, Shift Micro-Operations, Arithmetic logical shift Basic Computer Organization and DesignInstruction codes, puter registers, computer instructions, Timing and Control, ruction cycle, Memory-Reference Instructions, Input-output interrupt, Complete computer description, Design of Basic puter, design of Accumulator Unit.	10
3 Prog Lang Prog Prog	gramming The Basic Computer: Introduction, Machine guage, Assembly Language, assembler, Program loops, ramming Arithmetic and logic operations, subroutines, I-O ramming. Micro programmed Control: Control Memory, Address lencing, Micro program Example, design of control	7
Mod Instr Flyn Pipe	tral Processing Unit: Introduction, General Register anization, Stack Organization, Instruction format, Addressing es, data transfer and manipulation, Program Control, Reduced ruction Set Computer (RISC)Pipeline And Vector Processing, n's taxonomy, Parallel Processing, Pipelining, Arithmetic line, Instruction, Pipeline, RISC Pipeline, Vector Processing, y Processors	8
5 Com Mult Algo Unit Asyn Inter	puter Arithmetic: Introduction, Addition and subtraction, iplication Algorithms (Booth Multiplication Algorithm), Division rithms, Floating Point Arithmetic operations, Decimal Arithmetic	8
6 Men Men Mult Inter proc	hory Organization: Memory Hierarchy, Main Memory, Auxiliary hory, Associative Memory, Cache Memory, Virtual Memory. Eipreocessors: Characteristics of Multiprocessors, econnection Structures, Inter-processor Arbitration, Inter- essor Communication and Synchronization, Cache Coherence, red Memory Multiprocessors. Office of Dean Academic Affairs	8
	Rajasthan Technical University, Kot	a 42

6CAI4-05: Principles of Artificial Intelligence

Credit: 2Max. Marks: 100(IA:30,2L+0T+0PEnd Term Example		• •
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to AI and Intelligent agent: Different Approach of AI, Problem Solving : Solving Problems by Searching, Uninformed search, BFS, DFS, Iterative deepening, Bi directional search, Hill climbing, Informed search techniques: heuristic, Greedy search, A* search, AO* search, constraint satisfaction problems.	03
3	Game Playing: Minimax, alpha-beta pruning, jug problem, chess problem, tiles problem	06
4	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order logic, situation calculus. Theorem Proving in First Order Logic. Planning, partial order planning. Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.	06
5	Learning: Overview of different forms of learning, Supervised base learning: Learning Decision Trees, SVM, Unsupervised based learning, Market Basket Analysis, Neural Networks.	07
6	Introduction to Natural Language Processing: Different issue involved in NLP, Expert System, Robotics.	05
	Total	28

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA **B.Tech Computer Science and Engineering (Artificial Intelligence)**

6CAI4-06: Cloud Computing

Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam:		
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
	Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell of cloud computing, Enabling Technology, Historical development, Vision, feature Characteristics and components of Cloud Computing. Challenges, Risks and Approaches of Migration into Cloud. Ethical Issue in Cloud Computing, Evaluating the Cloud's Business Impact and economics, Future of the cloud. Networking Support for Cloud Computing. Ubiquitous Cloud and the Internet of Things	06
3	Cloud Computing Architecture: Cloud Reference Model, Layer and	
	Types of Clouds, Services models, Data centre Design and interconnection Network, Architectural design of Compute and Storage Clouds. Cloud Programming and Software: Fractures of cloud programming, Parallel and distributed programming paradigms-Map Reduce, Hadoop, High level Language for Cloud. Programming of Google App engine.	10
4	Virtualization Technology: Definition, Understanding and Benefits	
	of Virtualization. Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor VMware, KVM, Xen. Virtualization: of CPU, Memory, I/O Devices, Virtual Cluster and Resources Management, Virtualization of Server, Desktop, Network, and Virtualization of data-centre.	10
5	Securing the Cloud: Cloud Information security fundamentals,	
	Cloud security services, Design principles, Policy Implementation, Cloud Computing Security Challenges, Cloud Computing Security Architecture . Legal issues in cloud Computing. Data Security in Cloud: Business Continuity and Disaster Recovery, Risk Mitigation , Understanding and Identification of Threats in Cloud, SLA-Service Level Agreements, Trust Management	08
6	Cloud Platforms in Industry: Amazon web services , Google	
	AppEngine, Microsoft Azure Design, Aneka: Cloud Application Platform -Integration of Private and Public Clouds Cloud applications: Protein structure prediction, Data Analysis, Satellite Image Processing, CRM	07
	Total	42
	Office of Dean Academic Affairs	

