Syllabus and Scheme

B.Tech. in Civil Engineering

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	Hours		rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
		_	Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
		_	and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations - First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.

SEMESTER-III to VIII

Teaching & Examination Scheme B.Tech. : Civil Engineering 2nd Year - III Semester

			THEO	RY							
			Course	C	onta	ıct					
SN	Categ			hrs	s/we	ek		Ma	arks		Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CE2-01	Advance Engineering Mathematics -I	3	0	0	3	30	70	100	3
2	HSMC	3CE1-02/ 3CE1-03	Technical Communication /Managerial Economics & Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3CE3-04	Engineering Mechanics	2	0	0	2	30	70	100	2
4		3CE4-05	Surveying	3	0	0	3	30	70	100	3
5		3CE4-06	Fluid Mechanics	2	0	0	2	30	70	100	2
6	PCC	3CE4-07	Building Materials and Construction	3	0	0	3	30	70	100	3
7		3CE4-08	Engineering Geology	2	0	0	2	30	70	100	2
			Sub Total	17	0	0					17
			PRACTICAL &	SESS	SION	AL					
8		3CE4-21	Surveying Lab	0	0	3		60	40	100	1.5
9		3CE4-22	Fluid Mechanics Lab	0	0	2		60	40	100	1
10	PCC	3CE4-23	Computer Aided Civil Engineering Drawing	0	0	3		60	40	100	1.5
11		3CE4-24	Civil Engineering Maretials Lab	0	0	2		60	40	100	1
12		3CE4-25	Geolgy Lab	0	0	2		60	40	100	1
13	PSIT	3CE7-30	Industrial Training	0	0	1		60	40	100	1
14	SODE CA	3CE8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	13					7.5
		тс	DTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE2-01: ADVANCE ENGINEERING MATHEMATICS-I

	-edit: 3 Max. Marks: 100 (IA:30, ET L+0T+0P End Term Exam: 3 H	•
SN	Contents	Hrs.
1	Numerical Methods – 1: Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Gauss's forward and backward interpolation formulae. Stirling's Formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange'sformulae. Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	10
2	Numerical Methods – 2: Numerical solution of ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge-Kutta method of fourth order for solving first and second order equations. Milne's and Adam's predicator-corrector methods. Solution of polynomial and transcendental equations-Bisection method, Newton-Raphson method and Regula-Falsi method.	8
3	Laplace Transform: Definition and existence of Laplace transform, Properties of Laplace Transform and formulae, Unit Step function, Dirac Delta function, Heaviside function, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs by Laplace transforms method.	10
4	Fourier Transform: Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem, application of Fourier transforms to partial ordinary differential equation (One dimensional heat and wave equations only).	7
5	Z-Transform: Definition, properties and formulae, Convolution theorem, inverse Z-transform, application of Z-transform to difference equation.	5
	Total	40

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Max. Marks: 100 (IA:30, ETE:70)

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE1-02/4CE1-02: TECHNICAL COMMUNICATION

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	Contents	Hrs.
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2 3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media. Technical Writing, Grammar and Editing- Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style,	
	Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Office of Dean Academic Affairs Rajasthan Technical University, Kota

II Year - III Semester: B.Tech. (Civil Engineering)

3CE1-03/4CE1-03: MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTING

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	Contents	Hrs.
1	Basic economic concepts -Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis -Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting – purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis -Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts- explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation	5
4	Market structure and pricing theory -Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis -Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash- flow analysis, funds-flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	Total	26

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE3-04: ENGINEERING MECHANICS

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENT	Hrs.
1	Introduction: objective, scope and outcome of the course.	1
2	Statics of particles and rigid bodies: Fundamental laws of mechanics, Principle of transmissibility, System of forces (conservative and non- conservative), Resultant force, Resolution of force, Moment and Couples, Resolution of a force into a force and a couple, Free body diagram, Equilibrium, Conditions for equilibrium, Lami's theorem.	4
3	Plane trusses: Types of structures, Trusses, Support Conditions, Types of Loadings, Classification of trusses, Determinacy of trusses, Basic assumptions of truss analysis (zero force member, tension or compression member), Method of joints, Method of sections.	4
4	Centroid & Moment of inertia (M.I.): Location of centroid, Moment of inertia (mass and area), Parallel axis and perpendicular axis theorems, M.I of composite section, M.I. of solid bodies, Polar moment of inertia, principle axis and principle moment of inertia.	4
5	Virtual work: Principle of Virtual Work, Active forces and active force diagram, Stability of equilibrium.	
	Work, Energy and Power: Work of a force, weight and couple, Power, Efficiency, Energy, Kinetic energy of rigid body, Principle of work and energy, Conservation of energy.	4
6	Friction: Types of Friction, Laws of friction, Angle of friction, Angle of repose, Ladder, Wedge, Belt Friction.	
7	Springs : Stiffness of springs, springs in series and parallel, Introduction to laminated plate springs, leaf spring, close coiled helical springs, open coiled springs.	2
8	Simple Stresses and Strains: Concept of stress and strain in three dimensions and generalized Hooke's law; Young's modulus, Shear stress, Shear strain, Modulus of rigidity, Complementary shear stress; Poisson's ratio, Volumetric strain, Bulk modulus, relation between elastic constants, Stress and strain thin cylinder and spherical cell under internal pressure.	7
	TOTAL	28

Rajasthan Technical University, Kota

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-05: SURVEYING

WERST	Dog	
1010		

Credit: 3

3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hrs.
1	Introduction: objective, scope and outcome of the course.	1
2	LINEAR AND ANGULAR MEASUREMENTS Method of linear measurements, Correction to length measured with a chain/tape, Ranging a survey line; direct and indirect Angular measurement by compass, Designation of bearing, Traversing with tape and compass, Correction to measured bearing, Angular measurement by theodolite; Temporary adjustments, Method of horizontal angle measurement and vertical angle, Traverse computation, plotting of traverse and determining the closing error, Balancing traverse.	14
3	LEVELLING Measurements of elevations methods of levelling; direct/differential, Indirect/Trigonometrical, and Profile/Cross sectional levelling. Digital and Auto level, Errors in levelling, contours and contour lines; methods of contouring; direct and indirect, characteristics, uses, area and vol. measurements.	8
4	CURVE SURVEYING Elements of simple and compound curves, Types of curves, Elements of circular, reverse, and transition curves. Method of setting out simple, circular, transition and reverse curves, Types of vertical curves, length of vertical curves, setting out vertical curves. Tangent corrections.	5
5	TACHEOMETRY AND PHOTOGRAMMETRY SURVEYING Advantages of tacheometric surveying, different systems of tacheometric measurements, Stadia system of tacheometry, distance elevation formulae for horizontal sights. Determination of tacheometric constants, distance and elevation formulae for inclined sights with staff vertical. Introduction to basic concepts perspective geometry of aerial photographs, relief and tilt displacements, Terrestrial Photogrammetry, flight planning	8
6	SETTING OUT WORKS & MODERN FIELD SURVEY SYSTEMS Instruments and methods for laying out buildings, setting out culverts, setting out sewer lines. Principle of E.D.M. (Electronic Distance Measurements), Modulation, Types of E.D.M., Distomat, Total station, parts of total station, advantages and application.	6
	TOTAL Office of Dean Academic Aff	42

Rajasthan Technical University, Kota

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-06: FLUID MECHANICS

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	Contents	Hrs.
1	Introduction to objective, scope and outcome of the course.	1
2	Fluids : Definition, Type of fluids, Ideal fluids, real fluids, Newtonian and non-Newtonian fluids.	1
3	Properties of Fluids: Units of measurement, Mass density, Specific weight, Specific volume, Specific Gravity, Viscosity, Surface tension and Capillarity, Compressibility and Elasticity.	2
4	Principles of Fluid Statics : Basic equations, Pascal Law, Type of pressure:-atmospheric pressure, Gauge pressure, vacuum pressure, absolute pressure, manometers, Bourdon pressure gauge	3
5	Buoyancy ; Forces acting on immersed plane surface. Centre of pressure, forces on curved surfaces. Conditions of equilibrium for floating bodies, meta-centre and analytical determination of meta centric height.	3
6	Kinematics of Flow : Visualisation of flow, Types of flow: Steady and unsteady, uniform and non-uniform, rotational and irrotaional flow, Laminar and turbulent flow, streamline, path line, streak line, principle of conservation of mass, equation of continuity, acceleration of fluid particles local and convective, velocity, acceleration, velocity potential and stream function, elementary treatment of flow net, vorticity, circulation, free and forced vortex. Fluid mass subject to horizontal and vertical acceleration and uniform rotation	6
7	Fluid Dynamics : Control volume approach, Euler's equation, Bernoulli's equation and its applications, venture-meter, orificemeter, orifices & mouthpieces, time of emptying of tanks by orifices, momentum and angular momentum equations and their applications, pressure on flat plates and nozzles.	6
8	Laminar Flow through Pipes : Laminar flow through pipes, Relation between shear & pressure gradient. Flow between plates & pipes. Hagen- Poiseuille equation, Equations for velocity distribution, pressure difference velocity distribution over a flat plate and in a pipe section, Darcy-Weisbach equation, friction factor, minor losses, pipe networks	6
	TOTAL	28

Office of Dean Academic Affairs Rajasthan Technical University, Kota

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-07: BUILDING MATERIALS AND CONSTRUCTION

Credit: 3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hrs.
1	Introduction to objective, scope and outcome of the course.	1
2	 Basic Civil Engineering Materials (Properties, Types and Uses): Stone: Compressive strength, Water absorption, Durability, Impact value, Tensile strength; Bricks: Water absorption, Compressive strength, Effloresces, Dimension and Tolerance; Tiles: Water absorption, Tolerance, Impact value and Glazing; Light weight concrete blocks. Lime: classification as per IS, properties, standard tests and uses in construction. Fly-ash: Properties and Use in manufacturing of bricks & cement; Miscellaneous: Gypsum, Plaster of Paris, PVC materials, Paints, Varnish and Distemper. 	8
3	Timber & Steel: Timber: Definitions of related terms, Classifications and Properties, Defects in Conversion of wood, Seasoning wood, Preservation, Fire proofing, Ply woods, Fibre boards; Steel: Mild steel and HYSD steel, Properties and their use, common tests on steel.	3
4	Mortarand Plaster: Mortar preparation methods: Functions and tests & their uses in various types of pointing & plastering	2
5	Brick and Stone Masonry : Basic principle of masonry work, different types of bonds, relative merits and demerits of English, Single Flemish and Double Flemish bond. Comparison between stone and brick masonry. General principles, classification of stone masonry and their relative merits and demerits.	4
6	 Building Requirements & Construction System: Building components, their functions and requirements. Types of construction: load bearing and framed structure construction, RCC beam, column and slab construction, Precast and In-situ construction, Relative merits and demerits. Fire resistance construction, FRC. Ground & Upper floors: Floor components and their functions, Floor types and Selection of flooring, construction details of ground and upper floors, merits and demerits. 	7
7	Foundation & Site Preparation: Purpose, types of foundation: like shallow, deep, pile, raft, grillage foundation and their suitability. Depth of foundation, Sequence of construction activity and colordinationdensiteff clearance, layout of foundation plan.	

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

	Temporary structures : Types & methods of shoring, underpinning and scaffolding.	
8	Damp Proofing: Causes and Effects of dampness, Methods and materials for damp proofing, Methods and materials for anti-termite treatment. Construction and Expansion Joints: Requirements, Types material used, Construction details.	3
9	Arches and Lintels: Terms used, types of arches and their construction detail, types of lintels and constructions.Partition Wall: Types, purpose and use of partition wall.	3
10	Stairs: Terms used, requirements of good staircase, classification, construction details and suitability of different types of stairs, Lifts and Ramps.	2
11	Roof and Roof Covering: Purposes, classification of roofs, terms used. Introduction to Solid slab, Flat slab, Shell Roofs and Pitched roofs, and their constructional features. Types of pitched roofs and Trusses, typical constructional details; Roof covering materials, types and typical constructional details.	4
	Total	42

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-08: ENGINEERING GEOLOGY

Credit: 2 2L+0T+0P Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	Contents	Hrs.
1	Introduction to objective, scope and outcome of the course.	1
2	General Geology : Branches and Scope of Geology, Types of Weathering & Geological work of natural agencies like River & Wind. Geological Time Scale. Physical Properties of Minerals.	6
3	Petrology: Formation, Texture, Structure and Classification of Igneous, Sedimentary and Metamorphic Rocks. Engineering Properties of Rocks for Building & Road Material. Laboratory and Field & in-situ Test for Site Construction.	6
4	Structural Geology: Causes, Terminology, Classification, Recognition, Effects and Engineering consideration of Fold, Fault, Joints and Unconformities.	5
5	Engineering Geology: Geophysical methods as applied to Civil Engineering for Subsurface Analysis (Electrical and Seismic methods). Terminology, Types and Geological consideration for site selection of Dam & Tunnel.	6
6	Remote Sensing & GIS: Application of Remote Sensing and GIS in Various fields of Civil Engineering.	4
	TOTAL	28

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-21: SURVEYING LAB

Max. Marks: 100 (IA:60, ETE:40)

List of Experiments

- 1. Linear Measurement by Tape:
 - a. Ranging and Fixing of Survey Station.
 - b. Plotting Building Block by offset with the help of cross staff.
- 2. Compass Survey: Using Surveyor's and Prismatic compass
 - a. Measurement of bearing of lines
 - b. Adjustment of included angles of compass traverse.
- 3. Levelling: Using Tilting/ Dumpy/ Automatic Level
 - a. To determine the reduced levels in closed circuit.
 - b. To carry out profile levelling and plot longitudinal and cross sections for road.
- 4. Theodolite Survey: Using Vernier Theodolite
 - a. To carryout temporary adjustment of Theodolite & Measurement of horizontal and vertical angle: by method of repetition and method of Reiteration.
 - b. To measure and adjust the angles of a braced quadrilateral.
- 5. Trigonometric Levelling: To determine the Height of an object by trigonometriclevelling:
 - a. By using Instruments in same vertical plane.
 - b. By using Instruments in different vertical planes.
- 6. Tacheometry Survey:
 - a. To determine the tachometric constant.
 - b. To determine the horizontal and vertical distance by tachometric survey.
- 7. To study the various electronic surveying instruments like EDM, Total Station etc.

One-week Survey Camp for topographic/ project survey/Contouring be arranged before or after Term End Exam.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Credit: 1.5 0L+0T+3P

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-22: FLUID MECHANICS LAB

Credit: 01 0L+0T+2P Max. Marks: 100 (IA:60, ETE:40)

List of Experiments

- 1. To study the various pressure measuring devices
- 2. To verify the Bernoulli's theorem.
- 3. To calibrate the Venturi-meter.
- 4. To calibrate the Orifice-meter.
- 5. To determine Metacentric Height.
- 6. To determine C_c , C_v , C_d of an orifice.
- 7. To determine C_d of a mouthpiece.
- 8. To determine C_d of a V-notch.
- 9. To determine viscosity of a given fluid.
- 10. To study the velocity distribution in pipes.

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-23: COMPUTER AIDED CIVIL ENGINEERING DRAWING

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

List of Assignments

To study and draw the labelled sketch of different Building Components on sheets with exposure to CAD:

- 1. Drawing of walls
 - a. Brick and Stone masonry
 - b. Cross section of external wall from foundation to parapet
 - c. Partition wall, cavity wall and
- 2. Pointing, Arches, Lintels and Floors
- 3. Doors and Windows
- 4. Stairs, Cross section of Dog legged stairs
- 5. Roofs: Flat and Pitched roof (Steel truss)
- 6. Development of Front Elevation and Sectional Elevation from a given plan
- 7. Development of Plan, Front Elevation and Sectional Elevation from line diagram

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-24: CIVIL ENGINEERING MATERIALS LAB

Credit: 01 0L+0T+2P Max. Marks: 100 (IA:60, ETE:40)

List of Experiments

- 1. To determine properties of following materials:
 - A. STONE:
 - a. Compressive strength,
 - b. Water absorption,
 - c. Impact value,
 - d. Tensile strength;
 - B. Bricks:
 - a. Water absorption,
 - b. Compressive strength,
 - c. Dimension and Tolerance;
 - C. Tiles:
 - a. Water absorption,
 - b. Tolerance,
 - c. Impact value
 - D. Timber: Compressive and Tensile Strength of Timber across and along the Grain
- 2. To Study the Properties & Utilization of Fly Ash in Construction
- 3. To Study the Different Aluminum and Steel Sections
- 4. To Study the Manufacturing and Use of Concrete Hollow Blocks
- 5. To Study the Properties and Uses of Kota Stone and its Slurry

SYLLABUS

II Year - III Semester: B.Tech. (Civil Engineering)

3CE4-25: GEOLOGY LAB

Credit: 01 0L+0T+2P Max. Marks: 100 (IA:60, ETE:40)

List of Experiments

- 1. Physical Properties of Minerals
- 2. Physical Properties of Rocks
- 3. Identification of Minerals in Hand Specimen
- 4. Identification of Rocks in Hand Specimen
- 5. Identification of Geological features through wooden Models
 - a. Structural Geological Diagrams
 - b. Petrological Diagrams
 - c. Engineering Geological Diagrams
- 6. Interpretation of Geological Map (10 Nos.)
- 7. Dip & Strike Problems (8 Nos.)

Teaching & Examination Scheme B.Tech. : Civil Engineering 2nd Year - IV Semester

			THEO	RY								
SN	Categ		Course	-	Contact hrs/week		Contact hrs/week					Cr
	ory	Code	Title	L	T	P	Exm Hrs	IA	ETE	Total		
1	BSC	4CE2-01	Advance Engineering Mathematics -II	2	0	0	2	30	70	100	2	
2	HSMC	4CE1-03/ 4CE1-02	Managerial Economics & Financial Accounting/ Technical Communication	2	0	0	2	30	70	100	2	
3	ESC	4CE3-04	Basic Electronics for Civil Engineering Applications	2	0	0	2	30	70	100	2	
4		4CE4-05	Strength of Materials	3	0	0	3	30	70	100	3	
5	PCC	4CE4-06	Hydraulics Engineering	3	0	0	3	30	70	100	3	
6		4CE4-07	Building Planning	2	0	0	2	30	70	100	2	
7		4CE4-08	Concrete Technology	3	0	0	3	30	70	100	3	
			Sub Total	17	0	0					17	
			PRACTICAL &	SES	SION	IAL						
8		4CE4-21	Material Testing Lab	0	0	2		60	40	100	1	
9		4CE4-22	Hydraulics Engineering Lab	0	0	2		60	40	100	1	
10	PCC	4CE4-23	Building Drawing	0	0	3		60	40	100	1.5	
11		4CE4-24	Advanced Surveying Lab	0	0	2		60	40	100	1	
12		4CE4-25	Concrete Lab	0	0	3		60	40	100	1.5	
13	SODE CA	4CE8-60	Social Outreach, Discipline & Extra Curricular Activities	0	0	0		60	40	100	0.5	
			Sub- Total	0	0	12	1				6.5	
		ΤO	TAL OF IV SEMEESTER	17	0	12					23.5	

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE2-01: ADVANCE ENGINEERING MATHEMATICS-II

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hrs.
1	Introduction: Objective, scope and outcome of the course.	1
2	Probability: Basic concepts of probability, conditional probability, Baye's theorem.Random variable: Discrete and Continuous random variables, Joint distribution, Marginal distribution, Probability distribution function, Conditional distribution.Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis. Binomial, Poisson and Normal distribution and their properties.	13
3	Applied Statistics: Basic concept of variance, Correlation and regression – Rank correlation. Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves. Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means, and difference of standard deviations.	12
	Total	26

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CS1-03/3CS1-03: MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTING

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CS1-02/3CS1-02: TECHNICAL COMMUNICATION

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
	Introduction: Objective, scope and outcome of the course.	1
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE3-04: BASIC ELECTRONICS FOR CIVIL ENGINEERING APPLICATIONS

Credit: 2

2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70)

End Term Exam: 2 Hours

SN	CONTENTS	Hrs.
1	Introduction: to objective, scope and outcome of the subject.	1
2	Basic Electronics : Number systems & Their conversion used in digital electronics, Demorgan's theorem, Logic Gates, half and full adder circuits, R-S flip flop, J-K flip flop.	2
3	Introduction to Semiconductors, Diodes, V-I characteristics, Bipolar junction transistors (BJT) and their working, introduction to CC, CB & CE transistor configurations.	3
4	Instrumentation : mechanical, electrical, electronic system and their calibration, Use of automatic and digital levels, electronic theodolites, total stations; Control surveys using GNSS, Total station and traversing methods (adjustment and computations of coordinates).	4
5	Measurement errors : Gross error and systematic errors, absolute and relative errors, accuracy, precision, resolution and significant figures. Full-field measurements;	2
6	Data acquisition system and data processing : analog systems, digital systems using personal computers, dynamic measurement, numerical and graphical data processing and archiving.	3
7	Sensors & Transducers : various types of sensors for displacement, velocity, acceleration, pressure, loads, strains, Displacement sensors, Mass &Piezoeletric, strain gauges, Temperature sensors thermocouple, flow sensors : Ultrasonic, electromagnetic, laser and thermal	5
8	Sensor types characteristics : types of resolution, FOV, IFOV, PSF; Geometric and radiometric distortions, Geo-referencing, re-sampling methods; Atmospheric errors and removal; Satellite orbits and characteristics; Applications of optical and microwave remote sensing techniques in Civil Engineering.	5
9	Digital Image Processing : Digital image, introduction to digital image processing, pre-processing, enhancement, classification, accuracy assessment.	3
	TOTAL	28

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-05: STRENGTH OF MATERIALS

Credit: 3

3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70)

End Term Exam: 3 Hours

SN	CONTENTS	Hrs.
1	Introduction: to objective, scope and outcome of the subject	1
2	Simple Stresses and Strains in different members: Stresses in prismatic & non prismatic members and in composite members; Thermal stresses; Stresses in composite members, Compatibility condition.	5
3	Compound Stress: Two dimensional stress system: stress resultant, principal planes and principal stresses, state of pure shear maximum shear stress, Mohr's circle &its application. Introduction to theories of failures.	6
4	Bending of Beams: Bending moment, Shear force and Axial thrust diagrams for statically determinate beams subjected to various types of loads and moments, Point of Contra-flexure, relation between load, SF and BM.	8
5	Theory of simple bending : Distribution of bending and shear stresses for simple and composite sections, Combined direct and bending stress,	6
6	Torsion: Elementary concepts of torsion, shear stress in solid and hollow circular shafts, angle of twist, power transmitted by a shaft, combined bending and torsion;	4
7	Columns: Short and long columns, slenderness ratio, crushing and buckling of column, short column subjected to axial and eccentric loads; Euler's theory and its limitation, concept of effective length of columns; Rankine & Secant formulae, middle third rule, core of a section.	5
8	Deflection of Beams: Differential relation between load, shear force, bending moment, slope deflection. Slope & deflection in determinate beams using double integration method, Macaulay's method, area moment method and conjugate beam method and their application to statically determinate prismatic beams.	7
	TOTAL	42

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-06: HYDRAULICS ENGINEERING

Credit: 3

3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70)

End Term Exam: 3 Hours

SN	CONTENTS	Hrs.
1	Introduction: to scope, objective and outcome of subject	1
2	Dimensional Analysis & Models: Dynamical Similarity and Dimensional Homogeneity Model experiment, geometric, Kinematic and Dynamic similarity. Reynold's, froudes, Weber's, Euler and Mach numbers. Distorted river models and undistorted models, proper choice of scale ratios. Scale effect. Principle of dimensional analysis Rayleigh method, Buckingham theorem.	4
3	 Turbulent flow, Reynolds equations, Prandtl's mixing length theory, Equations of velocity distribution and friction coefficient Boundary Layer Theory: Concept of boundary layer, laminar and turbulent boundary layers, boundary layer thickness, von Karman integral equation, laminar sub-layer, hydro-dynamically smooth and rough boundaries, separation of flow and its control, cavitation. 	6
4	Open channel Flow Uniform, Non-Uniform and variable flow. Resistance equations of Chezy and Manning. Section factor for uniform flow. Most Efficient rectangular, triangular and trapezoidal sections. Velocity distribution in open channels.	5
5	Gradually varied flow in Prismatic channels. Specific energy of flow. Critical depth in prismatic channels. Alternate depths. Rapid, critical and sub critical Flow Mild, steep and Critical Slopes. Classification of surface curves in prismatic channels and elementary computation	4
6	Rapidly varied flow : Hydraulic jump or standing wave in rectangular channels. Conjugate or sequent depths Losses in jump, location of jump. velocity distribution in open channels. Energy correction factor. Moment correction factor	4
7	 Impact of free Jets: Impact of a jet on a flat or a curved vane, moving and stationary vane. Introduction of Hydraulic machine – Type of pumps and turbine and its brief description. Draft tube and its principle 	3
	Office of Dean Academic Affairs	

Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

8	Hydrology: Definition, Hydrologic cycle, Application to Engineering problems, measurement ofrainfall, rain gauge, peak flow, flood frequency method, catchment area formulae, Floodhydrograph, Rainfall analysis, Infiltration, Run off, Unit hydrograph and its determination,Estimation of run off.	8
9	Ground Water : Aquifers and its types, Confined and unconfined aquifer, Darcy's Law, hydraulic conductivity, transmissivity, well hydraulics.	3
10	Canal Hydraulics: Types of canals, parts of canal irrigation system, channel alignment, assessment of water requirements, estimation of channel losses, design of channels, regime and semi theoretical approaches (Kennedy's Theory, Lacey's Theory), cross section of channels, siltcontrol in canals.	4
	TOTAL	42

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-07: BUILDING PLANNING

Credits: 2

Max. Marks: 100 (IA:30, ETE:70)

End Term Exam: 2 Hours

2L+0T+0P

SN	CONTENTS	Hrs.
1	Introduction: to scope, objective and outcome of subject	1
2	Introduction : Types of buildings, criteria for location and site selection, site plan and its detail.	2
3	Sun Consideration : Different methods of drawing sun chart, sun shading devices, design of louvers.	3
4	Climatic and comfort Consideration : Elements of climate, global climate, climatic zones of India, thermal comfort, biclimatic chart,	3
5	Orientation: Meaning, factors affecting orientation, orientation criteria for tropical climate.	1
6	Building Bye Laws and NBC Regulations: Objective of by-laws, regulation regarding; means of access, lines of building frontages, covered area, floor area ratio, open spaces around buildings, height & sizes of rooms, plinth regulation.	3
7	Principles of Planning: Different factors affecting planning viz-aspect, prospect, furniture requirement, roominess, grouping, circulation, elegance, privacy etc.	3
8	Vastu Shastra In Modern Building planning: Factors considered in Vastu, site selection, orientation, planning and design of residential buildings, school/hospital	3
9	Functional Design And Accommodation Requirements Of Non Residential Buildings: viz-school buildings, rest house, primary health centers, post office etc.	3
10	Services in Buildings(A) Lighting and ventilation, doors and windows, lifts.(B) Acoustics, sound insulation and noise control.(C) Fire fighting provisions	6
	TOTAL	28

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-08: CONCRETE TECHNOLOGY

Credit: 3

Max. Marks: 100 (IA:30, ETE:70)

3L+0T+0P

End Term Exam: 3 Hours

SN	CONTENTS	Hrs.
1	Introduction: to objective, scope and outcome of the subject	1
2	Ingredients of concrete: Cement: hydration of cement and its basic compounds, structure of hydrated cement, C-S-H gel, heat of hydration, gel-space ratio etc.	2
3	Aggregates: types, physical properties and standard methods for their determination, including Grading of aggregates as per IS. Manufactured sand- properties and IS Specifications for use in concrete.	2
4	Concrete: Grade of concrete, proportioning of ingredients, water content and its quality, water/cement ratio and its role, Properties of fresh concrete including workability, air content, Flow ability, Segregation, Bleeding and Viscosity etc. Factors affecting, methods of determination.	4
5	Properties of hardened concrete such as strengths, permeability, creep, shrinkage,factors influencing, Standard tests on fresh and hardened concrete as per IS code. Aggregate- cement interface, its effect on properties of concrete.	4
6	NDT : Introduction and their importance. Application & use of Rebound Hammer, Ultra-sonic pulse velocity meter, Rebar & Cover meter, half-cell potential meter, corrosion resistivity meter, core sampling. Interpretation of their results,	4
7	Concrete Handling in Field: Batching, mixing, placing and transportation of concrete, equipments for material handling, various methods their suitability and precautions. Compaction of concrete: methods & equipments. Curing of concrete: various methods their suitability.	4
8	Durability of concrete. Causes of deterioration, Carbonation, Tests for durability assessment	3
9	Admixture in concrete: Chemical and mineral admixtures, their types and uses: accelerator, retarders, water-proofing, plasticisers, super plasticizers-types, their suitability. Fly ash-properties for use in concrete, specifications of flyash as per IS 3812, and effect on properties of concrete. GGBFS, Microsilica and metakaolin- propertie, specifications and utility in concrete. Office of Dean Academic Affairs Rajasthan Technical University. Kot	7

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

10	Concrete mix deign (IS method)- with and without water reducing admixtures	2
11	Form work: Requirements, their types. Typical formworks and shuttering/centering for Columns, beams, slabs, walls, etc. Slip and moving formwork.	3
12	Special types of concrete: Sulphate resisting concrete, under water concreting, pumpable concrete: methods and issues in making, salient properties and applications.	3
13	Concretes with tailored properties- including high performance concrete, with specific properties in fresh and hardened states, self-compacting concrete-materials, mix proportioning, test methods, use and applications with case studies.	3
	TOTAL	42

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE21: MATERIAL TESTING LAB

Credit: 01 0L+0T+2P

Max. Marks: 100 (IA:60, ETE:40)

- 1. Tests on Mild steel and HYSD Bar –To determine compressive and tensile strength, yield strength, percentage elongation etc.
- 2. Tests on Cement and concrete cubes/ core to establish their strength
- 3. Hardness Test Rockwell Hardness and Brinell Hardness
- 4. Impact Test Izod and Charpy
- 5. Modulus of Rupture of Wooden Beam
- 6. Fatigue Test
- 7. Spring Test
- 8. Torsion Test

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-22: HYDRAULICS ENGINEERING LAB

Credit: 01 0L+0T+2P Max. Marks: 100 (IA:60, ETE:40)

- 1. To determine the minor losses.
- 2. To determine the friction factor.
- 3. To determine Cd of Broad crested weir.
- 4. To verify the momentum equation.
- 5. To determine the discharge of venturimeter.
- 6. To determine Manning's & Chezy's coefficient of roughness for the bed of a given Channel.
- 7. To study and plot characteristics curve of hydraulic jump.
- 8. To study velocity distribution in open channel flow.

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-23: BUILDING DRAWING

Credit: 1.5 0L+0T+3P Max. Marks: 100 (IA:60, ETE:40)

- 1- To plan and draw working drawing of a Residential building with following detail.
 - (a) Site plan
 - (b) Foundation plan
 - (c) Plan
 - (d) Two sectional elevations
 - (e) Front elevation
 - (f) Furniture plan
 - (g) Water supply and sanitary plan
 - (h) Electric fitting plan
- 2- To design and draw a Primary Health Center
- 3- To design and draw a Primary School
- 4- To design and draw a Rest House
- 5- To design and draw a Post Office
- 6- To design and draw a Bank
- 7- To design and draw a College Library
- 8- To design and draw a Cinema Theatre

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-24: ADVANCED SURVEYING LAB

Credit: 01 0L+0T+2P

Max. Marks: 100 (IA:60, ETE:40)

- 1. To measure the horizontal and vertical angles by Theodolite.
- 2. To determine the Height of an object by trigonometric leveling (Instruments in same vertical plane).
- 3. To determine the Height of an object by trigonometric leveling (Instruments in different vertical planes).
- 4. Measurement of angles, length of survey line using Total Station, finding the coordinate of station
- 5. To measure and adjust the angles of a braced quadrilateral.
- 6. To prepare the map of given area by plane tabling.
- 7. Measurement of area of a traverse by Total Station

SYLLABUS

II Year-IV Semester: B.Tech. (Civil Engineering)

4CE4-25: CONCRETE LAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

- 1. To determine the fineness of Cement by Blaine's air permeability test.
- 2. To determine the flexural strength of Concrete.
- 3. To determine Soundness of cement by Le-chatelier apparatus.
- 4. To determine the specific gravity of fine aggregate (sand) by Pycnometer.
- 5. To determine the bulking of fine aggregate and to draw curve between water content and bulking.
- 6. Sieve analysis of coarse aggregates and fine aggregates.
- 7. To determine the workability of given concrete mix by slump test.
- 8. To determine the optimum dose of super plastsizers by Flow table test.
- 9. To design concrete mix of M-20 grade in accordance with I S 10262.
- 10. To design concrete mix of M-40 grade with super plasticizer in accordance with I S 10262.
- 11. To determine the Permeability of Concrete.
- 12. Study of Core cutter, UPV & Rebound Hammer equipment.

SEMESTER-V & VI

Teaching & Examination Scheme B.Tech. : Civil Engineering 3rd Year –V Semester

			THE	ORY							
SN	Categ		Course		conta s/we			Marks			0
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	Cr
1	ESC	5CE3-01	Construction Technology & Equipments	2	0	0	3	30	70	100	2
2		5CE4-02	Structural Analysis-I	2	0	0	3	30	70	100	2
3		5CE4-03	Design of Concrete Structures	3	0	0	3	30	70	150	3
4		5CE4-04	Geotechnical Engineering	3	0	0	3	30	70	150	3
5	PCC/ PEC	5CE4-05	Water Resource Engineering	2	0	0	3	30	70	100	2
6		Departmen	tal Elective-I:	2	0	0	3	30	70	100	2
		5CE5-11	Air & Noise Pollution and Control								
		5CE5-12	Disaster Management								
		5CE5-13	Town Planning								
7		Departmen	tal Elective-II:	2	0	0	3	30	70	100	2
		5CE5-14	Repair and Rehabilitation of Structures								
		5CE5-15	Ground Improvement Techniques								
		5CE5-16	Energy Science & Engineering								
			Sub Total	16	0	0					16
			PRACTICAL &	SES	SION	AL			1	1	
8		5CE4-21	Concrete Structures Design	0	0	3	3	60	40	100	1.5
9	PCC	5CE4-22	Geotechnical Engineering Lab	0	0	3	3	60	40	100	1.5
10		5CE4-23	Water Resource Engineering Design	0	0	2	2	60	40	100	1
11	PSIT	5CE7-30	Industrial Training	0	0	1		60	40	100	2.5
12	SODE CA	5CE8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			100	100	0.5
			Sub- Total	0	0	9					7
		TOTA	L OF V SEMESTER	16	0	9					23

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE3-01: CONSTRUCTION TECHNOLOGY AND EQUIPMENT

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours

	End Term Exam:	o nours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Engineering Economy	
	Principle of Engineering Economy, Minimum cost point analysis,	6
	Breakeven point analysis, Depreciation and depletion.	
3	Safety in construction	
	Causes, classification, cost and measurement of an accident, safety	
	programme for construction, protective equipment, accident report,	
	safety measure: (a) For storage and handling of building materials.	8
	(b) Construction of elements of a building (c) In demolition of	
	buildings; Safety lacuna in Indian scenario. Fire safety provisions as	
	per NBC.	
4	Construction Planning	
	Need of construction planning, Constructional Resources,	
	construction team, stages in construction, preparation of	7
	construction schedule, Job layout, inspection and quality control;	
	Materials Management: Objective and functions of material	
	management.	
5	Construction Equipment and Management	
	Earth Moving Equipment-Bull dozers tractor pulled scrapers Power	
	shovels Draglines clamshells; cranes; Hoes, Trenching machine types	6
	Hauling Equipment; Drilling, Blasting and Tunnelling Equipment;	
	Pile Driving Equipment.	
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-02: STRUCTURE ANALYSIS-I

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Indeterminate structures, Degrees of freedom per node, Static and Kinematic indeterminacy (i.e. for beams, frames & portal with & without sway etc.), Releases in structures, Maxwell's reciprocal theorem and Betti's theorem. Analysis of prop cantilever structures, Analysis of Indeterminate Structure (fixed and continues beams) using Area moment method, Conjugate beam method, Three moments Theorem.	11
3	Analysis of Statically Indeterminate Structures using Slope-deflection method and Moment-distribution method applied to continuous beams and portal frames with and without inclined members.	11
4	 Vibrations: Elementary concepts of structural vibration, Mathematical models, basic elements of vibratory system. Degree of freedom. Equivalent Spring stiffness of springs in parallel and in series. Simple Harmonic Motion: vector representation, characteristic, addition of harmonic motions, Angular oscillation. Undamped free vibration of SDOF system: Newton's law of motion, D Almbert's principle, deriving equation of motions, solution of differential equation of motion, frequency & period of vibration, amplitude of motion; Introduction to damped and forced vibration. 	5
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-03: DESIGN OF CONCRETE STRUCTURES

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	 Fundamental concepts of design of RC members, assumptions. Types and function of reinforcement. Introduction to various related IS codes, Characteristic load and characteristic strength. Working Stress Method: Working stress design philosophy. Analysis and Design of singly reinforced rectangular beam section for flexure. 	5
3	Limit State Design: Limit state design philosophy. Assumptions, Analysis and design of singly reinforced, doubly reinforced rectangular beams and flanged beams for flexure using codal provisions for simply supported, cantilever, fixed and continuous beams.	10
4	 Limit state of serviceability for deflection: control of deflection as per codal provisions of empirical coefficients. Limit state of collapse in shear: Types of shear reinforcement and its detailing, analysis and design of shear reinforcement for prismatic sections. Limit state of collapse in bond: concept of bond stress, anchorage length and development length. Detailing and curtailment of reinforcement as per codal provisions. 	6
5	Slabs: Analysis and design of one way and two way slabs using LSM, Detailing of reinforcement. Check for shear and deflection.	6
6 7	 Columns: Short and long columns, their structural behaviour. Analysis and design of axially loaded short columns, using LSM. Analysis of eccentrically loaded short columns. Introduction to Pu-Mu interaction curves and their use for eccentrically loaded columns. Footings: Analysis and design of Isolated column footing for axial load. Introduction to combined footing for two columns (without central beam) for axial loads using LSM. Torsion: Analysis and Design of beams for torsion as per codal method. 	5 4 3
	TOTAL	40
	Office of Dean Academic A	

Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-04: GEOTECHNICAL ENGINEERING

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Evam: 3 Hours

3L+(OT+OP End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Soil and soil-mass constituents, water content, specific gravity, void ratio, porosity, degree of saturation, air void and air content, unit weights, density index etc. Inter-relationships of the above. Determination of index properties of soil: water content, specific gravity, particle size distribution, sieve and sedimentation analysis, consistency limits, void ratio and density index. Mineral structures, structures of Illite Montmorillonites and kaolinite and their characteristics. Darcy's law of permeability of soil and its determination in laboratory. Stresses in soil mass: total, effective and neutral pressure, calculation of stresses, influence of water table on effective stress, quicksand phenomenon. Classification of soil for general engineering purposes: particle size and I.S. Classification systems.	8
3	Mohr's circle of stress, shearing strength of soil, parameters of shear strength, Coulomb's failure envelope, determination of shear parameters by Direct Shear Box. Tri-axial and unconfined compression test apparatuses. Principles of soil compaction, laboratory compaction tests; Proctor's test, Stresses in Soil under surface loading: Bossinesq's and Westergaard's analysis for vertical pressure and its distribution in a soil mass. Vertical stresses due to concentrated loads, Isobar diagram, Vertical stress distribution on a horizontal plane. Influence diagram, Vertical stresses at a point under circular and rectangular loaded area. Approximate methods of obtaining vertical pressure due to surface loading. Newmark's chart,	8

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus 3rd Year - V Semester: B.Tech. (Civil Engineering)

	TOTAL	42
6	Bearing Capacity of Soils: Terminology related to bearing capacity, Common types of foundations. Terzaghi and Meyehoff's theory for bearing capacity. Rankine's method for minimum depth of foundation. Skempton's method. Effect of eccentricity and water table on bearing capacity. IS code method, Plate load and penetration tests for determining bearing capacity. Introduction to pile, Site Investigations: Methods of explorations. Planning of Investigations, Depth of exploration, Number of boreholes, Undisturbed and Disturbed samples. Types of samplers. Brief description of procedures of sampling, Transportation and Storage of samples.	9
5	Stability of Slopes: Classifications of slopes, Stability analysis of infinite slopes. Stability of finite slopes by Swedish and Friction circle method. Stability analysis by Taylor's stability number, Taylor's stability number curves. Bishop's method of stability analysis. Earth Pressure: Active, passive and earth pressure at rest. Rankine's and Coulomb's theories. Rebhann's and Culman's graphical methods for active earth pressure for vertical and inclined back retaining walls, horizontal and inclined cohesion less back fill.	8
4	Compressibility and Consolidation: Introduction to consolidation, comparison of compaction and consolidation, Spring Analogy Terzaghis one dimensional consolidation theory, Degree of consolidation, consolidation test, Compressibility parameters, co- efficient of consolidation. Pre-consolidation pressure and its determination. Normally, over and under consolidated soils. Methods of predicting Settlement and its rate. Total and differential Settlement.	8

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-05: WATER RESOURCE ENGINEERING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours SN Hours Contents 1 Introduction: Objective, scope and outcome of the course. 1 2 Introduction: Definitions, functions and advantages of irrigation, present status of irrigation in India, classification for agriculture, soil moisture and crop water relations, Irrigation water quality. 5 Consumptive use of water, principal Indian crop seasons and water requirements. **Canal Irrigation:** Types of canals, design of channels, regime and 3 semi theoretical approaches (Kennedy's Theory, Lacey's Theory) 6 Diversion Head works: Design for surface and subsurface flows, Bligh's and Khosla's methods. Embankment Dams: Suitable sites, causes of failures, stability and 4 seepage analysis, flow net, principles of design of earth dams. 5 **Gravity Dams:** Force acting on a gravity dam, stability requirements. 5 Well Irrigation: Open wells and tube wells, types of tube wells, duty of tube well water. Cross-Drainage Structure: Necessity of Cross-5 drainage structures, their types and selection, comparative merits and demerits. Hydrology: Definition, Hydrologic cycle, measurement of rainfall, 6 Flood hydrograph, Rainfall analysis, Infiltration, Run off, Unit 6 hydrograph and its determination. 28

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE5-11: AIR & NOISE POLLUTION AND CONTROL

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

2L+(OT+OP End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	<i>Air Pollution:</i> Air pollutants, Sources, classification, Combustion Processes and pollutant emission, Effects on Health, vegetation, materials and atmosphere, Reactions of pollutants in the atmosphere and their effects-Smoke, smog and ozone layer disturbance, Greenhouse effect.	7
	Air sampling and pollution measurement methods, principles and instruments, Ambient air quality and emission standards, Air pollution indices, Air Act, legislation and regulations, control principles,	6
	Removal of gaseous pollutants by adsorption, absorption, reaction and other methods. Particulate emission control, settling chambers, cyclone separation, Wet collectors, fabric filters, electrostatic precipitators and other removal methods like absorption, adsorption, precipitation etc. Biological air pollution control technologies, Indoor air quality.	7
3	<i>Noise pollution:</i> Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; plane, point and line sources, multiple sources; outdoor and indoor noise propagation; psychoacoustics and noise criteria,	4
	Effects of noise on health, annoyance rating schemes; special noise environments: Infrasound, ultrasound, impulsive sound and sonic boom; noise standards and limit values; noise instrumentation and monitoring procedure. Noise indices. Noise control methods.	3
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE5-12: DISASTER MANAGEMENT

Max. Marks: 100(IA:30, ETE:70)

Credit: 2 2L+0T+0P

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Understanding the Concepts and definitions of Disaster, Hazard, Vulnerability, Risk, Natural and Manmade Disasters, Disaster and Development, and Climate Change.	2
3	Types of Disasters, their occurrence/ causes, impact and preventive measures:Geological Disasters: earthquakes, landslides, tsunami, mining;	4
	Hydro-Meteorological Disasters : floods, cyclones, lightning, thunder-storms, hail storms, avalanches, droughts, cold and heat waves.	3
	Biological Disasters: epidemics, pest attacks, forest fire.;	3
	Technological Disasters : chemical, industrial, radiological, nuclear.	3
	Manmade Disasters : building collapse, rural and urban fire, road and rail accidents.	2
	Disaster profile of Indian continent , Mega Disasters of India and Lessons Learnt. Risk mapping.	3
4	Disaster Management Cycle : Disaster Management Cycle and its components: Pre disaster and post disaster, Paradigm Shift in Disaster Management. Safety tips for various types of disasters.	3
5	Disaster management system in India: Disaster Management Act	
	2005, National Guidelines and Plans on Disaster Management; Role of Government (local, state and national),Non-Government and Inter-	4
	Governmental Agencies.	
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE5-13: TOWN PLANNING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours Hours SN Contents 1 Introduction: Objective, scope and outcome of the course. 1 2 Introduction: Definition of town planning, Evolution of towns, Objects of town planning, Economic Justification for town planning, Principles of town planning, Necessity of town planning, Origin, 6 Growth and patterns of town development, distribution of land use, site for ideal town, powers required to enforce T.P. scheme. 3 Civic Surveys: Definition, Necessity, collection of data, Types of 3 surveys, methods adopted to collect data, Drawings, reports. Zoning: Definition, Use of land, Objects of zoning, Principles of 4 zoning, Aspects, Advantages & Importance zoning, Transition zone, 3 Zoning powers, Maps for zoning. 5 Importance and Demand of housing, Classification, requirements 3 and design of residential building, Housing agencies, Housing problems in India. 6 2 Slums: Causes, characteristics and effects of slums, Slum clearance. 7 Industries: Classification of industry, Concentration of 3 industry, requirements of the industry, Industrial townships. 8 Public Buildings: Location, classification principle of design, 3 town center, grouping of public buildings. Town Planning, CL-SPP/CL-DDU/Nadiad, Gujarat, INDIA 4. 9 Re-planning of existing towns: Objects of re-planning, defects of existing town, data required for re- planning, Urban Renewal 5 projects, De-centralization and Re-centralized, Garden city concept overview. 28 TOTAL