TEXT BOOKS

- 1. Anthony T. Velte Toby J. Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", 2010, The McGraw-Hill.
- 2. Dr. Kris Jamsa, "Cloud Computing: SaaS, PaaS, IaaS, Virtualization and more", Wiley Publications, ISBN: 978-0-470-97389-9
- 3. Gautam Shrof, "ENTERPRISE CLOUD COMPUTING Technology Architecture, Applications, Cambridge University Press, ISBN: 9780511778476

REFERENCE BOOKS

- 1. Cloud computing for Dummies (November 2009) Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper
- 2. IBM Cloud Computing http://www.ibm.com/cloud-computing/us/en/

6CAI5-11/6AID5-11: Artificial Neural Network

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. To understand the biological neural network and to model equivalent neuron models.
- 2. To understand the architecture, learning algorithm and issues of various feed forward and feedback neural networks.

Course Outcomes: By completing this course the student will be able to:

- Create different neural networks of various architectures both feed forward and feed backward.
- Perform the training of neural networks using various learning rules.
- Perform the testing of neural networks and do the perform analysis of these networks for various pattern recognition applications.

Detailed Syllabus: (per session plan)

UNIT Contents

1 Introduction: A Neural Network, Human Brain, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial

Intelligence and Neural Networks.

Learning Process: Error Correction Learning, Memory Based Learning, Hebbian Learning, Competitive, Boltzmann Learning, Credit Assignment Problem, Memory, Adaption, Statistical Nature of the Learning Process.

2 Single Layer Perceptrons: Adaptive Filtering Problem, Unconstrained Organization Techniques, Linear Least Square Filters, Least Mean Square Algorithm, Learning Curves, Learning Rate Annealing Techniques, Perceptron –Convergence Theorem, Relation Between Perceptron and Bayes Classifier for a Gaussian Environment. Multilayer Perceptron: Back Propagation Algorithm XOR Problem, Heuristics, Output

Representation and Decision Rule, Computer Experiment, Feature Detection.

3 Back Propagation: Back Propagation and Differentiation, Hessian Matrix, Generalization,

Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning.

- 4 Self-Organization Maps (SOM): Two Basic Feature Mapping Models, Self-Organization Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector
- Quantization, Adaptive Patter Classification.
- 5 Neuro Dynamics: Dynamical Systems, Stability of Equilibrium States, Attractors, Neuro Dynamical Models, Manipulation of Attractors as a Recurrent Network Paradigm. Hopfield Models – Hopfield Models, Computer Experiment.

TEXT BOOKS:

1. Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.

REFERENCE BOOKS:

1. Artificial Neural Networks - B. Vegnanarayana Prentice Hall of India Pleta 2005mic Affairs

2. Neural Networks in Computer Intelligence, Li Min Fu MC GRAW HILLTechnical University, Kota

Syllabus of 3rd Year B. Tech. (CAI) for students admitted in Session 2021-22 onwards.

EDUCATION 2003:

- 3. Neural Networks -James A Freeman David M S Kapura Pearson Education 2004.
- 4. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006.

6CAI5-12/6AID5-12: Natural Language Processing (NLP)

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

 Understanding biology of Natural Language Processing; Place and Manner of Articulation; Word Boundary Detection; Argmax based computations; Morphology fundamentals; Morphological Diversity of Indian Languages; Morphology Paradigms; Finite State Machine Based Morphology; Automatic Morphology Learning; Shallow Parsing; Named Entities; Maximum Entropy Models; Random Fields.