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE5-14: REPAIR AND REHABILITATION OF STRUCTURES

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

-	JT+OP End Term Exam:	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	 Deterioration of Concrete Structures: Penetrability of concrete- permeability, sorptivity, diffusion. Physical processes- abrasion, erosion. Chemical- carbonation, chloride and sulfate attack. Alkali – Aggregate Reaction. Corrosion- mechanism. Factors affecting and Preventive measures :for all the above, including water – proofing techniques for various conditions, sacrificial anode, corrosion resistant steel, corrosion inhibitors, protective coatings etc. 	8
3	Cracks in Concrete and Masonry Structures- Types, patterns, measurement and preventive measures.	3
4	Assessment of Risk/Damagein Structures: <i>Preliminary</i> <i>investigation-</i> visual, history collection etc. <i>Detailed Investigation:</i> core cutting, rebar locator, corrosion meter, penetration resistance, pull out tests, half-cell potential, concrete resistivity etc. Interpretation of non destructive test data from all the above tests as well as rebound hammer number and ultra sonic pulse velocity. Destructive and chemical tests- on material samples from site.	5
5	Materials for Repair: polymers and resins, self curing compounds, FRP, ferro-cement- properties, selection criterion, cement based and polymer modified mortars etc.	4
6	Repair Techniques: Grouting, Jacketing, External bonded plates- processes, limitations, design computations etc. including numerical problems. Under Water Repair: Processes	6
7	Case Studies: related to rehabilitation of bridge piers, heritage structures, masonry structures etc.	2
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE5-15: GROUND IMPROVEMENT TECHNIQUES

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction : Formation of soil- Mechanical Weathering, Chemical weathering, types of soil-Residual soil, Transported soil, Regional soil Deposit in India, Difficult soils- Expansive soil, Collapsible soil, organic soil etc. Purpose and Principles of Ground Improvements.	03
3	Densification by Compaction Near Surface : Theory of compaction, Laboratory compaction tests; compaction in field, Effect of compaction on different soil properties, Factor affecting compaction in field, Measurement of density in field.	03
4	 Densification by Deep Compaction: (a) Vibration methods- Vibro compaction, Vibro floatation, Vibratory probes method, Blasting. (b) Displacement methods- Sand compaction piles; Dynamic compaction. 	04
5	 Modification Using Stone Columns: Introduction- Failure mechanism, load carrying capacity, settlement analysis, installation technique, Geo-synthetic -encased stone columns, Mechanism of encasement, field control of stone columns. Pre-Compression and Vertical Drain: Applicability and types of pre compression. Purpose and mechanism of pre-compression by pre loading. Design procedure of pre-compression by preloading. Pre-compression by preloading with vertical drains- Principles, Advantages, and disadvantages of Vertical drains, Type of Vertical drains, Installation, Monitoring and Instrumentation of Vertical drains. 	04 03

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus 3rd Year - V Semester: B.Tech. (Civil Engineering)

6	 Modification by Grouting: Purpose, principles and classification of grouts and their properties. Desirable characteristics of grout, Grouting methods, Planning and operation of grouting, control of grouting operations and monitoring. 	4
	 Modification by Soil Reinforcement: Purpose of reinforced earth, Mechanism of reinforced soil, Failure mechanism of reinforced earth, Advantages of reinforced earth. Application of Reinforced Earth, Design methods of reinforced earth wall- (a) Check for External stability. Check for Internal stability. 	4
7	Miscellaneous Methods of Soil stabilization: Lime stabilization, cement stabilization, bituminous stabilization, chemical stabilization.	02
	TOTAL	28

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE5-16: ENERGY SCIENCE AND ENGINEERING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

2L+(OT+OP End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Energy Science: Scientific principles and historical interpretation to place energy use in the context of pressing societal, environmental and climate issues; Introduction to energy systems and resources; Introduction to Energy, sustainability & the environment.	5
3	Energy Sources: Overview of energy systems, sources, transformations, efficiency, and storage. Fossil fuels (coal, oil, oil- bearing shale and sands, coal gasification) - past, present & future, Remedies & alternatives for fossil fuels - biomass, wind, solar, nuclear, wave, tidal and hydrogen; Sustainability and environmental trade-offs of different energy systems.	б
4	Energy & Environment: Energy efficiency and conservation; introduction to clean energy technologies and its importance in sustainable development; Carbon footprint, energy consumption and sustainability.	5
5	Civil Engineering Projects connected with the Energy Sources: Coal mining technologies, Oil exploration offshore platforms, Underground and under-sea oil pipelines, solar chimney project, wave energy caissons, coastal installations for tidal power, wind mill towers; hydro power stations above-ground and underground along with associated dams, tunnels, penstocks, etc.	7
6	Engineering for Energy conservation: Concept of Green Building and Green Architecture; Green building concepts; LEED ratings; Identification of energy related enterprises.	4
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-21 : CONCRETE STRUCTURES DESIGN

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

SN	Contents	Hours
1	Revision of Typical problems of BMD and SFD	3
2	Analysis and Design of singly reinforced rectangular beam section for	3
	flexure, based on Working stress design philosophy.	5
3	Analysis and Design of singly reinforced rectangular beam section for	3
	flexure, based on Limit State design philosophy.	3
4	Analysis and Design of doubly reinforced rectangular beam section	3
	for flexure, based on Limit State design philosophy.	3
5	Analysis and Design of flanged beam section for flexure, based on	3
	Limit State design philosophy.	3
6	Problems on Limit state of serviceability for deflection as per codal	3
	provisions of empirical coefficients.	3
7	Analysis and design of prismatic sections for shear using LSD	3
8	Problems on limit state of collapse in bond	3
9	Analysis and design of one way slabs using LSM,	3
10	Analysis and design of two way slabs using LSM,	3
11	Analysis and design of short axially loaded columns	3
12	Analysis and design of footing	3
13	Analysis and Design of beams for torsion as per codal method.	3
	TOTAL	39

Syllabus

3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-22 : GEOTECHNICAL ENGINEERDING LAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 3 Hours

Grain size distribution by sieve Analysis and Hydrometer
Determination of specific Gravity by Pycnometer.
Determination of liquid limit by Casagrande's apparatus and cone
penetrometer.
Determination of plastic limit and shrinkage limit
Determination of field density by core-cutter and sand replacement method
Determination of compaction properties by standard Proctor Test Apparatus.
Determination of C-Ø values by unconfined compression Test Apparatus,
Direct Shear Test Apparatus and Triaxial Test.
To determine the differential free swell index of soil and swelling pressure of
soil.
To determine the CBR of soil.
To determine the compressibility parameters of soil by consolidation test.
To determine the permeability of soil by constant and falling head methods.
Design as per syllabus of theory.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus 3rd Year - V Semester: B.Tech. (Civil Engineering)

5CE4-23: WATER RESOURCES ENGINEERING DESIGN LAB

Credit: 1			Max. Marks: 100(IA:60, ETE:40)
0L+0T+2P			End Term Exam: 2 Hours
- ·	44 4	0.1	

Design as per syllabus of theory.

Teaching & Examination Scheme B. Tech.: Civil Engineering 3rd Year – VI Semester

			THE	ORY							
	0		Course		onta s/we		Marks				
SN	Categ ory	Code	Title	L	T	Р	Exm Hrs	IA	ETE	Total	Cr
1	ESC	6CE3-01	Wind & Seismic Analysis	2	0	0	3	30	70	100	2
2		6CE4-02	Structural Analysis-II	3	0	0	3	30	70	100	3
3		6CE4-03	Environmental Engineering	3	0	0	3	30	70	100	3
4	PCC/ PEC	6CE4-04	Design of Steel Structures	3	0	0	3	30	70	100	3
5		6CE4-05	Estimating & Costing	2	0	0	3	30	70	100	2
6			tal Elective-III:	2	0	0	3	30	70	100	2
		6CE5-11	Pre-stressed Concrete								
		6CE5-12	Solid and Hazardous Waste Management								
		6CE5-13	Traffic Engineering and Management								
7		Departmen	tal Elective-IV:	2	0	0	3	30	70	100	2
		6CE5-14	1. Bridge Engineering								
		6CE5-15	2. Rock Engineering								
		6CE5-16	3. Geographic Information System & Remote Sensing								
			Sub Total	17	0	0					17
			PRACTICAL &	SES	SION	AL					
			Environmental								
8		6CE4-21	Engineering Design and Lab	0	0	3	3	60	40	100	1.5
9		6CE4-22	Steel Structure Design	0	0	3	3	60	40	100	1.5
10	PCC	6CE4-23	Quantity Surveying and Valuation	0	0	2	2	60	40	100	1
11		6CE4-24	Water and Earth Retaining Structures Design	0	0	2	2	60	40	100	1
12	1	6CE4-25	Foundation Design	0	0	2	2	60	40	100	1
13	SODE CA	6CE8-00	Social Outreach, Discipline & Extra Curricular Activities						100	100	0.5
			Sub- Total	0	0	12					6.5
	1	-	L OF VI SEMESTER	17	0	12	1	1	1	1	23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE3-01: WIND AND SEISMIC ANALYSIS

Credit: 2
2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

4 L+	UI+OP End Term Exam:	5 110415
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Structural Systems: Types of structures and Structure's forms, Symmetry and Asymmetry in building forms, Vertical and lateral loadresting elements, shear walls, framed tubes and various multi- storey configurations.	4
3	Design Loads: various types of loads and relevant codes. Design loads for different types of buildings. (IS-875 part 1 & 2) & Load Flow Concept	3
4	Wind Loads Analysis: Wind loads & calculation of wind load on flat roof, pitched roof and single sloped roof buildings (IS: 875-Part 3).	8
5	Earthquake Load Analysis: Earthquake loads & calculations of earthquake loads on framed structures. (IS: 1893 – Part 1).	6
6	Earthquake Resistant Construction: Typical seismic failure of masonry and RCC structures.Earthquake resistant construction of buildings, and various provisions as per IS codes; IS-4326,IS-13827, IS-13828, IS-13920, IS-13935.	
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-02: STRUCTURAL ANALYSIS-II

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Unit load method & their applications: deflection of determinate beams and frames, analysis of determinate and redundant frames up to two degree of redundancy, lack of fit in redundant frames. Introduction to Energy Methods: Strain energy for gradually applied, suddenly applied and impact loads, Strain energy due to axial loads, bending, shear and torsion;. Castiglione's theorems & their applications in analysis of determinate and redundant frames up to two degree of redundancy and trussed beams; Stresses due to temperature & lack of fit in redundant frames; deflection of determinate beams, frames using energy methods	12
3	Influence line diagram & Rolling load: ILD for beams & frames, Muller-Breslau principle and its application for drawing ILD, Rolling load, maximum stress resultants in a member/section, absolute maximum stress resultant in a structure.	10
4	Arches: analysis of three hinged two hinged and fixed type parabolic arches with supports at the same level and at different levels.	7
5	Unsymmetrical bending: Definition, location of NA, computation of stresses and deflection, shear centre and its location,	6
6	Approximate methods for lateral loads: Analysis of multistory frames by portal method, cantilever method & factor method. Analysis of determinate space trusses by tension coefficient method.	6
	TOTAL	42

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-03: ENVIRONMENTAL ENGINEERING

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	<i>Water:</i> -Sources of Water and quality issues, water quality requirement for different beneficial uses, Water quality standards, water quality indices. Water Supply systems, Need for planned water supply schemes,	4
	Water demand industrial and agricultural water requirements, Components of water supply system; Transmission of water, Distribution system, Various valves used in W/S systems, service reservoirs and design.	5
	Water Treatment: aeration, sedimentation, coagulation flocculation, filtration, disinfection, advanced treatments like adsorption, ion exchange, membrane processes.	
3	Sewage-Domestic and Storm water, Quantity of Sewage, Sewage flow	
	variations. Conveyance of sewage- Sewers, shapes design parameters, operation and maintenance of sewers, Sewage pumping; Sewerage, Sewer appurtenances, Design of sewerage systems. Small bore	5
	systems, Storm Water- Quantification and design of Storm water. Sewage characteristics: Quality parameters: BOD, COD, TOC, Solids, DO, Nitrogen, Phosphorus, Standards of disposal into natural watercourses and on land, Indian standards.	4
	Sewage and Sullage, Pollution due to improper disposal of sewage, Wastewater treatment, aerobic and anaerobic treatment systems, suspended and attached growth systems, recycling of sewage –	7
	quality requirements for various purposes. Wastewater Disposal and Refuse: Disposal of sewage by dilution, Self- purification of streams, sewage disposal by irrigation sewage farming, waste water reuse.	5
4	Air - Composition and properties of air, Quantification of air	
	pollutants, Monitoring of air pollutants, Air quality standards, Control measures for Air pollution	3
5	Noise- Basic concept, measurement and various control methods.	2
	Total Office of Dean Academic Aff	42

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE-04: DESIGN OF STEEL STRUCTURES

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Types of Steels and their broad specifications.	
	Structural steel forms- hot rolled, tubular, light gauge etc and their	
	applicability.	2
	Classification of cross sections as per IS 800-2007- Plastic, compact,	
	semi compact and slender- characteristics	
3	Plastic analysis of steel structures, fundamentals, shape factor, static	
	and mechanism method of analysis, bending of beams of uniform	3
	cross sections (any shape)	
4	Connections: Types of bolts, load transfer mechanism, prying action.	
	Design of bolted and welded connections under axial and eccentric	3
	loadings with IS provisions	
5	Tension Members: Design strength in gross section yielding, net	3
	section rupture and block shear. Design of axially loaded members.	0
6	Compression Members: Types of buckling, Imperfection factor,	
	Buckling curves for different cross sections as per IS. Design of	
	compression members: Axially loaded members including made up of	6
	angle section: single and in pair; built up columns including design of	
	lacings and battens as per IS.	
7	Beams: Design of beams: simple and compound sections. Design of	
	laterally supported and unsupported beams including for web	6
	buckling, web crippling, lateral torsional buckling.	
8	Member design under combined forces: Compressive load and	3
	uniaxial moment. tension and uniaxial moment	
9	Column Bases: Design of column bases for axial and eccentric	2
	compressive loads: Slab and gusseted base.	4

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus 3rd Year - VI Semester: B.Tech. (Civil Engineering)

	TOTAL	42
	sway bracings etc. Design aspects of foot over bridges.	
14	Introduction of truss girder bridges-its members including portal and	
	applications.	T
13	Introduction to Pre Engineered Buildings, characteristics and their	1
	etc. Purlin design	4
12	Design of roof trusses members for combined forces, wind loading	2
11	Design of gantry girder	2
	connections	
	flange angles and flange angles to web, etc. Design of welded	
	IS 800. Curtailment of flange plates. Connections for flange plate to	
	field action methods. End panel design options and procedure as per	7
	stiffeners. Shear strength determination by post critical and tension	
	web and flange splicing, horizontal, intermediate and bearing	
10	Design of plate girder: Design of welded and bolted sections including	

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-05: ESTIMATING & COSTING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Purpose and importance of estimates, principles of estimating, Methods of taking out quantities of items of work. Mode of measurement, measurement sheet and abstract sheet; bill of quantities.	4
3	Estimating: Types of estimate, plinth area rate, cubical content rate, preliminary, original, revised and supplementary estimates for different projects.	6
4	Rate Analysis: Task for average artisan, various factors involved in the rate of an item, material and labour requirement for various trades; preparation for rates of important items of work. Current schedule of rates. (C.S.R.)	6
5	Detailed Estimates: Preparing detailed estimates of various types of buildings, R.C.C. works, earth work calculations for roads and estimating of culverts Services for building such as water supply, drainage and electrification.	6
6	Valuation: Purposes, depreciation, sinking fund, scrap value, year's purchase, gross and net income, dual rate interest, methods of valuation, rent fixation of buildings.	5
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE5-11: PRE-STRESSED CONCRETE

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Basic concepts of Pre-stressing and its advantages.	
	Materials for pre-stressed concrete. Tensioning devices. Pre-	4
	tensioning and post tensioning systems.	
3	Analysis of Pre-stress and Bending Stresses: Assumptions, Flexural	
	analysis of pre-stressed rectangular and unsymmetrical T section.	6
	Concept of load balancing.	
4	Losses of Pre-stress: Losses due to - elastic deformation of concrete,	
	successive tensioning of curved cable, shrinkage of concrete, creep of	4
	concrete, relaxation of stress in steel, friction and anchorage slip.	
5	Deflection of Pre-stressed Concrete Members: Effect of tendon	
	profileand associated factors incontinuous members.Computation of	6
	deflection in pre-stressed concrete members.	
6	Design of Pre-stressed Concrete Sections: Flexural Shear and	
	Torsional strengthusing simplified code procedure (IS-1343-2012).	7
	Design of simply supported Pre-stressed Concrete Sections forflexure.	
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE5-12: SOLID AND HAZARDOUS WASTE MANAGEMENT

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to SWM: Definition of waste and solid waste, classification solid waste, sources of solid waste, its composition, factors affecting waste generation, traditional methods of waste collection and disposal	4
3	Waste Collection: Components of waste collection, waste collection containers, their characteristics, types, waste collection vehicles, collection frequency, collection route, transfer stations	4
4	Solid Waste Characterization: Physical characteristics, chemical characteristics and biological characteristics of solid wastes Waste Processing : Size reduction, factors affecting size reduction, size reducing equipment, volume reduction, equipment for volume reduction, waste minimization, waste hierarchy, 3 R principle	5
5	 Hazardous Waste: Definition, sources, classification, collection, segregation, treatment and disposal methods Radioactive Waste, E-Waste, Biomedical Waste: Definition, sources, classification, segregation, management and disposal methods 	6
6	Treatment and Disposal of Solid Waste: Composting, vermicomposting, biogas production, thermal treatment, incineration, pyrolysis, gasification, biological treatment, Sanitary land filling, land fill leachate and gas management Latest Advances and Rules related to SWM, Hazardous Waste,	5
	Plastic Waste and E-Waste Management TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE5-13: TRAFFIC ENGINEERING AND MANAGEMENT

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Traffic Planning and Characteristics: Road Characteristics – Road user characteristics – PIEV theory – Vehicle – Performance characteristics – Fundamentals of Traffic Flow .	4
3	Traffic Surveys : Traffic Surveys – Speed, journey time and delay surveys – Vehicles Volume Survey including nonmotorized transports – Methods and interpretation – Origin Destination Survey – Methods and presentation – Parking Survey – Accident analyses -Methods, interpretation and presentation –Level of service – Concept, applications and significance.	6
4	Traffic Design and Visual Aids: Intersection Design – channelization, Rotary intersection design – Signal design – Coordination of signals — Grade separation – Traffic signs including VMS and road markings – Significant roles of traffic control personnel – Networking pedestrian facilities & cycle tracks.	6
5	Traffic Safety and Environment : Road accidents – Causes, effect, prevention, and cost – Street lighting – Traffic and environment hazards –	4
6	Traffic Management: Area Traffic Management System – Traffic System Management (TSM) with IRC standards – Traffic Regulatory Measures-Travel Demand Management (TDM) – Direct and indirect methods – Congestion and parking pricing – All segregation methods-Coordination among different agencies – Intelligent Transport System for traffic management, enforcement and education.	7
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE5-14: BRIDGE ENGINEERING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Type of bridges & classification of road & railways bridges. IRC & Railwayloadings for bridges, wind load & Earthquake forces. : Expansion joints.	3
3	Steel bridges : Introduction to Design of through type &deck type steel bridges for IRC loading. Design of through type truss bridges forrailway loadings.	9
4	Reinforced concrete culverts & bridges: Reinforced concrete slab culvert, T-beam bridges-courbons & Hendry-Jaegar methods.	10
5	Bearings : Bearings for slab bridges and girder bridges. Elastomeric bearings, design concepts as per IRC 83 (Part II).	5
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE5-15: ROCK ENGINEERING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Engineering Classification of Rocks : Objectives, Intact rock classification, Rock mass Classification. Terzaghi's, Rock load classification, Austrian classification, Deere's rock quality classification, rock structure rating concept, RMR classification, Q classification. Inter relation between Q and RMR.	6
3	Engineering Properties and Laboratory Tests on Rocks: Porosity, Density, Moisture content, Degree of saturation, Co-efficient of permeability, Durability, Compressive strength, Tensile strength, Shear strength, elasticity, Plasticity Deformability. Sampling and Samples Preparations, Uniaxial Compressive strength, Tensile Strength – Brazilian test, Shear strength test – Direct Shear test and Punch shear test, Triaxial Test, Flexural strength.	
4	 In-situ Tests on Rocks: Necessity of Insitu test, Plate load test for deformability, Field Shear test Jointed Rocks: Rocks Joint properties, Joint properties, Joint Roughness Co-efficient, Scale effects, Dilation, Orientation of Joints, Gouge, Joint Intensity, Uniaxial Compressive strength of Jointed Rocks. 	7
5	 Strength of Rocks in Unconfined Condition: Ramamurthy Strength Criteria, Singh and Rao Strength Criteria, Kulatilake Methodology, Barton Methodology. Strength of Rocks in Confined Condition: History of Hoek and Brown Failure Criterions, Parabolic Strength Criteria. Bearing Capacity of Rocks: Bearing capacity of intact rocks, jointed rocks, IS Code methodology, Singh and Rao Method and latest methodologies. 	7
	TOTAL	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE5-16: GEOGRAPHIC INFORMATION SYSTEM & REMOTE SENSING

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

-	Eliu Term Exam. 5	
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Photogrammetry: Definition of Photogrammetric Terms, Geometry of aerial and terrestrial photographs, Aerial camera and photo- theodolite, Scale of a Photograph, Tilt and Height displacements, Stereoscopicvision and stereoscopes, Height determination from parallax measurements, Flight planning, Maps and Map substitutes and their uses.	7
3	Remote Sensing: Introduction and definition of remote sensing terms, Remote Sensing System, Electromagnetic radiation and spectrum, Spectral signature, Atmospheric windows.	4/6
4	Different types of platforms, sensors and their characteristics, Orbital parameters of a satellite, Multiconcept in Remote Sensing.	4/4
5	Image Interpretation: Principles of interpretation of aerial and satellite images, equipments and aidsrequired for interpretation, ground truth – collection and verification, advantages of multidate and multiband images. Digital Image Processing concept.	6/5
6	Geographic Information System (GIS) : Introduction & applications of GIS in map revision, Land use,Agriculture, Forestry, Archaeology, Municipal, Geology, water resources, Soil Erosion, Land suitabilityanalysis, change detection.	6/5
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-21: Environmental Engineering Design and Lab

Credit: 1.5	Max. Marks: 100(IA:60, ETE:40)
OL+OT+3P	End Term Exam: 3 Hours

Design

- 1. Population forecasting and water demand
- 2. Water Quality parameters
- 3. Design of Sedimentation tanks, coagulation and flocculation tanks
- 4. Design of rapid and slow sand filters
- 5. Design of disinfection units and transmission systems
- 6. Design of Sewer lines and storm water systems
- 7. Design of aerobic and anaerobic treatment units
- 8. Design of suspended and attached growth systems

Lab.

- 1. Physical Characterization of water: Turbidity, Electrical Conductivity, pH
- 2. Analysis of solids content of water: Dissolved, Settleable, suspended, total, volatile, inorganic etc.
- 3. Alkalinity and acidity, Hardness: total hardness, calcium and magnesium hardness
- 4. Optimum coagulant dose
- 5. Chemical Oxygen Demand (COD)
- 6. Dissolved Oxygen (D.O) and Biochemical Oxygen Demand (BOD)
- 7. Break point Chlorination
- 8. Bacteriological quality measurement: MPN,

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus 3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-22: Steel Structures Design

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 3 Hours

Analysis and design Problems as per different topics of syllabus of theory 6CE4-05, with latest version of IS 800 and other relevant IS codes. In addition to numerical problems, following exercises:

- 1. Case study of foot over bridges/truss- girder bridge in vicinity /home town of the students, preferably in groups of 8-10 students. A report including photographs marked with names and section details of different members in it (maximum limit of words :1000).
- 2. Case study of a structure using tubular sections or light gauge sections in vicinity /home town of the students, preferably in groups of 8-10 students. A report including photographs marked with names, size and section details of different members in it (maximum limit of words: 1000).

6CE4-23: QUANTITY SURVEYING AND VALUATION

0L+0T+2P	End Term Exam: 2 Hours
	Contents

- 1. Preliminary Estimate (Plinth Area and Cubic Content)
- 2. Detailed Estimate of buildings (Long wall-Short wall and Centre line method)
- 3. Rate Analysis of different Items of Works (Earthwork, Concrete Work, DPC, Stone masonry, Brickwork, RCC, Roofing, Flooring, and Finishing etc.)
- 4. Earthwork Calculation for Roads, Irrigation Canals and Channels (cutting and filling)
- 5. Valuation of Buildings and Properties

Syllabus

3rd Year - VI Semester: B.Tech. (Civil Engineering)

6CE4-24: WATER AND EARTH RETAINING STRUCTURES DESIGN

Credit: 1

Max. Marks: 100(IA:60, ETE:40)

End Term Exam: 2 Hours

Assignments/ Exercises on the following topics:		
SN	CONTENTS	Hours
1	Continuous Beams: Analysis andDesign of continuous beams using coefficients (IS Code), concept of moment redistribution	4
2	Curved Beams: Analysis and design of beams curved in plan.	4
3	Circular Domes: Analysisand design of Circular domes with u.d.l. & concentrated load at crown.	4
4	Water Tanks and Towers: Water Tanks and Water Towers-design of rectangular, circular and Intze type tanks, column brace type staging.	10
5	Retaining walls: Analysis and design of Cantilever Retaining Walls: Introduction to counterfort and buttress type retaining walls, their structural behaviour and stability analysis.	6
	TOTAL	28

6CE4-25: FOUNDATION ENGINEERING

Credit: 1Max. Marks: 100(IA:60, ETE:40)0L+0T+2PEnd Term Exam: 2 Hours

1. Design of isolated shallow footings, combined footings, raft foundations.

- 2. Design of pile foundations.
- 3. Design of wells and cassions.
- 4. Design of machine foundation.
- 5. Design of retaining structures etc

SEMESTER-VII & VIII

Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. Civil Engineering

Teaching & Examination Scheme B.Tech.: Civil Engineering 4th Year - VII Semester

			THEO	RY							
	-			Hours Per Week			Marks				
SN	Category	Course Code	Course Title	L	Т	Р	Exm Hrs	IA	ETE	Total	Cr
1	PCC	7CE4-01	Transportation Engineering	3	0	0	3	30	120	150	3
2	OE		Open Elective-I	3	0	0	3	30	120	150	3
			Sub Total	6	0	0		60	240	300	6
			PRACTICAL & SE	SSI	ONA	L					
3		7CE4-21	Road Material Testing Lab	0	0	2		30	20	50	1
4	PCC	7CE4-22	Professional Practices & Field Engineering Lab	0	0	2		30	20	50	1
5		7CE4-23	Soft Skills Lab	0	0	2		30	20	50	1
6		7CE4-24	Environmental Monitoring and Design Lab	0	0	2		30	20	50	1
7	דואס	7CE7-30	Practical Training	1	0	0		75	50	125	2.5
8	PSIT	7CE7-40	Seminar	2	0	0		60	40	100	2
9	SODECA	7CE8-00	SODECA	0	0	0		0	25	25	0.5
			Sub- Total	3	0	8		255	195	450	9
		Т	OTAL OF VII SEMESTER	9	0	8		315	435	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B.Tech.: Civil Engineering 4th Year - VIII Semester

			THEO	RY							
				Hours Per Week			Marks				
SN	Category	Course Code	Course Title	L	Т	Р	Exm Hrs	IA	ETE	Total	Cr
1	PCC	8CE4-01	Project Planning and Construction Management	3	0	0	3	30	120	150	3
2	OE		Open Elective-II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0		60	240	300	6
			PRACTICAL & SE	SSIC	ONA	L	I		J	I	
3	PCC	8CE4-21	Project Planning & Construction Management Lab	0	0	2		30	20	50	1
4		8CE4-22	Pavement Design	0	0	2		30	20	50	1
5	PSIT	8CE7-50	Project	3	0	0		210	140	350	7
6	SODECA	8CE8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0		0	25	25	0.5
			Sub- Total	0	0	4		270	205	475	9.5
		Т	OTAL OF VIII SEMESTER	9	0	4		330	445	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Subject	List of Open Electiv	Subject	Title		
Code		Code			
	Open Elective - I		Open Elective - II		
7AG6-60.1	Human Engineering and Safety	8AG6-60.1	Energy Management		
7AG6-60.2 Environmental Engineering and Disaster Management		8AG6-60.2	Waste and By-product Utilization		
7AN6-60.1	Aircraft Avionic System	8AN6-60.1	Finite Element Methods		
7AN6-60.2	Non-Destructive Testing	8AN6-60.2	Factor of Human Interactions		
7CH6-60.1	Optimization Techniques	8CH6-60.1	Refinery Engineering Design		
7CH6-60.2	Sustainable Engineering	8CH6-60.2	Fertilizer Technology		
7CR6-60.1	Introduction to Ceramic Science & Technology	8CR6-60.1	Electrical and Electronic Ceramics		
7CR6-60.2	Plant, Equipment and Furnace Design	8CR6-60.2	Biomaterials		
7CS6-60.1	Quality Management/ISO 9000	8CS6-60.1	Big Data Analytics		
7CS6-60.2	Cyber Security	8CS6-60.2	IPR, Copyright and Cyber Law of India		
7EE6-60.1	Electrical Machines and Drives	8EE6-60.1	Energy Audit and Demand side Management		
7EE6-60.2	Power Generation Sources.	8EE6-60.2	Soft Computing		
7EC6-60.1	Principle of Electronic communication	8EC6-60.1	Industrial and Biomedical applications of RF Energy		
7EC6-60.2	Micro and Smart System Technology	8EC6-60.2	Robotics and control		
7ME6-60.1	Finite Element Analysis	8ME6-60.1	Operations Research		
7ME6-60.2	Quality Management	8ME6-60.2	Simulation Modeling and Analysis		
7MI6-60.1	Rock Engineering	8MI6-60.1	Experimental Stress Analysis		
7MI6-60.2	Mineral Processing	8MI6-60.2	Maintenance Management		
7PE6-60.1	Pipeline Engineering	8PE6-60.1	Unconventional Hydrocarbon Resources		
7PE6-60.2	Water Pollution control Engineering	8PE6-60.2	Energy Management & Policy		
7TT6-60.1	Technical Textiles	8TT6-60.1	Material and Human Resource Management		
7TT6-60.2	Garment Manufacturing Technology	8TT6-60.2	Disaster Management		

Syllabus

IV Year- VII & VIII Semester: B. Tech. Civil Engineering

7CE4-01: Transportation Engineering

Max. Marks: 150(IA:30, ETE:120) Credit 3 3L+0T+0P End Term Exam: 3Hours Hours SN Contents 1 **Introduction:** Objective, scope and outcome of the course 1 alignment: 2 planning and Different 5 Highway modes of transportation - historical Development of road construction-Highway Development in India –Classification of roads- Road pattern - Highway planning in India- Highway alignment - Engineering Surveys for alignment – Highway Project- Important Transport/Highway related agencies in India. PMGSY project. Introduction about IRC, NRRDA Geometric Design of highways: The highway crosses sectional 7 3 elements- Camber-Sight Distance - Types of sight distances -Design of horizontal alignments - Super elevation, Widening of Pavements on horizontal curves- transition Curves- Design of Vertical _ Gradientsalignments summit and Vallev Curves-Recommendations of IRC Codes of Practice. Highway Materials: Desirable Properties, Testing Procedures, 4 6 Standards and standard values relating to Soil, Stone Aggregates, Bitumen and Tar, fly- ash/pond-ash. Role of filler in Bituminous mix. materials of filler. Specifications of DLC and PQC for rigid pavement Highway Construction and Equipments: Methods of constructing 5 8 different types of roads viz. Earth roads, Stabilized roads, WBM, WMM roads, earthen embankments, DLC and embankments with fly ash. Bituminous roads and Concrete roads. Berms and Shoulders, Features of rural roads including those in PMGSY. Hot mix plant for Bituminous roads-components, layout, control panel, quality assurance. Highway construction of rigid and flexible pavements including types road rollers. specifications of of compactionofdifferentlayersofbituminousroads, modernpavers for CC roads. Roller compacted concrete road construction Design of flexible and rigid pavements as per IRC: IRC provisions 5 6 including those of IRC 37, IRC 58 7 Introduction of Railway Engineering: Types and Selection of 3 Gauges, Selection of Alignment, Ideal Permanent Ways and Crosssections in different conditions, Drainage, Salient Features and types of Components viz. Rails, Sleepers, Ballast, Rail Fastenings. 8 Introduction of Airports and Harbours: Airport Engineering: -5 Requirements Planning, Introduction: to Airport Airport Classifications, Factors in Airport Site Selection, Airport Size. Planning of Airport: Requirements of Airport- Terminal Area, Runway Length etc. Harbours: history of water transportation, modern trends in water transportation, components of harbour, classification of harbours. Ports and docks. Total 40

Syllabus

IV Year- VII & VIII Semester: B. Tech. Civil Engineering

T	'ext / Reference Books:
1	Highway Engineering by Khanna SK & CG Justo, Nem Chand & Brothers,
	Roorkee.
2	Highway Engg. By LR Kadyali, Khanna Tech Publications, Delhi.
3	Specifications for Roads & Bridges by Ministry of Road Transport &
	Highways and Indian Road Congress.
4	Railway Engineering by Satish Chandra and MM Agarwal, Oxford University
	Press, Delhi.
5	Railway Engineering by Saxena SC and Arora SP, Dhanpat Rai Publishers,
	Delhi.
6	S C Rangwala, airport engineering, Charotar publication house.
7	Gautam H. Oza, Dock & Harbour Engineering, Charotar publication House.

Syllabus

IV Year- VII & VIII Semester: B. Tech. Civil Engineering

7CE4-21: Road Material Testing Lab

Credit 1 Max. Marks: 50(IA:30, ETE:20) **0L+0T+2P** 1. Aggregate ImpactTest 2. To determine the Angularity Number, Flakiness Index & Elongation Index of aggregates 3. Los Angeles AbrasionTest 4. Aggregate Crushing ValueTest 5. Standard Tar Viscometer Test for given bitumensample 6. Ductility Test for a given bitumensample 7. To determine the softening point for given sample ofbitumen. 8. Marshall StabilityTest 9. FloatTest 10. Preparation of Dry lean concrete mix and testing of itsstrength

Syllabus

IV Year- VII & VIII Semester: B. Tech. Civil Engineering

7CE4-22: Professional Practices and Field Engineering Lab Credit 1 Max. Marks: 50(IA:30, ETE:20) 0L+0T+2P

- 1. Different types ofKnots
- 2. Site plan, index plan, layout plan, plinth area, floor area ofbuildings
- 3. Foundation plan layout infield
- 4. Bar bendingschedule
- 5. Specifications- For different classes of building and Civil Engineeringworks
- 6. Specifications of buildingcomponents
- 7. Valuation of buildings and properties
- 8. Work at heights scaffolding and ladders use, type of scaffolds, safety requirements, design and load factors, defects and inspection norms, type of ladders, upkeep, defects and good maintenancetips

Syllabus

IV Year- VIII Semester: B. Tech. Civil Engineering

7CE4-23: Soft Skills Lab

Max. Marks: 50(IA:30, ETE:20)

Credit 1 0L+0T+2P

SOFT SKILLS- Introduction to Soft Skills, Aspects of Soft Skills, Identifying your Soft Skills, Negotiation skills, Importance of Soft Skills, Concept of effective communication. SELF-DISCOVERY- Self-Assessment, Process, Identifying strengths and limitations, SWOT AnalysisGrid.

PREPARING CV/RESUME – Introduction, meaning, difference among bio-data, CV and resume, CV writing tips. Do's and don'ts of resume preparation, Vocabulary for resume, common resume mistakes, cover letters, tips for writing cover letters.

INTERVIEW SKILLS - Introduction. Types of interview, Types of question asked, Reasons for rejections, Post-interview etiquette, Telephonic interview, Dress code at interview, Mistakes during interview, Tips to crack on interview, Contextual questions in interview skills, Emotional crack an interview, Emotional intelligence and critical thinking during interview process.

DEVELOPING POSITIVE ATTITUDE – Introduction, Formation of attitude, Attitude in workplace, Power of positive attitude, Examples of positive attitudes, Negative attitudes, overcoming negative attitude and its consequences,

IMPROVING PERCEPTION- Introduction, Understanding perception, perception and its application inorganizations.

CAREER PLANNING – Introduction, Tips for successful career planning, Goal setting immediate, short term and long term, Strategies to achieve goals, Myths about choosing career.

TEAM BUILDING AND TEAM WORK - Introduction, Meaning, Characteristics of an effective team, Role of a Team Leader, Role of Team Members, inter group Collaboration Advantages, Difficulties faced, Group Exercises-Team Tasks and Role-Play, Importance of Group Dynamics.

TIME MANAGEMENT: The Time management matrix, apply the Pareto Principle 80/20 Rule) to time management issues, to prioritize using decision matrices, to beat the most common time wasters, how to plan ahead, how to handle interruptions, to maximize your personal effectiveness, how to say "no" to time wasters, develop your own individualized plan of action.

STRESS MANAGEMENT – Introduction, meaning, positive and negative stress, Sources of stress, Case studies, signs of stress, Stress management tips, Teenage stress.

Group discussion practice on current topics, Quantitative aptitude and reasoning preparation.

Syllabus IV Year- VIII Semester: B. Tech. Civil Engineering

1	Yext / Reference Books:
1	Butterfield, Jeff, 'Soft Skills for Everyone', Cengage Learning, New Delhi,
	2010.
2	G.S. Chauhan and Sangeeta Sharma, 'Soft Skills', Wiley, New Delhi, 2016.
3	Klaus, Peggy, Jane Rohman& Molly Hamaker, 'The Hard Truth About Soft
	Skills', Harper Collins E-books, London, 2007.
4	S.J. Petes, Francis, 'Soft Skills and Professional Communication', Tata
	McGraw Hill Education, New Delhi, 2011.
5	Dr. R. S. Aggarwal, Quantitave aptitude & reasoning, S Chand & company
	ltd.
6	Dr. R. S. Aggarwal, A modern approach to Verbal & Non-verbal reasoning,
	S Chand & company ltd.

Syllabus

IV Year- VIII Semester: B. Tech. Civil Engineering

7CE4-24: Environmental Monitoring and Design Lab Max. Marks: 50(IA:30, ETE:20)

Design:

Credit 1 0L+0T+2P

- 1. Sewer design and estimation of Waste/Storm water bysoftware.
- 2. Design of Water Treatment Plant and Sewage TreatmentPlant
- 3. Design of Oxidation pond, stabilization pond and aeratedlagoons.
- 4. Design of aerobic and anaerobicdigester.

Lab:

- 1. Demonstration of air pollution monitoring instruments namely, High volume sampler
- 2. Determination of SPM, PM₁₀andPM_{2.5}.
- 3. Demonstration of noise pollution monitoring equipment namely, modular precision sound levelmeter.
- 4. Air quality monitoring for Traffic/Residential locality and its effect on the environment.
- 5. Noise quality monitoring for Traffic/Residential locality and its effect on the environment.
- 6. Latest technology for management of municipal solid waste, e-waste, biomedical waste and their prevalent rules and regulations.

	Recommended Texts:
1	Manual on Sewerage and Sewage Treatment Systems – 2013, CPHEEO, New Delhi
2	Compendium of sewage treatment technologies Published by NRCD, MoEF,
	GOI, 2009
3	Storm Water Management Model (SWMM) and Manual, Published by US
	EPA
4	IS 5182-23 (2006) published by Bureau of Indian Standards
5	IS 4758: 1968 published by Bureau of Indian Standards
6	MoEF Guidelines and amendments as updated on <u>http://moef.gov.in</u>
7	CPCB Guidelines and amendments as updated on <u>https://cpcb.nic.in</u>

Syllabus

IV Year- VIII Semester: B. Tech. Civil Engineering

8CE4-01 Project Planning and Construction Management

Credit 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3Hours

SN	Course Content	Hours				
1	INTRODUCTION: Objective, scope and outcome of the course					
2	2 FINANCIAL EVALUATION OF PROJECTS ANDPROJECT PLANNING: Capital investment proposals, criterions to judge the worthwhile of capital projects viz. net present value, benefit cost ratio, internal rate of return, Risk cost management, main causes of project failure. Categories of construction projects, objectives, project development process, Functions of project management, Project management organization and staffing, Stages and steps involved in project planning, Plan development process, objectives of construction project management.					
3	PROJECT SCHEDULING: Importance of project scheduling, project work breakdown process – determining activities involved, work breakdown structure, assessing activity duration, duration estimate procedure, Project work scheduling, Sequence of construction activities, Project management techniques – CPM and PERT networks analysis, concept of precedence network analysis.	8				
4	PROJECT COST AND TIME CONTROL: Monitoring the time progress and cost controlling measures in a construction project, Time cost trade-off process: direct and indirect project costs, cost slope, Process of crashing of activities, determination of the optimum duration of a project, updating of project networks, resources allocation.	8				
5	CONTRACT MANAGEMENT: Elements of tender operation, Types of tenders and contracts, Contract document, Legal aspects of contracts, Contract negotiation & award of work, breach of contract, determination of a contract, arbitration.	8				
6	SAFETY AND OTHER ASPECTS OF CONSTRUCTION MANAGEMENT: Safety measures to be followed in various construction works like excavation, demolition of structures, explosive handling, hot bitumen work. Project Management Information System – Concept, frame work, benefits of computerized information system. Environmental and social aspects ofvarious types of construction projects.	8				
	Total	40				

Syllabus IV Year- VIII Semester: B. Tech. Civil Engineering

	Recommended Texts:
1	Construction Planning & management By P S Gahlot& B M Dhir, New Age International Limited Publishers
2	Construction Project planning & Scheduling by Charles Patrick, Pearson, 2012
3	Construction Project Management Theory & practice Kumar Neeraj Jha, Pearson, 2012
4	Modern construction managementHarris, Wiley India.
5	Construction Management & Planning by Sengupta and Guha-Tata McGraw Hill publication.
6	Project Management – K Nagrajan – New age International Ltd.
7	Professional Construction Institute Edition.
8	Construction Project Management Planning, Scheduling and Controlling- Chitakara- Tata McGraw Hill, New Delhi
9	Construction Planning, Equipment and Methods by R. L. Peurify

Syllabus

IV Year- VIII Semester: B. Tech. Civil Engineering

8CE4-21: Project Planning and Construction Management Lab Credit 1 Max. Marks: 50(IA:30, ETE:20) 0L+0T+2P

- 1. Assignments on net present value, benefit cost ratio, internal rate ofreturn
- 2. Types of contracts Tenders, tender form, submission and opening of tenders, measurement book, muster roll, piecework agreement and work order.
- 3. Drafting of tender documents, special terms and conditions
- 4. Drafting of tender notices for different types ofworks
- 5. Different models of PPP like BOT, BOOTetc.
- 6. Arbitration
- 7. Preparation of bardiagram
- 8. Network Analysis using PERT and CPM

Syllabus

IV Year- VIII Semester: B. Tech. Civil Engineering

Credit 1

0L+0T+2P

8CE4-22: Pavement Design

Max. Marks: 50(IA:30, ETE:20)

- Pavement Mix Analysis: Aggregate blending, bituminous mix design Marshall Stability approach, concrete mix design for DLC and PQC with IS codeprovisions.
- 2. **Pavement Basics:** Types & comparison, vehicular loading pattern, factors affecting design and performance of pavements, sub graderequirements.
- 3. **Design of Flexible Pavements**: Analytical approach, flexible pavement layers, ESWL, repetitions of load, techniques of design methods, wheel load analysis, traffic analysis, stress distribution in subgrade soil, Burmister's theories, group index method, CBR approach, IRC 37 and otherguidelines.
- 4. **Design of Concrete Pavements**: Westergaard's approach, temperature & frictional stresses, design of expansion & longitudinal joints, design of dowel & tie bars, IRC 58 and otherguidelines.
- Specifications for rural roads: Important aspects of IRC SP 020, Rural Road Manual. NRRDA publications

Syllabus and Scheme <u>B.Tech. in Computer Science (IOT)</u>

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	Hours		rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
		_	Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
		_	and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations - First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.