Course Outcomes: After completion of the course, students would be able to:

This course will examine the state-of-the-art in applied NLP, with an emphasis on how well the algorithms work and how they can be used (or not) in applications. Today there are many ready-to-use plug-and-play software tools for NLP algorithms. For this reason, this course will emphasize getting facile with quick programs using existing tools. The intended learning outcomes are for students to:

- 1. Learn about major NLP issues and solutions
- 2. Become agile with NLP programming
- 3. Be able to asses NLP problems
- 4. Be able to get the gist of relevant research papers
- 5. Understand Natural language understanding, processing, generation.

Detailed Syllabus: (per session plan)

UNIT Contents

- 1 Introduction, Machine Learning and NLP, ArgMax Computation, Syntactic Collocations; More on Term Weighting
- 2 Practice with ipython Notebooks, NLTK Text; Adopt a text collection, Tokenize Your Text Collection, Create a First Look at Your Text Collection, Parts of Speech and Tagging, Part of WSD : WordNet, Wordnet; Application in Query Expansion, Wiktionary; semantic relatedness, Measures of WordNet Similarity, Similarity Measures, Resnick's work on WordNet Similarity.
- 3 WordNet Lexical Relations, Work on your Keyphrase assignment, Keyphrase Identification Assignment, Run Keyphrase Extraction on Mystery Text, Names features Parsing Algorithms, Evidence for Deeper Structure; Top Down Parsing Algorithms, Noun Structure; Top Down Parsing Algorithms- contd, Non-noun Structure and Parsing Algorithms
- **4** Probabilistic parsing; sequence labeling, PCFG, Probabilistic parsing; PCFG (contd.), Probabilistic parsing: Training issues Pandas Intro and Readings, Read About Syntactic and Semantic Parsing Review, Parsing, and Logic, Kaggle-based Text Classification Assignment
- **5** Arguments and Adjuncts, Probabilistic parsing; inside-outside probabilities Text Clustering, Distributional Semantics readings, Clustering and Distributional Semantics Morphology, Graphical Models for Sequence Labelling in NLP, Graphical Models for Sequence Labelling in NLP (contd.)

TEXT BOOKS:

1. Natural Language Processing with Python online book: http://www.nltk.org/book/

2. Speech and Language Processing, 2nd Edition 2nd Edition by Daniel Jurafsky, James H. Martin **REFERENCE BOOKS:**

1. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit 1st Edition by Steven Bird, Ewan Klein, Edward Loper.

2. Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning 1st Edition by Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda.

3. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras Paperback – June 29, 2018 by Bhargav Srivinasa-Desikan.

6CAI5-13/6CDS5-12: Predictive Modeling and Analytics

Credit: 3

Max. Marks: 100(IA:30, ETE:70)

	OT+OP End Term Exa:	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Predictive Modeling- Predictive Analytics in the Wild – Exploring Data types and associated Techniques - Complexities of data - Applying Models: Models and simulation, Categorizing Models, Describing, summarizing data, and decisions – Identify similarities in Data: Data Clustering, converting Raw Data into a Matrix, Identify K-groups in Data.	06
3	Data Classification-I: Background – Exploring Data classification process - Using Data Classification to predict the future: Decision tree, Algorithm for generating Decision Trees, Support Vector Machine.	10
4	Data Classification-II: Ensemble Methods to Boost Prediction Accuracy: Naïve Bayes Classification Algorithm, The Markov	
4	Model, Linear Regression, Neural Networks – Deep learning.	08
5	Model, Linear Regression, Neural Networks – Deep learning. Data Prediction: Adopt predictive analytics - Processing data: identifying, cleaning, generating, reducing dimensionality of data – Structuring Data – Build predictive model: develop and test the model	08
	Data Prediction: Adopt predictive analytics - Processing data: identifying, cleaning, generating, reducing dimensionality of data – Structuring Data – Build predictive model: develop and test the	