SEMESTER-III & IV

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (Internet of Things) 2nd Year - III Semester

			THEO	RY							
		Course		Contact							
SN	Categ		m • 1	hrs	s/we	ek		Ma	arks	1	Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CIT2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3CIT1-02/ 3CIT1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3 CIT3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3 CIT4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3 CIT4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3 CIT4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
		·		•							
			PRACTICAL &	SESS	ION	AL					
7		3 CIT4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
8	PCC	3 CIT4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
9		3 CIT4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
10		3 CIT4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
11	PSIT	3 CIT7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3 CIT8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total		0	13					7.5
		TC	DTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (Internet of Things) 2nd Year - IV Semester

			THEO	RY			-				
SN	Categ ory	Categ Course		Contact hrs/week			Marks				Cr
		Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4 CIT2-01	Discrete Mathematics Structure	3	0	0	3	30	70	100	3
2	HSMC	4 CIT1-03/ 4 CIT1-02	Managerial Economics and Financial Accounting /Technical Communication	2	0	0	2	30	70	100	2
3	ESC	4 CIT3-04	Microprocessor & Interfaces	3	0	0	3	30	70	100	3
4		4 CIT4-05	Database Management System	3	0	0	3	30	70	100	3
5	PCC	4 CIT4-06	Theory of Computation	3	0	0	3	30	70	100	3
6		4 CIT4-07	Data Communication and Computer Networks	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
				0700							
7		4 CIT4-21	PRACTICAL & Microprocessor & Interfaces Lab	0		AL 2		60	40	100	1
8	PCC	4 CIT4-22	Database Management System Lab	0	0	3		60	40	100	1.5
9		4 CIT4-23	Network Programming Lab	0	0	3		60	40	100	1.5
10		4 CIT4-24	Linux Shell Programming Lab	0	0	2		60	40	100	1
11		4 CIT4-25	Java Lab	0	0	2		60	40	100	1
12	SODE CA	4 CIT8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		TO	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT2-01: Advanced Engineering Mathematics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours			
1	Random Variables: Discrete and Continuous random variables, Joint distribution, Probability distribution function, conditional distribution.Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis.	7			
2	Binomial distribution , Normal Distribution, Poisson Distribution and their relations, Uniform Distribution, Exponential Distribution. Correlation: Karl Pearson's coefficient, Rank correlation. Curve fitting. Line of Regression.				
3	Historical development , Engineering Applications of Optimization, Formulation of Design Problems as a Mathematical Programming Problems, Classification of Optimization Problems	8			
4	Classical Optimization using Differential Calculus: Single Variable and Multivariable Optimization with & without Constraints, Langrangian theory, Kuhn Tucker conditions	6			
5	Linear Programming: Simplex method, Two Phase Method and Duality in Linear Programming. Application of Linear Programming: Transportation and Assignment Problems.	14			
	TOTAL	40			

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT1-02/4CS1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT1-03/ 4CIT1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT3-04: Digital Electronics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours					
1	Fundamental concepts: Number systems and codes, Basic logic Gates and Boolean algebra: Sign & magnitude representation, Fixed point representation, complement notation, various codes & arithmetic in different codes & their inter conversion. Features of logic algebra, postulates of Boolean algebra.Theorems of Boolean algebra.						
2	Minimization Techniques and Logic Gates:Principle of Duality - Boolean expression -Minimization of Boolean						
3	Digital Logic Gate Characteristics: TTL logic gate characteristics. Theory & operation of TTL NAND gate circuitry. Open collector TTL. Three state output logic. TTL subfamilies.MOS& CMOS logic families. Realization of logic gates in RTL, DTL, ECL, C-MOS & MOSFET.						
4	Combinational Circuits: Combinational logic circuit design, adder, subtractor, BCD adder encoder, decoder, BCD to 7-segment decoder, multiplexer demultiplexer.						
5	Sequential Circuits: Latches, Flip-flops - SR, JK, D, T, and Master-Slave Characteristic table and equation,counters and their design, Synchronous counters – Synchronous Up/Down counters – Programmable counters – State table and state transition diagram ,sequential circuits design methodology. Registers –shift registers.	8					
	TOTAL	40					

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT4-05: Data Structures and Algorithms

Credit-3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.	8
2	Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues. Linked Lists:Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list.	10
3	Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.	7
4	Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.	7
5	Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms.Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT4-06: Object Oriented Programming

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction to different programming paradigm, characteristics of OOP, Class, Object, data member, member function, structures in C++, different access specifiers, defining member function inside and outside class, array of objects.	8
2	Concept of reference, dynamic memory allocation using new and delete operators, inline functions, function overloading, function with default arguments, constructors and destructors, friend function and classes, using this pointer.	8
3	Inheritance, types of inheritance, multiple inheritance, virtual base class, function overriding, abstract class and pure virtual function	9
4	Constant data member and member function, static data member and member function, polymorphism, operator overloading, dynamic binding and virtual function	9
5	Exception handling, Template, Stream class, File handling.	6
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Internet of Things)

3CIT4-07: Software Engineering

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction, software life-cycle models, software requirements specification, formal requirements specification, verification and validation.	8
2	Software Project Management: Objectives, Resources and their estimation, LOC and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project scheduling.	
3	Requirement Analysis: Requirement analysis tasks, Analysis principles. Software prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured Analysis: Data and control flow diagrams, control and process specification behavioral modeling	8
4	Software Design: Design fundamentals, Effective modular design: Data architectural and procedural design, design documentation.	8
5	Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling. Object Oriented Design: OOD concepts, Class and object relationships, object modularization, Introduction to Unified Modeling Language	8
	TOTAL	40

TUR

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

(Internet of Things)

3CIT4-21: Data Structures and Algorithms Lab

Credit-1.5 0L+0T+3P

Max. Marks :100 (IA:60, ETE:40)

SN	CONTENTS	
	Write a simple C program on a 32 bit compiler to understand the concept of	
	array storage, size of a word. The program shall be written illustrating the	
1	concept of row major and column major storage. Find the address of element	
	and verify it with the theoretical value. Program may be written for arrays up to	
	4-dimensions.	
	Simulate a stack, queue, circular queue and dequeue using a one dimensional	
2	array as storage element. The program should implement the basic addition,	
	deletion and traversal operations.	
	Represent a 2-variable polynomial using array. Use this representation to	
3	implement addition of polynomials	
4	Represent a sparse matrix using array. Implement addition and transposition	
4	operations using the representation.	
	Implement singly, doubly and circularly connected linked lists illustrating	
5	operations like addition at different locations, deletion from specified locations	
	and traversal.	
6	Repeat exercises 2, 3 & 4 with linked structure.	
7	Implementation of binary tree with operations like addition, deletion, traversal.	
8	Depth first and breadth first traversal of graphs represented using adjacency	
0	matrix and list.	
9	Implementation of binary search in arrays and on linked Binary Search Tree.	
10	Implementation of different sorting algorithm like insertion, quick, heap, bubble	
10	and many more sorting algorithms.	

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

(Internet of Things)

3CIT4-22 : Object Oriented Programming Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS		
1	Understand the basics of C++ library, variables, data input-output.		
2	C++ program using with the concept of structures.		
3	Implement class and object concepts and function overloading.		
4	Write programs to understand dynamic memory allocation and array of objects.		
5	Program to understand different types of constructors and destructor.		
6	Implement friend function to access private data of a class and usage of this		
D	pointer.		
7	Write programs to understand the usage of constant data member and member		
1	function, static data member and member function in a class.		
8	Implement different types of inheritance, function overriding and virtual		
0	function		
9	Implement Operator overloading concepts.		
10	Write programs to understand function template and class template.		
11	Write programs to understand exception handling techniques.		
12	Write programs to understand file handling techniques.		

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

(Internet of Things)

3CIT4-23: Software Engineering Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS	
	Development of requirements specification, function oriented design using	
	SA/SD, object-oriented design using UML, test case design, implementation	
1	using Java and testing. Use of appropriate CASE tools and other tools such as	
	configuration management tools, program analysis tools in the software life	
	cycle.	
•	Develop Software Requirements Specification (SRS) for a given problem in IEEE	
2	template.	
3	Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.	
4	Develop structured design for the DFD model developed.	
5	Developed all Structure UML diagram of the given project.	
6	Develop Behavior UML diagram of the given project.	
7	Manage file, using ProjectLibre project management software tool.	
<u>.</u>		

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

(Internet of Things)

3CIT4-24: Digital Electronics Lab

Credit-1.5 0L+0T+3P

Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS	
	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also	
1	to verify truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gateswith 2, 3,	
	& 4 inputs).	
•	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized usingNAND&	
2	NOR gates.	
3	To realize an SOP and POS expression.	
4	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR	
4	gatesand to verify their truth tables.	
-	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor&	
5	basic Full Adder/ Subtractor.	
	To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize	
6	the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer	
6	and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4	
	demultiplexer.	
7	Design & Realize a combinational circuit that will accept a 2421 BCD code and	
′	drive a TIL -312 seven-segment display.	
•	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without	
8	clock signal and verify their truth table.	
•	Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary	
9	counter and ring counter for a particular output pattern using D flip flop.	
	Perform input/output operations on parallel in/Parallel out and Serial in/Serial	
	out registers using clock. Also exercise loading only one of multiple values into	
10	the register using multiplexer. Note: As far as possible, the experiments shall be	
	performed on bread board. However, experiment Nos. 1-4 are to be performed on	
	bread board only.	

Syllabus of UNDERGRADUATE DEGREE COURSE

Computer Science and Engineering (Internet of Things)

Rajasthan Technical University, Kota Effective from session: 2022 – 2023

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT2-01: Discrete Mathematics Structure

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

3L+OT+OP End Term Exam: 3 H		3 Hours
SN	SN Contents	
1	Introduction: Objective, scope and outcome of the course.	1
2	 Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality (Inclusion-Exclusion & Addition Principles) Venn Diagrams, proofs of some general identities on sets. Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem. Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction. Composition of Functions. The Pigeonhole and Generalized Pigeonhole Principles. 	7
3	Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2 way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.	8
4	 Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions. 	8
5	Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.	8
6	Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching, vertex/edge covering.	8
	Diete of Deal Academical	^{rs} 40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT1-03/3CIT1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis - Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT1-02/3CIT1-02: Technical Communication

Credit-2 2L+0T+0P Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication - Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT3-04: Microprocessor & Interfaces

Max. Marks: 100(IA:30, ETE:70)

Credit:	3
3L+0T+	0P

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Microprocessors, microcontroller; 8085 Microprocessor Architecture, pin description, Bus concept and organization; concept of multiplexing and de-multiplexing of buses; concept of static and dynamic RAM, type of ROM, memory map.	7
3	Software architecture registers and signals, Classification of instruction, Instruction set, addressing modes, Assembly Language Programming and Debugging, Programming Technique, instruction Format and timing.	8
4	Advance Assembly Language Programming, Counter and time delay; types of Interrupt and their uses, RST instructions and their uses, 8259 programmable interrupt controller; Macros, subroutine; Stack- implementation and uses with examples; Memory interfacing.	8
5	8085 Microprocessor interfacing:, 8255 Programmable Peripheral Interface, 8254 programmable interval timer, interfacing of Input/output device, 8279 Key board/Display interface.	8
6	Microprocessor Application: Interfacing scanned multiplexed display and liquid crystal display, Interfacing and Matrix Keyboard, MPU Design; USART 8251, RS232C and RS422A, Parallel interface- Centronics and IEEE 488.	8
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-05: Database Management System

Max. Marks: 100(IA:30, ETE:70)

Credit: 3 3L+0T+0P

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to database systems: Overview and History of DBMS. File System v/s DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries in DBMS.Structure of a DBMS.	
	Entity Relationship model: Overview of Data Design Entities, Attributes and Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key Constraints, Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation v/s ternary Relationship Conceptual Design for a Large Enterprise.	7
3	 Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus. SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL, ODBC and JDBC, Triggers and Active Databases. 	8
4	Schema refinement and Normal forms: Introductions to Schema Refinement, Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-Decomposition into BCNF Decomposition into 3-NF.	8
5	Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent Executions. Need of Serializability, Conflict vs. View Serializability, Testing for Serializability, Recoverable Schedules, Cascadeless Schedules.	8
6	 Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-based protocols, Validation-based protocols, Deadlock handling, Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow Paging and Log-based Recovery, Recovery with 	8
	Concurrent transactions.	

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-06: Theory Of Computation

Max. Marks: 100(IA:30, ETE:70)

Credit:	3
3L+0T+	OP

	DI+OP End Term Exam: 3	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Finite Automata & Regular Expression: Basic machine, Finite state machine, Transition graph, Transition matrix, Deterministic and non- deterministic finite automation, Equivalence of DFA and NDFA, Decision properties, minimization of finite automata, Mealy & Moore machines.	-
	Alphabet, words, Operations, Regular sets, relationship and conversion between Finite automata and regular expression and vice versa, designing regular expressions, closure properties of regular sets, Pumping lemma and regular sets, Myhill- Nerode theorem, Application of pumping lemma, Power of the languages.	7
3	Context Free Grammars (CFG), Derivations and Languages, Relationship between derivation and derivation trees, leftmost and rightmost derivation, sentential forms, parsing and ambiguity, simplification of CFG, normal forms, Greibach and Chomsky Normal form , Problems related to CNF and GNF including membership problem.	8
4	Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA, Deterministic PDA, and Deterministic PDA and Deterministic CFL, The pumping lemma for CFL's, Closure Properties and Decision properties for CFL, Deciding properties of CFL.	8
5	Turing Machines: Introduction, Definition of Turing Machine, TM as language Acceptors and Transducers, Computable Languages and functions, Universal TM & Other modification, multiple tracks Turing Machine. Hierarchy of Formal languages: Recursive & recursively enumerable languages, Properties of RL and REL, Introduction of Context sensitive grammars and languages, The Chomsky Hierarchy.	8
6	Tractable and Untractable Problems: P, NP, NP complete and NP hard problems, Un-decidability, examples of these problems like vertex cover problem, Hamiltonian path problem, traveling sales man problem.	8
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-07: Data Communication and Computer Networks

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introductory Concepts: Network hardware, Network software, topologies, Protocols and standards, OSI model, TCP model, TCP/IP model, Physical Layer: Digital and Analog Signals, Periodic Analog Signals, Signal Transmission, Limitations of Data Rate, Digital Data Transmission, Performance Measures, Line Coding, Digital Modulation, Media and Digital Transmission System	
3	Data Link Layer: Error Detection and Correction, Types of Errors, Two dimensional parity check, Detection verses correction, Block Coding, Linear Block Coding, Cyclic Codes, Checksum, Standardized Polynomial Code, Error Correction Methods, Forward Error Correction, Protocols: Stop and wait, Go-back-N ARQ, Selective Repeat ARQ, Sliding window, Piggy backing, Pure ALOHA, Slotted ALOHA, CSMA/CD, CSMA/CA	9
4	Network Layer: Design issues, Routing algorithms: IPV4, IPV6, Address mapping: ARQ, RARQ, Congestion control, Unicast, Multicast, Broadcast routing protocols, Quality of Service, Internetworking	8
5	Transport Layer: Transport service, Elements of transport protocols, User Datagram Protocol, Transmission Control Protocol, Quality of service, Leaky Bucket and Token Bucket algorithm	8
6	Application Layer: WWW, DNS, Multimedia, Electronic mail, FTP, HTTP, SMTP, Introduction to network security	7
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-21: Microprocessor & Interfaces Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Add the contents of memory locations XX00 &XX01 & place the result in memory location XX02.
- 2. Add the 16 bit numbers stored in memory location & store the result in another memory location.
- 3. Transfer a block of data from memory location XX00 to another memory location XX00 in forward & reverse order.
- 4. Write a program to swap two blocks of data stored in memory.
- 5. Write a program to find the square of a number.
- 6. Write a main program and a conversion subroutine to convert Binary to its equivalent BCD.
- 7. Write a program to find largest & smallest number from a given array.
- 8. Write a program to Sort an array in ascending & descending order.
- 9. Write a program to multiply two 8 bit numbers whose result is 16 bit.
- 10. Write a program of division of two 8 bit numbers.
- 11. Generate square wave from SOD pin of 8085 & observe on CRO.
- 12. Write a program to perform traffic light control operation.
- 13. Write a program to control the speed of a motor.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-22: Database Management System Lab

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- 3. Write a SQL statement for implementing ALTER, UPDATE and DELETE.
- 4. Write the queries to implement the joins.
- 5. Write the query for implementing the following functions: MAX (), MIN (), AVG () and COUNT ().
- 6. Write the query to implement the concept of Integrity constrains.
- 7. Write the query to create the views.
- 8. Perform the queries for triggers.
- 9. Perform the following operation for demonstrating the insertion , updation and deletion
- 10.Using the referential integrity constraints.
- 11.Write the query for creating the users and their role.

Data Base Designing Project:

For better understanding students (group of 3-4 students) should design data base for any data base project, understand the requirement and design methodology of project by its own.

Some example of data base design project like:

College management system, Inventory management system and Hospital management system.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-23: Network Programming Lab

Credit: 1.5 **0L+0T+3P**

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Study of Different Type of LAN& Network Equipments.
- 2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- 3. LAN installations and Configurations.
- 4. Write a program to implement various types of error correcting techniques.
- 5. Write a program to implement various types of framing methods.
- 6. Write two programs in C: hello_client and hello_server
 - a. The server listens for, and accepts, a single TCP connection; it reads all the data it can from that connection, and prints it to the screen; then it closes the connection
 - b. The client connects to the server, sends the string "Hello, world!", then closes the connection
- 7. Write an Echo_Client and Echo_server using TCP to estimate the round trip time from client to the server. The server should be such that it can accept multiple connections at any given time.
- 8. Repeat Exercises 6 & 7 for UDP.
- 9. Repeat Exercise 7 with multiplexed I/O operations.
- 10. Simulate Bellman-Ford Routing algorithm in NS2.

Credit: 1

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things)

4CIT4-24: Linux Shell Programming Lab

Max. Marks: 100(IA:60, ETE:40)

0L+	∠+0T+2P	
List	st of Experiments:	
1.	. Use of Basic Unix Shell Commands: ls, mkdir, rmdir,	cd, cat, banner, touch,
	file, wc, sort, cut, grep, dd, dfspace, du, ulimit.	
2.	. Commands related to inode, I/O redirection and pipin	ng, process control
	commands, mails.	
3.	. Shell Programming: Shell script based on control stru	cture- If-then-fi, if-then-
	else-if, nested if-else, to find:	
	3.1 Greatest among three numbers.	
	3.2 To find a year is leap year or not.	
	3.3 To input angles of a triangle and find out whether	r it is valid triangle or not.
	3.4 To check whether a character is alphabet, digit or	r special character.
	3.5 To calculate profit or loss.	
4.	. Shell Programming - Looping- while, until, for loops	
	4.1 Write a shell script to print all even and odd num	
	4.2 Write a shell script to print table of a given numb	
	4.3 Write a shell script to calculate factorial of a given	
	4.4 Write a shell script to print sum of all even numb	
	4.5 Write a shell script to print sum of digit of any nu	umber.
5.	0 0 /	
	5.1 Write a shell script to make a basic calculator wh	hich performs addition,
	subtraction,	
	Multiplication, division	
	5.2 Write a shell script to print days of a week.	
_	5.3 Write a shell script to print starting 4 months have	ving 31 days.
6.	0 0	
	6.1 Write a shell script to find a number is Armstron	
	6.2 Write a shell script to find a number is palindrom	ne or not.
	6.3 Write a shell script to print Fibonacci series.	
	6.4 Write a shell script to find prime number.	1 1 . 1, 1.
	6.5 Write a shell script to convert binary to decimal a	-
7.		i, triangle, square,
0	rectangle, hollow square etc.	
8.	0 0 5	
	8.1 Write a C program to read and print elements of a	5
	8.2 Write a C program to find sum of all array elemen	115.
	8.3 Write a C program to find reverse of an array.	
	8.4 Write a C program to search an element in an arr	-
	8.5 Write a C program to sort array elements in ascen	nuing of descending order.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Internet of Things) 4CIT4-25: Java Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

List of Experiment:

- 1. Develop an in depth understanding of programming in Java: data types, variables, operators, operator precedence, Decision and control statements, arrays, switch statement, Iteration Statements, Jump Statements, Using break, Using continue, return.
- 2. Write Object Oriented programs in Java: Objects, Classes constructors, returning and passing objects as parameter, Inheritance, Access Control, Using super, final with inheritance Overloading and overriding methods, Abstract classes, Extended classes.
- 3. Develop understanding to developing packages & Interfaces in Java: Package, concept of CLASSPATH, access modifiers, importing package, Defining and implementing interfaces.
- 4. Develop understanding to developing Strings and exception handling: String constructors, special string operations, character extraction, searching and comparing strings, string Buffer class. Exception handling fundamentals, Exception types, uncaught exceptions, try, catch and multiple catch statements. Usage of throw, throws and finally.
- 5. Develop applications involving file handling: I/O streams, File I/O.
- 6. Develop applications involving concurrency: Processes and Threads, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Joins, and Synchronization.

Indicative List of exercises:

- 7. Programs to demonstrate basic concepts e.g. operators, classes, constructors, control & iteration statements, recursion etc. such as complex arithmetic, matrix arithmetic, tower of Hanoi problem etc.
- 8. Development of programs/projects to demonstrate concepts like inheritance, exception handling, packages, interfaces etc. such as application for electricity department, library management, ticket reservation system, payroll system etc.
- 9. Development of a project to demonstrate various file handling concepts.
- 10. Develop applications involving Applet: Applet Fundamentals, using paint method and drawing polygons. It is expected that each laboratory assignments to given to the students with an aim to In order to achieve the above objectives.

Syllabus and Scheme

B.Tech. in Computer Science & Engineering

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	H	Iou	rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
			and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

I & II Semester Common to all branches of UG Engineering & Technology

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

I & II Semester Common to all branches of UG Engineering & Technology

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations – First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.
	1

SEMESTER-III to IV

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering 2nd Year - III Semester

			THEO	RY							
			Course	C	onta	ıct					
SN	Categ			hrs	s/we	ek		Ма	arks	-	Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CS2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3CS1-02/ 3CS1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3CS3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3CS4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3CS4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3CS4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
		-	PRACTICAL &	SESS	SION	IAL					
7		3CS4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
8	PCC	3CS4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
9		3CS4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
10		3CS4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
11	PSIT	3CS7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3CS8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	13					7.5
		тс	OTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS2-01: Advanced Engineering Mathematics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Random Variables: Discrete and Continuous random variables, Joint distribution, Probability distribution function, conditional distribution.Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis.	7
2	Binomial distribution , Normal Distribution, Poisson Distribution and their relations, Uniform Distribution, Exponential Distribution. Correlation: Karl Pearson's coefficient, Rank correlation. Curve fitting. Line of Regression.	5
3	Historical development , Engineering Applications of Optimization, Formulation of Design Problems as a Mathematical Programming Problems, Classification of Optimization Problems	8
4	Classical Optimization using Differential Calculus: Single Variable and Multivariable Optimization with & without Constraints, Langrangian theory, Kuhn Tucker conditions	6
5	Linear Programming: Simplex method, Two Phase Method and Duality in Linear Programming. Application of Linear Programming: Transportation and Assignment Problems.	14
	TOTAL	40

Syllabus

TUC

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS1-02/4CS1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS1-03/ 4CS1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS3-04: Digital Electronics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Fundamental concepts: Number systems and codes, Basic logic Gates and Boolean algebra: Sign & magnitude representation, Fixed point representation, complement notation, various codes & arithmetic in different codes & their inter conversion. Features of logic algebra, postulates of Boolean algebra.Theorems of Boolean algebra.	8
2	Minimization Techniques and Logic Gates: Principle of Duality - Boolean expression -Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization.	8
3	Digital Logic Gate Characteristics: TTL logic gate characteristics. Theory & operation of TTL NAND gate circuitry. Open collector TTL. Three state output logic. TTL subfamilies.MOS& CMOS logic families. Realization of logic gates in RTL, DTL, ECL, C-MOS & MOSFET.	8
4	Combinational Circuits: Combinational logic circuit design, adder, subtractor, BCD adder encoder, decoder, BCD to 7-segment decoder, multiplexer demultiplexer.	*
5	Sequential Circuits: Latches, Flip-flops - SR, JK, D, T, and Master-Slave Characteristic table and equation,counters and their design, Synchronous counters – Synchronous Up/Down counters – Programmable counters – State table and state transition diagram ,sequential circuits design methodology. Registers –shift registers.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-05: Data Structures and Algorithms

Credit-3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.	8
2	Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues. Linked Lists:Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list.	10
3	Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.	7
4	Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.	7
5	Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms.Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-06: Object Oriented Programming

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction to different programming paradigm, characteristics of OOP, Class, Object, data member, member function, structures in C++, different access specifiers, defining member function inside and outside class, array of objects.	8
2	Concept of reference, dynamic memory allocation using new and delete operators, inline functions, function overloading, function with default arguments, constructors and destructors, friend function and classes, using this pointer.	8
3	Inheritance, types of inheritance, multiple inheritance, virtual base class, function overriding, abstract class and pure virtual function	9
4	Constant data member and member function, static data member and member function, polymorphism, operator overloading, dynamic binding and virtual function	9
5	Exception handling, Template, Stream class, File handling.	6
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-07: Software Engineering

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction, software life-cycle models, software requirements specification, formal requirements specification, verification and validation.	8
2	Software Project Management: Objectives, Resources and their estimation, LOC and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project scheduling.	8
3	Requirement Analysis: Requirement analysis tasks, Analysis principles. Software prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured Analysis: Data and control flow diagrams, control and process specification behavioral modeling	8
4	Software Design: Design fundamentals, Effective modular design: Data architectural and procedural design, design documentation.	8
5	Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling. Object Oriented Design: OOD concepts, Class and object relationships, object modularization, Introduction to Unified Modeling Language	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-21: Data Structures and Algorithms Lab

Credit-1.5 0L+0T+3P Max. Marks :100 (IA:60, ETE:40)

SN	CONTENTS
SN	
1	Write a simple C program on a 32 bit compiler to understand the concept of
	array storage, size of a word. The program shall be written illustrating the
	concept of row major and column major storage. Find the address of element
	and verify it with the theoretical value. Program may be written for arrays up to
	4-dimensions.
	Simulate a stack, queue, circular queue and dequeue using a one dimensional
2	array as storage element. The program should implement the basic addition,
	deletion and traversal operations.
	Represent a 2-variable polynomial using array. Use this representation to
3	implement addition of polynomials
-	
	Represent a sparse matrix using array. Implement addition and transposition
4	operations using the representation.
	Implement singly, doubly and circularly connected linked lists illustrating
5	operations like addition at different locations, deletion from specified locations
	and traversal.
6	Repeat exercises 2, 3 & 4 with linked structure.
7	Implementation of binary tree with operations like addition, deletion, traversal.
	Depth first and breadth first traversal of graphs represented using adjacency
8	matrix and list.
9	Implementation of binary search in arrays and on linked Binary Search Tree.
	Implementation of different sorting algorithm like insertion, quick, heap, bubble
10	and many more sorting algorithms.
	, , , , , , , , , , , , , , , , , , , ,

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-22 : Object Oriented Programming Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
1	Understand the basics of C++ library, variables, data input-output.
2	C++ program using with the concept of structures.
3	Implement class and object concepts and function overloading.
4	Write programs to understand dynamic memory allocation and array of objects.
5	Program to understand different types of constructors and destructor.
6	Implement friend function to access private data of a class and usage of this
0	pointer.
7	Write programs to understand the usage of constant data member and member
1	function, static data member and member function in a class.
8	Implement different types of inheritance, function overriding and virtual
0	function
9	Implement Operator overloading concepts.
10	Write programs to understand function template and class template.
11	Write programs to understand exception handling techniques.
12	Write programs to understand file handling techniques.

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-23: Software Engineering Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
1	Development of requirements specification, function oriented design using
	SA/SD, object-oriented design using UML, test case design, implementation
	using Java and testing. Use of appropriate CASE tools and other tools such as
	configuration management tools, program analysis tools in the software life
	cycle.
	Develop Software Requirements Specification (SRS) for a given problem in IEEE
2	template.
3	Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.
4	Develop structured design for the DFD model developed.
5	Developed all Structure UML diagram of the given project.
6	Develop Behavior UML diagram of the given project.
7	Manage file, using ProjectLibre project management software tool.

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering

3CS4-24: Digital Electronics Lab

Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also
1	to verify truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gateswith 2, 3,
	& 4 inputs).
2	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized usingNAND&
4	NOR gates.
3	To realize an SOP and POS expression.
4	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR
4	gatesand to verify their truth tables.
5	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor&
Э	basic Full Adder/ Subtractor.
	To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize
6	the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer
0	and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4
	demultiplexer.
7	Design & Realize a combinational circuit that will accept a 2421 BCD code and
-	drive a TIL -312 seven-segment display.
8	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without
0	clock signal and verify their truth table.
9	Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary
9	counter and ring counter for a particular output pattern using D flip flop.
	Perform input/output operations on parallel in/Parallel out and Serial in/Serial
	out registers using clock. Also exercise loading only one of multiple values into
10	the register using multiplexer. Note: As far as possible, the experiments shall be
	performed on bread board. However, experiment Nos. 1-4 are to be performed on
	bread board only.

Credit-1.5 0L+0T+3P

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering 2nd Year - IV Semester

-		_	-		-
	ΤH	IEC)F	۶Y	

			THEO	RY			r				
SN	Categ		Course Contact hrs/week			Marks				Cr	
	ory	Code	Title	L	т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4CS2-01	Discrete Mathematics Structure	3	0	0	3	30	70	100	3
2	HSMC	4CS1-03/ 4CS1-02	Managerial Economics and Financial Accounting /Technical Communication	2	0	0	2	30	70	100	2
3	ESC	4CS3-04	Microprocessor & Interfaces	3	0	0	3	30	70	100	3
4		4CS4-05	Database Management System	3	0	0	3	30	70	100	3
5	PCC	4CS4-06	Theory of Computation	3	0	0	3	30	70	100	3
6		4CS4-07	Data Communication and Computer Networks	3	0	0	3	30	70	100	3
-			Sub Total	17	0	0					17
									•		
	1	1	PRACTICAL &	SESS	SION	AL	1		1	1	
7		4CS4-21	Microprocessor & Interfaces Lab	0	0	2		60	40	100	1
8	PCC	4CS4-22	Database Management System Lab	0	0	3		60	40	100	1.5
9		4CS4-23	Network Programming Lab	0	0	3		60	40	100	1.5
10		4CS4-24	Linux Shell Programming Lab	0	0	2		60	40	100	1
11		4CS4-25	Java Lab	0	0	2		60	40	100	1
12	SODE CA	4CS8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		TO	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS2-01: Discrete Mathematics Structure

0.37	OT+OP End Term Exam: 3	1
<u>SN</u>	Contents	Hou
1	Introduction: Objective, scope and outcome of the course.	1
2	 Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality (Inclusion-Exclusion & Addition Principles) Venn Diagrams, proofs of some general identities on sets. Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem. Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical 	7
3	induction, Proof by contradiction. Composition of Functions. The Pigeonhole and Generalized Pigeonhole Principles. Propositional Logic: Proposition, First order logic, Basic logical operation,	
	truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2 way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.	8
4	 Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions. 	8
5	Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.	8
6	Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching, vertex/edge covering.	8

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS1-03/3CS1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS1-02/3CS1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Credit: 3

3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS3-04: Microprocessor & Interfaces

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Microprocessors, microcontroller; 8085 Microprocessor	
	Architecture, pin description, Bus concept and organization; concept of	7
	multiplexing and de-multiplexing of buses; concept of static and	
	dynamic RAM, type of ROM, memory map.	
3	Software architecture registers and signals, Classification of	
	instruction, Instruction set, addressing modes, Assembly Language	8
	Programming and Debugging, Programming Technique, instruction	3
	Format and timing.	
4	Advance Assembly Language Programming, Counter and time delay;	
	types of Interrupt and their uses, RST instructions and their uses,	8
	8259 programmable interrupt controller; Macros, subroutine; Stack-	0
	implementation and uses with examples; Memory interfacing.	
5	8085 Microprocessor interfacing:, 8255 Programmable Peripheral	_
	Interface, 8254 programmable interval timer, interfacing of	8
	Input/output device, 8279 Key board/Display interface.	
6	Microprocessor Application: Interfacing scanned multiplexed display	
	and liquid crystal display, Interfacing and Matrix Keyboard, MPU	8
	Design; USART 8251, RS232C and RS422A, Parallel interface-	
	Centronics and IEEE 488.	
	Total	40

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-05: Database Management System

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

3L+(OT+OP End Term Exam: 5	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	 Introduction to database systems: Overview and History of DBMS. File System v/s DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries in DBMS.Structure of a DBMS. Entity Relationship model: Overview of Data Design Entities, 	
	Attributes and Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key Constraints, Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation v/s ternary Relationship Conceptual Design for a Large Enterprise.	7
3	 Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus. SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL, ODBC and JDBC, Triggers and Active Databases. 	8
4	Schema refinement and Normal forms: Introductions to Schema Refinement, Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-Decomposition into BCNF Decomposition into 3-NF.	8
5	Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent Executions. Need of Serializability, Conflict vs. View Serializability, Testing for Serializability, Recoverable Schedules, Cascadeless Schedules.	8
6	 Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-based protocols, Validation-based protocols, Deadlock handling, Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow Paging and Log-based Recovery, Recovery with Concurrent transactions. 	8
	Total	40

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-06: Theory Of Computation

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

3L+	0T+0P End Term Exam: 3	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Finite Automata & Regular Expression: Basic machine, Finite state machine, Transition graph, Transition matrix, Deterministic and non- deterministic finite automation, Equivalence of DFA and NDFA, Decision properties, minimization of finite automata, Mealy & Moore machines.	_
	Alphabet, words, Operations, Regular sets, relationship and conversion between Finite automata and regular expression and vice versa, designing regular expressions, closure properties of regular sets, Pumping lemma and regular sets, Myhill- Nerode theorem, Application of pumping lemma, Power of the languages.	7
3	Context Free Grammars (CFG), Derivations and Languages, Relationship between derivation and derivation trees, leftmost and rightmost derivation, sentential forms, parsing and ambiguity, simplification of CFG, normal forms, Greibach and Chomsky Normal form , Problems related to CNF and GNF including membership problem.	8
4	Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA, Deterministic PDA, and Deterministic PDA and Deterministic CFL, The pumping lemma for CFL's, Closure Properties and Decision properties for CFL, Deciding properties of CFL.	8
5	 Turing Machines: Introduction, Definition of Turing Machine, TM as language Acceptors and Transducers, Computable Languages and functions, Universal TM & Other modification, multiple tracks Turing Machine. Hierarchy of Formal languages: Recursive & recursively enumerable languages, Properties of RL and REL, Introduction of Context sensitive grammars and languages, The Chomsky Hierarchy. 	8
6	Tractable and Untractable Problems: P, NP, NP complete and NP hard problems, Un-decidability, examples of these problems like vertex cover problem, Hamiltonian path problem, traveling sales man problem.	8
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-07: Data Communication and Computer Networks

Credit: 3 Max. Marks: 100(IA:30, ETE:70) 3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introductory Concepts: Network hardware, Network software, topologies, Protocols and standards, OSI model, TCP model, TCP/IP model, Physical Layer: Digital and Analog Signals, Periodic Analog Signals, Signal Transmission, Limitations of Data Rate, Digital Data Transmission, Performance Measures, Line Coding, Digital Modulation, Media and Digital Transmission System	7
3	Data Link Layer: Error Detection and Correction, Types of Errors, Two dimensional parity check, Detection verses correction, Block Coding, Linear Block Coding, Cyclic Codes, Checksum, Standardized Polynomial Code, Error Correction Methods, Forward Error Correction, Protocols: Stop and wait, Go-back-N ARQ, Selective Repeat ARQ, Sliding window, Piggy backing, Pure ALOHA, Slotted ALOHA, CSMA/CD, CSMA/CA	9
4	Network Layer: Design issues, Routing algorithms: IPV4, IPV6, Address mapping: ARQ, RARQ, Congestion control, Unicast, Multicast, Broadcast routing protocols, Quality of Service, Internetworking	8
5	Transport Layer: Transport service, Elements of transport protocols, User Datagram Protocol, Transmission Control Protocol, Quality of service, Leaky Bucket and Token Bucket algorithm	8
6	Application Layer: WWW, DNS, Multimedia, Electronic mail, FTP, HTTP, SMTP, Introduction to network security	7
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-21: Microprocessor & Interfaces Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Add the contents of memory locations XX00 &XX01 & place the result in memory location XX02.
- 2. Add the 16 bit numbers stored in memory location & store the result in another memory location.
- 3. Transfer a block of data from memory location XX00 to another memory location XX00 in forward & reverse order.
- 4. Write a program to swap two blocks of data stored in memory.
- 5. Write a program to find the square of a number.
- 6. Write a main program and a conversion subroutine to convert Binary to its equivalent BCD.
- 7. Write a program to find largest & smallest number from a given array.
- 8. Write a program to Sort an array in ascending & descending order.
- 9. Write a program to multiply two 8 bit numbers whose result is 16 bit.
- 10. Write a program of division of two 8 bit numbers.
- 11. Generate square wave from SOD pin of 8085 & observe on CRO.
- 12. Write a program to perform traffic light control operation.
- 13. Write a program to control the speed of a motor.

Office of Dean Academic Affairs

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-22: Database Management System Lab

Credit: 1.5 0L+0T+3P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- 3. Write a SQL statement for implementing ALTER, UPDATE and DELETE.
- 4. Write the queries to implement the joins.
- 5. Write the query for implementing the following functions: MAX (), MIN (), AVG () and COUNT ().
- 6. Write the query to implement the concept of Integrity constrains.
- 7. Write the query to create the views.
- 8. Perform the queries for triggers.
- 9. Perform the following operation for demonstrating the insertion , updation and deletion
- 10.Using the referential integrity constraints.
- 11.Write the query for creating the users and their role.

Data Base Designing Project:

For better understanding students (group of 3-4 students) should design data base for any data base project, understand the requirement and design methodology of project by its own.

Some example of data base design project like:

College management system, Inventory management system and Hospital management system.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-23: Network Programming Lab

Credit: 1.5 0L+0T+3P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Study of Different Type of LAN& Network Equipments.
- 2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- 3. LAN installations and Configurations.
- 4. Write a program to implement various types of error correcting techniques.
- 5. Write a program to implement various types of framing methods.
- 6. Write two programs in C: hello_client and hello_server
 - a. The server listens for, and accepts, a single TCP connection; it reads all the data it can from that connection, and prints it to the screen; then it closes the connection
 - b. The client connects to the server, sends the string "Hello, world!", then closes the connection
- 7. Write an Echo_Client and Echo_server using TCP to estimate the round trip time from client to the server. The server should be such that it can accept multiple connections at any given time.
- 8. Repeat Exercises 6 & 7 for UDP.
- 9. Repeat Exercise 7 with multiplexed I/O operations.
- 10. Simulate Bellman-Ford Routing algorithm in NS2.

Office of Dean Academic Affairs

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

Credit: 1

Max. Marks: 100(IA:60, ETE:40)

0L+(DT+2P
List	of Experiments:
1.	Use of Basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch,
	file, wc, sort, cut, grep, dd, dfspace, du, ulimit.
2.	Commands related to inode, I/O redirection and piping, process control
	commands, mails.
3.	Shell Programming: Shell script based on control structure- If-then-fi, if-then-
	else-if, nested if-else, to find:
	3.1 Greatest among three numbers.
	3.2 To find a year is leap year or not.
	3.3 To input angles of a triangle and find out whether it is valid triangle or not.
	3.4 To check whether a character is alphabet, digit or special character.
	3.5 To calculate profit or loss.
4.	Shell Programming - Looping- while, until, for loops
	4.1 Write a shell script to print all even and odd number from 1 to 10.
	4.2 Write a shell script to print table of a given number
	4.3 Write a shell script to calculate factorial of a given number.
	4.4 Write a shell script to print sum of all even numbers from 1 to 10.
	4.5 Write a shell script to print sum of digit of any number.
5.	Shell Programming - case structure, use of break
	5.1 Write a shell script to make a basic calculator which performs addition,
	subtraction,
	Multiplication, division
	5.2 Write a shell script to print days of a week.
-	5.3 Write a shell script to print starting 4 months having 31 days.
6.	Shell Programming - Functions
	6.1 Write a shell script to find a number is Armstrong or not.
	6.2 Write a shell script to find a number is palindrome or not.
	6.3 Write a shell script to print Fibonacci series.
	6.4 Write a shell script to find prime number.
-	6.5 Write a shell script to convert binary to decimal and decimal to binary
7.	Write a shell script to print different shapes- Diamond, triangle, square,
0	rectangle, hollow square etc.
8.	Shell Programming – Arrays
	8.1 Write a C program to read and print elements of array.
	8.2 Write a C program to find sum of all array elements.
	8.3 Write a C program to find reverse of an array.
	8.4 Write a C program to search an element in an array.
	8.5 Write a C program to sort array elements in ascending or descending order.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering

4CS4-25: Java Lab

Credit: 1 **0L+0T+2P** List of Experiment: 1. Develop an in depth understanding of programming in Java: data types, variables, operators, operator precedence, Decision and control statements, arrays, switch statement, Iteration Statements, Jump Statements, Using break, Using continue, return. 2. Write Object Oriented programs in Java: Objects, Classes constructors, returning and passing objects as parameter, Inheritance, Access Control, Using super, final with inheritance Overloading and overriding methods, Abstract classes, Extended classes. 3. Develop understanding to developing packages & Interfaces in Java: Package, concept of CLASSPATH, access modifiers, importing package, Defining and implementing interfaces. 4. Develop understanding to developing Strings and exception handling: String constructors, special string operations, character extraction, searching and comparing strings, string Buffer class. Exception handling fundamentals, Exception types, uncaught exceptions, try, catch and multiple catch statements. Usage of throw, throws and finally. 5. Develop applications involving file handling: I/O streams, File I/O. 6. Develop applications involving concurrency: Processes and Threads, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Joins, and Synchronization. **Indicative List of exercises:** 7. Programs to demonstrate basic concepts e.g. operators, classes, constructors, control & iteration statements, recursion etc. such as complex arithmetic, matrix arithmetic, tower of Hanoi problem etc. 8. Development of programs/projects to demonstrate concepts like inheritance, exception handling, packages, interfaces etc. such as application for electricity department, library management, ticket reservation system, payroll system etc. 9. Development of a project to demonstrate various file handling concepts. 10. Develop applications involving Applet: Applet Fundamentals, using paint method and drawing polygons. It is expected that each laboratory assignments to given to the students with an aim to In order to achieve the above objectives.

Max. Marks: 100(IA:60, ETE:40)

SEMESTER-V & VI

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering 3rd Year – V Semester

			THEO Course	r	onta	at					
SN	Categ				s/we		Mark	larks			Cr
	ory	Code	Title	L	T	Р	Exm Hrs	IA	ETE	Total	
1	ESC	5CS3-01	Information Theory & Coding	2	0	0	3	30	70	100	2
2		5CS4-02	Compiler Design	3	0	0	3	30	70	100	3
3	-	5CS4-03	Operating System	3	0	0	3	30	70	100	3
4		5CS4-04	Computer Graphics & Multimedia	3	0	0	3	30	70	100	3
6	-	5CS4-05	Analysis of Algorithms	3	0	0	3	30	70	100	3
7	PCC/ PEC	Profession	al Elective 1: (any one)	2	0	0	3	30	70	100	2
		5CS5-11	Wireless Communication								
		5CS5-12	Human-Computer Interaction								
	-	5CS5-13	Bioinformatics								
			Sub Total	16	0	0					16
			PRACTICAL &	SES	SION	IAL					
8		5CS4-21	Computer Graphics & Multimedia Lab	0	0	2	2	60	40	100	1
9	PCC	5CS4-22	Compiler Design Lab	0	0	2	2	60	40	100	1
10	ree	5CS4-23	Analysis of Algorithms Lab	0	0	2	2	60	40	100	1
11		5CS4-24	Advance Java Lab	0	0	2	2	60	40	100	1
12	PSIT	5CS7-30	Industrial Training	0	0	1		60	40	100	2.5
13	SODE CA	5CS8-00	Social Outreach, Discipline &Extra Curricular Activities						100	100	0.5
			Sub- Total	0	0	9					7
		1	OTAL OF V SEMESTER	16	0	9					23

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering 3rd Year – VI Semester

			THEO	RY							
SN	Categ		Course	-	ont		Mark	s			Cr
51	ory	Code	Title	L	s/w T	Р	Exm Hrs	IA	ETE	Total	
1	ESC	6CS3-01	Digital Image Processing	2	0	0	3	30	70	100	2
2		6CS4-02	Machine Learning	3	0	0	3	30	70	100	3
3		6CS4-03	Information Security System	2	0	0	3	30	70	100	2
4	PCC/ PEC	6CS4-04	Computer Architecture and Organization	3	0	0	3	30	70	100	3
5		6CS4-05	Artificial Intelligence	2	0	0	3	30	70	100	2
6		6CS4-06	Cloud Computing	3	0	0	3	30	70	100	3
7	-	Professiona	al Elective 1 (any one)	2	0	0	3	30	70	100	2
		6CS5-11	Distributed System								
		6CS5-12	Software Defined Network								
		6CS5-13	Ecommerce and ERP								
			Sub-Total	17	0	0					17
			PRACTICAL &	SESS	SION	IAL					
8		6CS4-21	Digital Image Processing Lab	0	0	3	2	60	40	100	1.5
9	PCC	6CS4-22	Machine Learning Lab	0	0	3	2	60	40	100	1.5
10	1	6CS4-23	Python Lab	0	0	3	2	60	40	100	1.5
11		6CS4-24	Mobile Application Development Lab	0	0	3	2	60	40	100	1.5
12	SODE CA	6CS8-00	Social Outreach, Discipline &Extra Curricular Activities						100	100	0.5
			Sub- Total	0	0	12					6.5
		T	OTAL OF VI SEMESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS3-01: Information Theory & Coding

Credit:	2
2L+0T+	OP

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

4L ⁺	L+01+0P End Term Exa			
SN	Contents	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	Introduction to information theory: Uncertainty, Information and Entropy, Information measures for continuous random variables, source coding theorem. Discrete Memory less channels, Mutual information, Conditional entropy.	05		
3	Source coding schemes for data compaction: Prefix code, Huffman code, Shanon-Fane code & Hempel-Ziv coding channel capacity. Channel coding theorem. Shannon limit.	05		
4	Linear Block Code: Introduction to error connecting codes, coding & decoding of linear block code, minimum distance consideration, conversion of non-systematic form of matrices into systematic form.	05		
5	Cyclic Code: Code Algebra, Basic properties of Galois fields (GF) polynomial operations over Galois fields, generating cyclic code by generating polynomial, parity check polynomial. Encoder & decoder for cyclic codes.	06		
6	Convolutional Code: Convolutional encoders of different rates. Code Tree, Trllis and state diagram. Maximum likelihood decoding of convolutional code: The viterbi Algorithm fee distance of a	06		
	convolutional code.			