TEXT BOOKS

1. Anasse Bari, Mohamed Chaouchi, Tommy Jung, "Predictive Analytics For Dummies", Wiley Publisher, 2nd Edition, 2016.

REFERENCE BOOKS

- 1. Bertt Lantz, Machine Learning with R: Expert techniques for predictive modeling to solve all your data analysis problems, Pack Publisher, 2nd Edition, 2015
- Aurelien, "Hands-On Machine Learning with Scikit-Learn & TensorFlow", O'Reilly Publisher, 5th Edition, 2017.
 Diffice of Dean Academic Affairs
 Painsther Technical University Vision

Rajasthan Technical University, Kota

6CAI4-21: Digital Image Processing Lab

	Credit: 1.5 Max. Marks: 100(IA:60, ETE:40 OL+0T+3P End Term Exam: 2 Hours		
SN	List of Experiments		
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.		
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform		
3	Linear filtering using convolution. Highly selective filters.		
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.		
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.		

6CAI4-22: Machine Learning Lab

	t: 1.5 Max. Marks: 100(IA:60, ETE:40) T+3P End Term Exam: 2 Hours
SN	List of Experiments
1	Implement and demonstrate the FIND-Salgorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm output a description of the set of all hypotheses consistent with the training examples.
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample
4	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets
5	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
7	Write a program to construct aBayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
9	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
	Office of Dean Academic Affairs

Rajasthan Technical University, Kota

6CAI4-23: Python Lab

	lit: 1.5 Max. Marks: 100(IA:60, ETE:40)
	DT+3P End Term Exam: 2 Hours List of Experiments End Term Exam: 2 Hours
3N 1	
2	Write a program to demonstrate basic data type in python.
4	Write a program to compute distance between two points taking input from the user
	Write a program add.py that takes 2 numbers as command line arguments and
	prints its sum.
3	Write a Program for checking whether the given number is an even number or
3	not.
	Using a for loop, write a program that prints out the decimal equivalents of
	$1/2, 1/3, 1/4, \ldots, 1/10$
4	
-	Write a Program to demonstrate list and tuple in python. Write a program using a for loop that loops over a sequence.
	Write a program using a while loop that asks the user for a number, and prints
	a countdown from that number to zero.
5	Find the sum of all the primes below two million.
	By considering the terms in the Fibonacci sequence whose values do not
	exceed four million, WAP to find the sum of the even-valued terms.
6	Write a program to count the numbers of characters in the string and store
	them in a dictionary data structure
	Write a program to use split and join methods in the string and trace a
	birthday of a person with a dictionary data structure
7	Write a program to count frequency of characters in a given file. Can you use
	character frequency to tell whether the given file is a Python program file, C
	program file or a text file?
	Write a program to count frequency of characters in a given file. Can you use
	character frequency to tell whether the given file is a Python program file, C
	program file or a text file?
	White a new many to private as all lines of a file in new many surface.
8	Write a program to print each line of a file in reverse order.
	Write a program to compute the number of characters, words and lines in a file.
9	Write a function nearly equal to test whether two strings are nearly equal. Two
2	strings a and b are nearly equal when a can be generated by a single mutation
	on.
	Write function to compute gcd, lcm of two numbers. Each function shouldn't
	exceed one line.
10	Write a program to implement Merge sort.
	Write a program to implement Selection sort, Insertion sort.
<u> </u>	
	Office of Deen Academic Affaire

6CAI4-24: Mobile Application Development Lab

Credit: 1.5 Max. Marks: 100(IA:60, E'	
0L+0	T+3P End Term Exam: 2 Hours
SN	List of Experiments
1	To study Android Studio and android studio installation. Create "Hello World" application.
2	To understand Activity, Intent, Create sample application with login module.(Check username and password).
3	Design simple GUI application with activity and intents e.g. calculator.
4	Develop an application that makes use of RSS Feed.
5	Write an application that draws basic graphical primitives on the screen
6	Create an android app for database creation using SQLite Database.
7	Develop a native application that uses GPS location information
8	Implement an application that writes data to the SD card.
9	Design a gaming application
10	Create an application to handle images and videos according to size.