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-02: Compiler Design

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End '	Term	Exam:	3	Hours
			TI	[

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction: Objective, scope and outcome of the course. Compiler, Translator, Interpreter definition, Phase of compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling.	06
3	Review of CFG Ambiguity of grammars: Introduction to parsing. Top down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, Bottom up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of automatic parser generator: YACC error handling in LR parsers.	10
4	Syntax directed definitions; Construction of syntax trees, S- Attributed Definition, L-attributed definitions, Top down translation. Intermediate code forms using postfix notation, DAG, Three address code, TAC for various control structures, Representing TAC using triples and quadruples, Boolean expression and control structures.	10
5	Storage organization; Storage allocation, Strategies, Activation records, Accessing local and non-local names in a block structured language, Parameters passing, Symbol table organization, Data structures used in symbol tables.	08
6	Definition of basic block control flow graphs; DAG representation of basic block, Advantages of DAG, Sources of optimization, Loop optimization, Idea about global data flow analysis, Loop invariant computation, Peephole optimization, Issues in design of code generator, A simple code generator, Code generation from DAG.	07
	Total	42

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-03: Operating System

Crea	redit: 3 Max. Marks: 100(IA:30, ET		
3L+(+OT+OP End Term Exam: 3 Hour		
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction and History of Operating systems: Structure and operations; processes and files. Processor management: inter process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling and algorithms, critical sections, threads, multithreading.	04	
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study.	05	
4	 Deadlock: Shared resources, resource allocation and scheduling, resource graph models, deadlock detection, deadlock avoidance, deadlock prevention algorithms Device management: devices and their characteristics, device drivers, device handling, disk scheduling algorithms and policies 	15	
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication.	07	
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS.	08	
	Total	40	

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-04: Computer Graphics & Multimedia

Hours	Contents
01	Introduction: Objective, scope and outcome of the course.
06	Basic of Computer Graphics: Basic of Computer Graphics, Applications of computer graphics, Display devices, Random and Raster scan systems, Graphics input devices, Graphics software and standards.
07	Graphics Primitives: Points, lines, circles and ellipses as primitives, scan conversion algorithms for primitives, Fill area primitives including scan- line polygon filling, inside-outside test, boundary and flood-fill, character generation, line attributes, area-fill attributes, character attributers. Aliasing, and introduction to Anti Aliasing (No anti aliasing algorithm).
08	Two Dimensional Graphics: Transformations (translation, rotation, scaling), matrix representation, homogeneous coordinates, composite transformations, reflection and shearing, viewing pipeline and coordinates system, window-to-viewport transformation, clipping including point clipping, line clipping (cohen-sutherland, liang- bersky, NLN), polygon clipping.
08	Three Dimensional Graphics: 3D display methods, polygon surfaces, tables, equations, meshes, curved lies and surfaces, quadric surfaces, spline representation, cubic spline interpolation methods, Bazier curves and surfaces, B-spline curves and surfaces.3D scaling, rotation and translation, composite transformation, viewing pipeline and coordinates, parallel and perspective transformation, view volume and general (parallel and perspective) projection transformations.
06	Illumination and Colour Models: Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection.
06	 Animations &Realism:Design of Animation sequences – animation function – raster animation – key frame systems – motion specification – morphing – tweening. ComputerGraphics Realism: Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing.
42	Total

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-05: Analysis of Algorithms

	Credit: 3 Max. Marks: 100(IA:30, 3L+0T+0P End Term Exam:			
SN	Contents	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	 Background: Review of Algorithm, Complexity Order Notations: definitions and calculating complexity. Divide And Conquer Method: Binary Search, Merge Sort, Quick sort and Strassen's matrix multiplication algorithms. 	06		
3	 Greedy Method: Knapsack Problem, Job Sequencing, Optimal Merge Patterns and Minimal Spanning Trees. Dynamic Programming: Matrix Chain Multiplication. Longest CommonSubsequence and 0/1 Knapsack Problem. 	10		
4	 Branch And Bound: Traveling Salesman Problem and Lower Bound Theory. Backtracking Algorithms and queens problem. Pattern Matching Algorithms: Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms. 	08		
5	 Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem. Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multicommodity flow, Flow shop scheduling and Network capacity assignment problems. 	08		
6	Problem Classes Np, Np-Hard And Np-Complete: Definitions of P, NP-Hard and NP-Complete Problems. Decision Problems.Cook's Theorem. Proving NP-Complete Problems - Satisfiability problem and Vertex Cover Problem. Approximation Algorithms for Vertex Cover andSet Cover Problem.	08		
	Total	41		

Credit: 2

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS5-11: Wireless Communication

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Wireless Channels: Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading- Parameters of mobile multipath channels – Time dispersion parameters-Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.	06
3	Cellular Architecture: Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept- Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Coverage and capacity improvement.	05
4	Digital Signaling For Fading Channels: Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.	05
5	Multipath Mitigation Techniques: Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,	06
6	Multiple Antenna Techniques: MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.	05
	Total	28

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Max. Marks: 100(IA:30, ETE:70)

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS5-12: Human Computer Interaction

Credit:	2
2L+0T+	OP

SN

1

2

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

	II. 5 Hours	
Contents	Hours	
Introduction: Objective, scope and outcome of the course.	01	
Historical evolution of the field, Interactive system design, Concept		

	of usability -definition and elaboration, HCI and software Engineering, GUI design and Aesthetics, Prototyping techniques.	02
2	Model-based Design and evaluation: Basic idea, introduction to	
	different types of models, GOMS family of models (KLM and CMN-	03
	GOMS), Fitts' law and Hick-Hyman's law, Model-based design case	
	studies,	
3	Guidelines in HCI: Shneiderman's eight, golden rules, Norman's	
	seven principles, Norman's model of interaction, Nielsen's ten	05
	heuristics with example of its use Heuristic evaluation, Contextual	
	inquiry, Cognitive walkthrough.	
4	Empirical research methods in HCI: Introduction (motivation,	25
	issues, research question formulation techniques), Experiment	06
	design and data analysis (with explanation of one-way ANOVA).	
5	Task modelling and analysis: Hierarchical task analysis (HTA),	
	Engineering task models and Concur Task Tree (CTT), lintroduction	06
	to formalism in dialog design, design using FSM (finite state	
6	machines) State charts and (classical) Petri Nets in dialog design.	
6	Introduction to CA , CA types, relevance of CA in IS design Model Human Processor (MHP), OOP- Introduction OOM- Object	05
	Oriented Modeling of User Interface Design.	
	Total	28

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS5-13: Bioinformatics

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

20	End Term Exam: 5 Hours	
SN	Contents	
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction: Basics of biology.	02
3	Sequences: Problem Statement, Edit distance and substitution matrices, HMMs and pairwise HMMs, Global and local alignments, Spliced alignment, Space-efficient sequence alignment, Multiple alignment, Database searching tools, Sequence by hybridization, Profile HMMs	07
4	Structures: Protein structure alignment, Protein structure prediction.	06
5	Phylogenetic trees: Large parsimony and small parsimony problems, Probabilistic approaches, Grammar-based approaches.	07
6	Miscellaneous topics: Pathways and networks, Microarrays, Biomedical images.	05
	Total	28

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-21: Computer Graphics & Multimedia Lab

Credit: 1 0L+0T+2P

Max. Marks:100 (IA:60, ETE:40)

OL+	L+0T+2P End Term Exam: 2 Hour	
SN	List of Experiments	
1	Implementation of Line, Circle and ellipse attributes	
2	To plot a point (pixel) on the screen	
3	To draw a straight line using DDA Algorithm	
4	Implementation of mid-point circle generating Algorithm	
5	Implementation of ellipse generating Algorithm	
6	Two Dimensional transformations - Translation, Rotation, Scaling, Reflection, Shear	
7	Composite 2D Transformations	
8	Cohen Sutherland 2D line clipping and Windowing	
9	Sutherland – Hodgeman Polygon clipping Algorithm	
10	Three dimensional transformations - Translation, Rotation, Scaling	
11	Composite 3D transformations	
12	Drawing three dimensional objects and Scenes	
13	Generating Fractal images	

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-22: Compiler Design Lab

Max. Marks: 100 (IA:60, ETE:40)

Credit: 1 0L+0T+2P

End Term Exam: 2 Hours

	End Term Exam. 2 hours
SN	List of Experiments
1	Introduction: Objective, scope and outcome of the course.
2	To identify whether given string is keyword or not.
3	Count total no. of keywords in a file. [Taking file from user]
4	Count total no of operators in a file. [Taking file from user]
5	Count total occurrence of each character in a given file. [Taking file from user]
6	Write a C program to insert, delete and display the entries in Symbol Table.
7	Write a LEX program to identify following:
	1. Valid mobile number
	2. Valid url
	3. Valid identifier
	4. Valid date (dd/mm/yyyy)
	5. Valid time (hh:mm:ss)
8	Write a lex program to count blank spaces, words, lines in a given file.
9	Write a lex program to count the no. of vowels and consonants in a C file.
10	Write a YACC program to recognize strings aaab,abbb using a^nb^n, where b>=0.
11	Write a YACC program to evaluate an arithmetic expression involving operators +,-,*
	and /.
12	Write a YACC program to check validity of a strings abcd, aabbcd using grammar
	a^nb^nc^md^m, where n , m>0
13	Write a C program to find first of any grammar.

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-23: Analysis of Algorithms Lab

	lit: 1 Max. Marks: 100 (IA:60, ETE:40) DT+2P End Term Exam: 2 Hours
SN	List of Experiments
1	Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
2	Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
3	a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.
4	Implement 0/1 Knapsack problem using Dynamic Programming.
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
6	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
7	a. Print all the nodes reachable from a given starting node in a digraph using BFS method. b. Check whether a given graph is connected or not using DFS method.
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
9.	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
10	Implement N Queen's problem using Back Tracking.

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-24: Advance Java Lab

	dit: 1 Max. Marks: 100 (IA:60, ETE:40) DT+2P End Term Exam: 2 Hours	
SN	List of Experiments	
1	Introduction To Swing, MVC Architecture, Applets, Applications and Pluggable Look and Feel, Basic swing components : Text Fields, Buttons, Toggle Buttons, Checkboxes, and Radio Buttons.	
2	Java database Programming, java.sql Package, JDBC driver, Network Programming With java.net Package, Client and Server Programs, Content And Protocol Handlers.	
3	RMI architecture, RMI registry, Writing distributed application with RMI, Naming services, Naming And Directory Services, Overview of JNDI, Object serialization and Internationalization.	
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform, HTTP protocol, web application, Web containers and Application servers.	
5	Server side programming with Java Servlet, HTTP and Servlet, Servlet API, life cycle, configuration and context, Request and Response objects, Session handling and event handling, Introduction to filters with writing simple filter application.	
6	JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag Extension API, Tag handlers, JSP Fragments, Tag Files, JSTL, Core Tag library, overview of XML Tag library, SQL Tag library and Functions Tag library.	

Syllabus of UNDERGRADUATE DEGREE COURSE

B.Tech. VI Semester

Computer Science and Engineering

Rajasthan Technical University, Kota Effective from session: 2022 – 2023

Credit: 2

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS3-01: Digital Image Processing

2L+(Γ+0P End Term Exam: 3 Hour	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation.	04
3	Image Transformation & Filtering: Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, frequency domain filters, colour models, Pseudo colouring, colour transforms, Basics of Wavelet Transforms.	06
4	Image Restoration: Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering.	07
5	Image Compression: Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression.	05
6	Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors.	05
	Total	28

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Max. Marks: 100(IA:30, ETE:70)

Credit: 3

3L+0T+0P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-02:Machine Learning

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Supervised learning algorithm: Introduction, types of learning, application, Supervised learning: Linear Regression Model, Naive Bayes classifier Decision Tree, K nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithm.	09
3	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model.	08
4	Introduction to Statistical Learning Theory , Feature extraction - Principal component analysis, Singular value decomposition. Feature selection – feature ranking and subset selection, filter, wrapper and embedded methods, Evaluating Machine Learning algorithms and Model Selection.	08
5	Semi supervised learning, Reinforcement learning: Markov decision process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA), Model-based Reinforcement Learning.	08
6	Recommended system, Collaborative filtering, Content-based filtering Artificial neural network, Perceptron, Multilayer network, Back propagation, Introduction to Deep learning.	08

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Total

42

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-03: Information Security System

Crec 2L+	it:2 Max. Marks: 100(IA:30, ETE:7 T+0P End Term Exam: 3 Hou	
SN	Contents	
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to security attacks: services and mechanism, classical encryption techniques- substitution ciphers and transposition ciphers, cryptanalysis, stream and block ciphers.	06
3	Modern block ciphers : Block Cipher structure, Data Encryption standard (DES) with example, strength of DES, Design principles of block cipher, AES with structure, its transformation functions, key expansion, example and implementation.	06
	Multiple encryption and triple DES, Electronic Code Book, Cipher Block Chaining Mode, Cipher Feedback mode, Output Feedback mode, Counter mode.	
4	Public Key Cryptosystems with Applications: Requirements and Cryptanalysis, RSA cryptosystem, Rabin cryptosystem, Elgamal cryptosystem, Elliptic curve cryptosystem.	06
5	Cryptographic Hash Functions, their applications: Simple hash functions, its requirements and security, Hash functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA).	
	Message Authentication Codes, its requirements and security, MACs based on Hash Functions, Macs based on Block Ciphers. Digital Signature, its properties, requirements and security, various digital signature schemes (Elgamal and Schnorr), NIST digital Signature algorithm.	05
6	Key management and distribution: symmetric key distribution using symmetric and asymmetric encryptions, distribution of public keys, X.509 certificates, Public key infrastructure. Remote user authentication with symmetric and asymmetric encryption, Kerberos.	04
	Web Security threats and approaches, SSL architecture and protocol, Transport layer security, HTTPS and SSH.	
	Total	28

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-04: Computer Architecture and Organization

Hours	OT+OP End Term Exam Contents	SN
01	Introduction: Objective, scope and outcome of the course.	1
10	Computer Data Representation: Basic computer data types, Complements, Fixed point representation, Register Transfer and Micro-operations: Floating point representation, Register Transfer language, Register Transfer, Bus and Memory Transfers (Tree-State Bus Buffers, Memory Transfer), Arithmetic Micro-Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logical shift unit. Basic Computer Organization and Design Instruction codes, Computer registers, computer instructions, Timing and Control, Instruction cycle, Memory-Reference Instructions, Input-output and interrupt, Complete computer description, Design of Basic computer, design of Accumulator Unit.	2
7	Programming The Basic Computer: Introduction, Machine Language, Assembly Language, assembler, Program loops, Programming Arithmetic and logic operations, subroutines, I-O Programming. Micro programmed Control: Control Memory, Address sequencing, Micro program Example, design of control Unit.	3
8	Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, data transfer and manipulation, Program Control, Reduced Instruction Set Computer (RISC)Pipeline And Vector Processing, Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline, RISC Pipeline, Vector Processing, Array Processors.	4
8	Computer Arithmetic: Introduction, Addition and subtraction, Multiplication Algorithms (Booth Multiplication Algorithm), Division Algorithms, Floating Point Arithmetic operations, Decimal Arithmetic Unit. Input-Output Organization, Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority Interrupt, DMA, Input-Output Processor (IOP), CPUIOP Communication, Serial communication.	5
8	Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory. Multipreocessors: Characteristics of Multiprocessors, Interconnection Structures, Inter-processor Arbitration, Inter- processor Communication and Synchronization, Cache Coherence, Shared Memory Multiprocessors.	6
42	Total	

Rajasthan Technical University, Kota

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-05: Artificial Intelligence

Credit: 2	Max. Marks: 100(IA:30, ETE:70)
2L+0T+0P	End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to AI and Intelligent agent: Different Approach of AI, Problem Solving : Solving Problems by Searching, Uninformed search, BFS, DFS, Iterative deepening, Bi directional search, Hill climbing, Informed search techniques: heuristic, Greedy search, A* search, AO* search, constraint satisfaction problems.	03
3	Game Playing: Minimax, alpha-beta pruning, jug problem, chess problem, tiles problem.	06
4	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order logic, situation calculus. Theorem Proving in First Order Logic. Planning, partial order planning. Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.	06
5	Learning: Overview of different forms of learning, Supervised base learning: Learning Decision Trees, SVM, Unsupervised based learning, Market Basket Analysis, Neural Networks.	07
6	Introduction to Natural Language Processing: Different issue involved in NLP, Expert System, Robotics.	05
	Total	28

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-06: Cloud Computing

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

3L+0T+0P End Term Exam	
SN Contents	Hours
1 Introduction: Objective, scope and outcome of the course.	01
2 Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell of cloud computing, Enabling Technology, Historical development, Vision, feature Characteristics and components of Cloud Computing. Challenges, Risks and Approaches of Migration into Cloud. Ethical Issue in Cloud Computing, Evaluating the Cloud's Business Impact and economics, Future of the cloud. Networking Support for Cloud Computing. Ubiquitous Cloud and the Internet of Things.	06
3 Cloud Computing Architecture: Cloud Reference Model, Layer and Types of Clouds, Services models, Data centre Design and interconnection Network, Architectural design of Compute and Storage Clouds. Cloud Programming and Software: Fractures of cloud programming, Parallel and distributed programming paradigms-Map Reduce, Hadoop, High level Language for Cloud. Programming of Google App engine.	10
4 Virtualization Technology: Definition, Understanding and Benefits of Virtualization. Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor VMware, KVM, Xen. Virtualization: of CPU, Memory, I/O Devices, Virtual Cluster and Resources Management, Virtualization of Server, Desktop, Network, and Virtualization of data-centre.	10
5 Securing the Cloud: Cloud Information security fundamentals, Cloud security services, Design principles, Policy Implementation, Cloud Computing Security Challenges, Cloud Computing Security Architecture . Legal issues in cloud Computing. Data Security in Cloud: Business Continuity and Disaster Recovery , Risk Mitigation , Understanding and Identification of Threats in Cloud, SLA-Service Level Agreements, Trust Management.	08
6 Cloud Platforms in Industry: Amazon web services, Google AppEngine, Microsoft Azure Design, Aneka: Cloud Application Platform -Integration of Private and Public Clouds Cloud applications: Protein structure prediction, Data Analysis, Satellite Image Processing, CRM	07
Total	42

Credit: 2

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS5-11: Distributed System

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Hours	OT+OP End Term Exam Contents	SN
01	Introduction: Objective, scope and outcome of the course.	1
06	Distributed Systems: Features of distributed systems, nodes of a distributed system, Distributed computation paradigms, Model of distributed systems, Types of Operating systems: Centralized Operating System, Network Operating Systems, Distributed Operating Systems and Cooperative Autonomous Systems, design issues in distributed operating systems. Systems Concepts and Architectures: Goals, Transparency, Services, Architecture Models, Distributed Computing Environment (DCE). Theoretical issues in distributed systems: Notions of time and state, states and events in a distributed system, time, clocks and event precedence, recording the state of distributed systems.	2
05	Concurrent Processes and Programming: Processes and Threads, Graph Models for Process Representation, Client/Server Model, Time Services, Language Mechanisms for Synchronization, Object Model Resource Servers, Characteristics of Concurrent Programming Languages (Language not included).Inter-process Communication and Coordination: Message Passing, Request/Reply and Transaction Communication, Name and Directory services, RPC and RMI case studies.	3
06	Distributed Process Scheduling: A System Performance Model, Static Process Scheduling with Communication, Dynamic Load Sharing and Balancing, Distributed Process Implementation. Distributed File Systems: Transparencies and Characteristics of DFS, DFS Design and implementation, Transaction Service and Concurrency Control, Data and File Replication. Case studies: Sun network file systems, General Parallel file System and Window's file systems. Andrew and Coda File Systems.	4
06	Distributed Shared Memory: Non-Uniform Memory Access Architectures, Memory Consistency Models, Multiprocessor Cache Systems, Distributed Shared Memory, Implementation of DSM systems. Models of Distributed Computation: Preliminaries, Causality, Distributed Snapshots, Modelling a Distributed Computation, Failures in a Distributed System, Distributed Mutual Exclusion, Election, Distributed Deadlock handling, Distributed termination detection.	5
05	Distributed Agreement: Concept of Faults, failure and recovery, Byzantine Faults, Adversaries, Byzantine Agreement, Impossibility of Consensus and Randomized Distributed Agreement. Replicated Data Management: concepts and issues, Database Techniques, Atomic Multicast, and Update Propagation. CORBA case study: Introduction, Architecture, CORBA RMI, CORBA Services.	6
28	Total	

Rajasthan Technical University, Kota

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS5-12: Software Defined Network

Credit: 2	Max. Marks: 100(IA:30, ETE:70)
2L+0T+0P	End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	 History and Evolution of Software Defined Networking (SDN): Separation of Control Plane and Data Plane, IETF Forces, Active Networking. Control and Data Plane Separation: Concepts, Advantages and Disadvantages, the Open Flow protocol. 	03
3	Network Virtualization: Concepts, Applications, Existing Network Virtualization Framework (VMWare and others), Mininet based examples. Control Plane: Overview, Existing SDN Controllers including Floodlight and Open Daylight projects.	05
4	Customization of Control Plane: Switching and Firewall Implementation using SDN Concepts. Data Plane: Software-based and Hardware-based; Programmable Network Hardware.	07
5	Programming SDNs:Northbound Application Programming Interface, Current Languages and Tools, Composition of SDNs. Network Functions Virtualization (NFV) andSoftware Defined Networks:Concepts, Implementation and Applications.	07
6	Data Center Networks: Packet, Optical and Wireless Architectures, Network Topologies. Use Cases of SDNs: Data Centers, Internet Exchange Points, Backbone Networks, Home Networks, Traffic Engineering. Programming Assignments for implementing some of the theoretical concepts listed above.	05
	Total	28

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS5-13: Ecommerce & ERP

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to E-Commerce: Defining Commerce; Main Activities of Electronic Commerce; Benefits of E-Commerce; Broad Goals of Electronic Commerce; Main Components of E-Commerce; Functions of Electronic Commerce – Communication, Process Management, Service Management, Transaction Capabilities; Process of E-Commerce; Types of E-Commerce; Role of Internet and Web in E-Commerce; Technologies Used; E-Commerce Systems; Pre-requisites of E-Commerce; Scope of E-Commerce; E-Business Models.	03
3	E-Commerce Activities: Various Activities of E-Commerce; Various Modes of Operation Associated with E-Commerce; Matrix of E-Commerce Types; Elements and Resources Impacting E-Commerce and Changes; Types of E-Commerce Providers and Vendors; Man Power Associated with E-Commerce Activities; Opportunity Development for E-Commerce Stages; Development of E-Commerce Business Case; Components and Factors for the Development of the Business Case; Steps to Design and Develop an E-Commerce Website.	05
4	Internet – The Backbone for E-Commerce: Early Ages of Internet; Networking Categories; Characteristics of Internet; Components of Internet – Internet Services, Elements of Internet, Uniform Resource Locators, Internet Protocol; Shopping Cart, Cookies and E-Commerce; Web Site Communication; Strategic Capabilities of Internet.	07
5	ISP, WWW and Portals: Internet Service Provider (ISP); World Wide Web (WWW); Portals – Steps to build homepage, Metadata; Advantages of Portal; Enterprise Information Portal (EIP). E-Commerce & Online Publishing: This unit explains the concept of online publishing, strategies and approaches of online publishing, and online advertising.	07
6	 XML and Data Warehousing: Definition of eXtensible Markup Language (XML); XML Development Goals; Comparison between HTML and XML; Business importance in using XML Based Technology; Advantages, Disadvantages and Applications of XML; Structure of an XML Document; XHTML and X/Secure; Data Warehousing; Data Marts and Operational Data Stores. E-Marketing: Traditional Marketing; E-Marketing; Identifying Web Presence Goals – Achieving web presence goals, Uniqueness of the web, Meeting the needs of website visitors, Site Adhesion: Content, format and access; Maintaining a Website; Metrics Defining Internet Units of 	05
	Measurement; Online Marketing; Advantages of Online Marketing.	

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-21: Digital Image Processing Lab

Credit: 1.5 Max. Marks: 100(IA:60, ETE:40) 0L+0T+3P End Term Exam: 2 Hours

SN	List of Experiments	
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.	
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform.	
3	Linear filtering using convolution. Highly selective filters.	
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.	
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.	

Credit: 1.5

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-22: Machine Learning Lab

	OT+3P Max. Marks: 100(1A:60, E1E:40) End Term Exam: 2 Hours
SN	List of Experiments
1	Implement and demonstrate the FIND-Salgorithm for finding the most specific
	hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm output a description of the set of all hypotheses consistent with the training examples.
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample.
4	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
5	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
7	Write a program to construct aBayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
9	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

Max. Marks: 100(IA:60, ETE:40)

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-23: Python Lab

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 2 Hours

	List of Europin onto
SN	List of Experiments
1	Write a program to demonstrate basic data type in python.
2	Write a program to compute distance between two points taking input from the
	user
	Write a program add.py that takes 2 numbers as command line arguments and
	prints its sum.
3	Write a Program for checking whether the given number is an even number or
	not.
	Using a for loop, write a program that prints out the decimal equivalents of
	$1/2, 1/3, 1/4, \ldots, 1/10$
4	Write a Program to demonstrate list and tuple in python.
	Write a program using a for loop that loops over a sequence.
	Write a program using a while loop that asks the user for a number, and prints
	a countdown from that number to zero.
5	Find the sum of all the primes below two million.
	By considering the terms in the Fibonacci sequence whose values do not
	exceed four million, WAP to find the sum of the even-valued terms.
6	Write a program to count the numbers of characters in the string and store
	them in a dictionary data structure.
	Write a program to use split and join methods in the string and trace a
	birthday of a person with a dictionary data structure.
7	Write a program to count frequency of characters in a given file. Can you use
	character frequency to tell whether the given file is a Python program file, C
	program file or a text file?
	Write a program to count frequency of characters in a given file. Can you use
	character frequency to tell whether the given file is a Python program file, C
	program file or a text file?
	program me or a text me.
8	White a magnetic to which each line of a file in manager and a
0	Write a program to print each line of a file in reverse order.
	Write a program to compute the number of characters, words and lines in a
_	file.
9	Write a function nearly equal to test whether two strings are nearly equal. Two
	strings a and b are nearly equal when a can be generated by a single mutation
	on.
	Write function to compute gcd, lcm of two numbers. Each function shouldn't
	exceed one line.
10	Write a program to implement Merge sort.
	Write a program to implement Selection sort, Insertion sort.

Syllabus

III Year-VI Semester: B.Tech. Computer Science and Engineering

6CS4-24: Mobile Application Development Lab

Credit: 1.5	
0L+0T+3P	

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 2 Hours

01		
SN	List of Experiments	
1	To study Android Studio and android studio installation. Create "Hello World" application.	
2	To understand Activity, Intent, Create sample application with login module.(Check username and password).	
3	Design simple GUI application with activity and intents e.g. calculator.	
4	Develop an application that makes use of RSS Feed.	
5	Write an application that draws basic graphical primitives on the screen	
6	Create an android app for database creation using SQLite Database.	
7	Develop a native application that uses GPS location information	
8	Implement an application that writes data to the SD card.	
9	Design a gaming application	
10	Create an application to handle images and videos according to size.	

SEMESTER-VII & VIII

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering 4th Year – VII Semester

			THEO	RY							
SN	Categ ory	Course		Contact hrs/week			Marks				Cr
		Code	Title	L	<u>з/ w</u>	P	Exm Hrs	IA	ETE	Total	
1	PCC	7CS4-01	Internet of Things	3	0	0	3	30	120	150	3
2	OE		Open Elective - I	3	0	0	3	30	120	150	3
			Sub Total	6	0	0	6	60	240	300	6
			PRACTICAL &	SES	SION	IAL					
3	PCC	7CS4-21	Internet of Things Lab	0	0	4	2	60	40	100	2
4	PCC	7CS4-22	Cyber Security Lab	0	0	4	2	60	40	100	2
6	PSIT	7CS7-30	Industrial Training	1	0	0				125	2.5
7	PSIT	7CS7-40	Seminar	2	0	0				100	2
8	SODE CA	7CS8-00	Social Outreach, Discipline &Extra Curricular Activities							25	0.5
		Sub- Total			0	10	4	120	80	450	9
		TOTAL OF VII SEMESTER			0	10	10	180	320	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering 4th Year – VIII Semester

			THEO	RY							
SN	Categ ory	Course		Contact hrs/week			Marks				Cr
		Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PCC/ PEC	8CS4-01	Big Data Analytics	3	0	0	3	30	120	150	3
2	OE		Open Elective - II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0	6	60	240	300	6
				<u></u>	2101						
	1	1	PRACTICAL &	SES	SION	IAL		1	1	1	
3	PCC	8CS4-21	Big Data Analytics Lab	0	0	2	2	30	20	50	1
4	PCC	8CS4-22	Software Testing and Validation Lab	0	0	2	2	30	20	50	1
5	PSIT	8CS7-50	Project	3	0	0		210	140	350	7
6	SODE CA	8CS8-00	Social Outreach, Discipline &Extra Curricular Activities							25	0.5
			Sub- Total	0	0	4	4	120	80	475	9.5
	TOTAL OF VIII SEMESTER			6	0	4	10	180	320	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

Subject Code	Title	Subject Code	Title		
	Open Elective - I		Open Elective - II		
7AG6-60.1	Human Engineering and Safety	8AG6-60.1	Energy Management		
7AG6-60.2	Environmental Engineering and Disaster Management	8AG6-60.2	Waste and By-product Utilization		
7AN6-60.1	Aircraft Avionic System	8AN6-60.1	Finite Element Methods		
7AN6-60.2	Non-Destructive Testing	8AN6-60.2	Factor of Human Interactions		
7CH6-60.1	Optimization Techniques	8CH6-60.1	Refinery Engineering Design		
7CH6-60.2	Sustainable Engineering	8CH6-60.2	Fertilizer Technology		
7CR6-60.1	CR6-60.1 Introduction to Ceramic Science & Technology		Electrical and Electronic Ceramics		
7CR6-60.2	Plant, Equipment and Furnace Design	8CR6-60.2	Biomaterials		
7CE6-60.1	Environmental Impact Analysis	8CE6-60.1	Composite Materials		
7CE6-60.2	Disaster Management	8CE6-60.2	Fire and Safety Engineering		
7EE6-60.1	Electrical Machines and Drives	8EE6-60.1	Energy Audit and Demand sic Management		
7EE6-60.2	Power Generation Sources.	8EE6-60.2	Soft Computing		
7EC6-60.1	Principle of Electronic communication	8EC6-60.1	Industrial and Biomedical applications of RF Energy		
7EC6-60.2	Micro and Smart System Technology	8EC6-60.2	Robotics and control		
7ME6-60.1	Finite Element Analysis	8ME6-60.1	Operations Research		
7ME6-60.2	Quality Management	8ME6-60.2	Simulation Modeling and Analysis		
7MI6-60.1	Rock Engineering	8MI6-60.1	Experimental Stress Analysis		
7MI6-60.2	Mineral Processing	8MI6-60.2	Maintenance Management		
7PE6-60.1	Pipeline Engineering	8PE6-60.1	Unconventional Hydrocarbon Resources		
7PE6-60.2	Water Pollution control Engineering	8PE6-60.2	Energy Management & Policy		
7TT6-60.1	Technical Textiles	8TT6-60.1	Material and Human Resource Management		
7TT6-60.2	Garment Manufacturing Technology	8TT6-60.2	Disaster Management		

Scheme & Syllabus

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

7CS4-01: Internet of Things

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120)

3L+0T+0P End Term Exam:			
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction to IoT: Definition and characteristics of IoT, Design of IOT: Physical design of IOT, Logical Design of IOT- Functional Blocks, communication models, communication APIs, IOT enabling Technologies- Wireless Sensor Networks, Cloud computing, big data analytics, embedded systems. IOT Levels and deployment templates.	08	
3	IoT Hardware and Software: Sensor and actuator, Humidity sensors, Ultrasonic sensor, Temperature Sensor, Arduino, Raspberry Pi, LiteOS, RIoTOS, Contiki OS, Tiny OS.	07	
4	Architecture and Reference Model: Introduction, Reference Model and architecture, Representational State Transfer (REST) architectural style, Uniform Resource Identifiers (URIs). Challenges in IoT- Design challenges, Development challenges, Security challenges, Other challenges.	08	
5	IOT and M2M: M2M, Difference and similarities between IOT and M2M, Software defined networks, network function virtualization, difference between SDN and NFV for IoT.	08	
6	Case study of IoT Applications: Domain specific IOTs- Home automation, Cities, environment, Energy, Retail, Logistics, Agriculture, Industry, Health and Lifestyles.	08	
	Total	40	

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

7CS4-21: Internet of Things Lab

	dit: 2 Max. Marks: 100(IA:60, ETE:40) 0T+4P End Term Exam: 2 Hours
SN	List of Experiments
1	Start Raspberry Pi and try various Linix commands in command terminal window: ls, cd, touch, mv, rm, man, mkdir, rmdir, tar, gzip, cat, more, less, ps, sudo, cron, chown, chgrp, ping etc.
2	 Run some python programs on Pi like: a) Read your name and print Hello message with name b) Read two numbers and print their sum, difference, product and division. c) Word and character count of a given string. d) Area of a given shape (rectangle, triangle and circle) reading shape and appropriate values from standard input.
3	 Run some python programs on Pi like: a) Print a name 'n' times, where name and n are read from standard input, using for and while loops. b) Handle Divided by Zero Exception. c) Print current time for 10 times with an interval of 10 seconds. d) Read a file line by line and print the word count of each line.
4	 a) Light an LED through Python program b) Get input from two switches and switch on corresponding LEDs c) Flash an LED at a given on time and off time cycle, where the two times are taken from a file.
5	 a) Flash an LED based on cron output (acts as an alarm) b) Switch on a relay at a given time using cron, where the relay's contact terminals are connected to a load. c) Get the status of a bulb at a remote place (on the LAN) through web.
	The student should have hands on experience in using various sensors like temperature, humidity, smoke, light, etc. and should be able to use control web camera, network, and relays connected to the Pi.

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

7CS4-22: Cyber Security Lab

Credit: 2 0L+0T+4P

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
1	Implement the following Substitution & Transposition Techniques concepts: a) Caesar Cipherb) Rail fence row & Column Transformation
2	Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript. Consider the end user as one of the parties (Alice) and the JavaScript application as other party (bob).
3	Implement the following Attack:a) Dictionary Attackb) Brute Force Attack
4	Installation of Wire shark, tcpdump, etc and observe data transferred in client server communication using UDP/TCP and identify the UDP/TCP datagram.
5	Installation of rootkits and study about the variety of options.
6	Perform an Experiment to Sniff Traffic using ARP Poisoning.
7	Demonstrate intrusion detection system using any tool (snort or any other s/w).
8	Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures.
	PROJECT: In a small area location such as a house, office or in a classroom, there is a small network called a Local Area Network (LAN). The project aims to transfer a file peer-to-peer from one computer to another computer in the same LAN. It provides the necessary authentication for file transferring in the network transmission. By implementing the Server-Client technology, use a File Transfer Protocol mechanism and through socket programming, the end user is able to send and receive the encrypted and decrypted file in the LAN. An additional aim of the project is to transfer a file between computers securely in LANs. Elements of security are needed in the project because securing the files is an important task, which ensures files are not captured or altered by anyone on the same network. Whenever you transmit files over a network, there is a good chance your data will be encrypted by encryption technique. Any algorithm like AES is used to encrypt the file that needs to transfer to another computer. The encrypted file is then sent to a receiver computer and will need to be decrypted before the user can open the file.

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

8CS4-01: Big Data Analytics

Credit:	3
3L+0T+	OP

Max. Marks: 150(IA:30, ETE:120)

3L+(3L+0T+0P End Term Exam: 3				
SN	Contents	Hours			
1	Introduction: Objective, scope and outcome of the course.	01			
2	Introduction to Big Data: Big data features and challenges, Problems with Traditional Large-Scale System, Sources of Big Data, 3 V's of Big Data, Types of Data. Working with Big Data: Google File System. Hadoop Distributed File System (HDFS) - Building blocks of Hadoop (Namenode. Data node. Secondary Namenode. Job Tracker. Task Tracker), Introducing and Configuring Hadoop cluster (Local. Pseudo- distributed mode, Fully Distributed mode). Configuring XML files.	10			
3	Writing MapReduce Programs: A Weather Dataset. Understanding Hadoop API for MapReduce Framework (Old and New). Basic programs of Hadoop MapReduce: Driver code. Mapper code, Reducer code. Record Reader, Combiner, Partitioner.	08			
4	Hadoop I/O: The Writable Interface. Writable Comparable and comparators. Writable Classes: Writable wrappers for Java primitives. Text. Bytes Writable. Null Writable, Object Writable and Generic Writable. Writable collections. Implementing a Custom Writable: Implementing a Raw Comparator for speed, Custom comparators.	08			
5	Pig: Hadoop Programming Made Easier Admiring the Pig Architecture, Going with the Pig Latin Application Flow. Working through the ABCs of Pig Latin. Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces, Scripting with Pig Latin.	07			
6	Applying Structure to Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive. Examining the Hive Clients. Working with Hive Data Types. Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data.	06			
	Total	40			

Office of Dean Academic Affairs Rajasthan Technical University, Kota

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

8CS4-21: Big Data Analytics Lab

Credit: 2 Max. Marks: 50(IA:30, ETE:20) 0L+0T+2P End Term Exam: 2 Hours SN List of Experiments 1 Implement the following Data structures in Java i) Linked Lists ii) Stacks iii) Queues iv) Set v) Map 2 Perform setting up and Installing Hadoop in its three operating modes: Standalone, Pseudodistributed, Fully distributed.

Implement the following file management tasks in Hadoop:

- Adding files and directories
- Retrieving files
 Delating files Uint: A typical U
 - Deleting files Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities.
- **4** Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
- Write a Map Reduce program that mines weather data. Weather sensors collecting data everyhour at many locations across the globe gather a large volume of log data, which is a goodcandidate for analysis with MapReduce, since it is semi structured and record-oriented.
- **6** Implement Matrix Multiplication with Hadoop Map Reduce
- 7 Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.
 9 Install and Run Hive then use Hive to create, alter, and drop databases,
- 8 Instantation Run Hive then use Hive to create, after, and drop databat tables, views, functions, and indexes.
- **9** Solve some real life big data problems.

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

8CS4-22: Software Testing and Validation Lab

Credit: 1			Max. M	larks:50 (IA:30, ETE:20)					
0L +	OT+2P		E	nd Term Exam: 2 Hours					
SN			List of Experiments						
1	a)	l perimeter of the circle. gram using JaButi Tool.							
	b)	1 0	n read the first name and bected result by using Jal	d last name from console BuTi.					
	c)			ers from the java console cients a,b, and c of a					
	d)) Write a program that reads commercial website URL from a url from file .you should expect that the URL starts with www and ends with .com. retrieve the name of the site and output it. For instance, if the user inputs www.yahoo.com, you should output yahoo. After that find the test cases and coverage using JaButi.							
	e)	Write a program for a o Def-use-graph.	calculator and find the te	est case and coverage and					
	f)	java console and output two. For example, if the	uts the number of chara he words are open and	nting passwords from the cter in the smaller of the sesame, then the output en. And test this program					
2	Analy	vse the performance of f	ollowing website using JI	Meter.					
		Site Amazon Flip kart Railway reservation	Website Amazon.com Flipkart.com Irctc.co.in	Type shopping shopping Ticket booking site					
3	Calcu	Train searching late the mutation score	Erail.in e of programs given in	Train searching 1(a) to 1 (f) using jumble					
-	Tool.		e er programo givon m						
4		late the coverage analy	sis of programs given in i	1 (a) to 1 (f) using					
		nma Free open source T							
		-							

Office of Dean Academic Affairs Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus

IV Year- VII Semester: B. Tech. (Computer Science & Engineering)

Ge	nerate Test sequences and	d validate using Selen	ium tool for given websites
bel	low:		
	Site	Website	Туре
	Amazon	Amazon.com	shopping
	Flip kart	Flipkart.com	shopping
	Railway reservation	Irctc.co.in	Ticket booking site
	Train searching	Erail.in	Train searching

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Syllabus and Scheme

B.Tech. in Computer Science (DS)

(2023-24)

SEMESTER-I & II

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	H	Hours			Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
			and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN										
	Course Introduction - Need, Basic Guidelines, Content and Process for									
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels									
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self (I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I', Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.									
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.									
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence									

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS								
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing								
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,								
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these								

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS								
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.								
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.								
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.								
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.								
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.								
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.								
	1								

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS							
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.							
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.							
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.							
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.							
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.							
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.							
	TOTAL							

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS								
1	Introduction to objective, scope and outcome the subject								
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.								
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.								
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.								
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.								
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation. 								

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output									
	statement.									
2.	Programs to learn data type, variables, If-else statement									
3.	Programs to understand nested if-else statement and switch statement									
4.	Programs to learn iterative statements like while and do-while loops									
5.	Programs to understand for loops for iterative statements									
6.	Programs to learn about array and string operations									
7.	Programs to understand sorting and searching using array									
8.	Programs to learn functions and recursive functions									
9.	Programs to understand Structure and Union operation									
10.	Programs to learn Pointer operations									
11.	Programs to understand File handling operations									
12.	Programs to input data through Command line argument									

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:								
	a) Ranging and Fixing of Survey Station along straight line and across								
	obstacles.								
	b) Laying perpendicular offset along the survey line								
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and								
	Prismatic compass								
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level								
a) To determine the reduced levels in closed circuit.									
	b) To carry out profile levelling and plot longitudinal and cross sections								
	for road by Height of Instrument and Rise & Fall Method.								
4.	To study and take measurements using various electronic surveying								
	instruments like EDM, Total Station etc.								
5.	To determine pH, hardness and turbidity of the given sample of water.								
6.	To study various water supply Fittings.								
7.	To determine the pH and total solids of the given sample of sewage.								
8.	To study various Sanitary Fittings.								

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS								
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.								
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.								
3	 Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations. 								
4	Partial Differential Equations - First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.								
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.								

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (AI) 2nd Year - III Semester

			THEO	RY							
SN	Categ ory	teg Course		Contact hrs/week			Marks				Cr
		Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CAI2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3CAI1-02/ 3CAI1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3CAI3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3CAI4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3CAI4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3CAI4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
											•
			PRACTICAL &	SESS	ION	AL					
7		3CAI4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
8	PCC	3CAI4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
9		3CAI4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
10		3CAI4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
11	PSIT	3CAI7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3CAI8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	13					7.5
	TOTAL OF III SEMESTER					13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Office of Dean Academic Affairs Rajasthan Technical University, Kota

SEMESTER-III & IV

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (Data Science) 2nd Year - III Semester

			THEOR	RY							
ON	Orter		Course		Contact						
SN	Categ ory	Orde	Title	hr	hrs/week		_	Ma	arks		Cr
		Code	litte	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CDS2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3CDS1-02/ 3CDS1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3CDS3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3CDS4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3CDS4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3CDS4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
			PRACTICAL & S	SESS	ION	AL					
7		3CDS4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
8	PCC	3CDS4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
9	-	3CDS4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
10	-	3CDS4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
11	PSIT	3CDS7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3CDS8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	13					7.5
		тс	DTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Syllabus of UNDERGRADUATE DEGREE COURSE

Computer Science and Engineering (Data Science)

Rajasthan Technical University, Kota Effective from session: 2022 – 2023

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS2-01: Advanced Engineering Mathematics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Random Variables: Discrete and Continuous random variables, Joint distribution, Probability distribution function, conditional distribution.Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis.	7
2	Binomial distribution , Normal Distribution, Poisson Distribution and their relations, Uniform Distribution, Exponential Distribution. Correlation: Karl Pearson's coefficient, Rank correlation. Curve fitting. Line of Regression.	5
3	Historical development , Engineering Applications of Optimization, Formulation of Design Problems as a Mathematical Programming Problems, Classification of Optimization Problems	8
4	Classical Optimization using Differential Calculus: Single Variable and Multivariable Optimization with & without Constraints, Langrangian theory, Kuhn Tucker conditions	6
5	Linear Programming: Simplex method, Two Phase Method and Duality in Linear Programming. Application of Linear Programming: Transportation and Assignment Problems.	14
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS1-02/4CDS1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS1-03/ 4CDS1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS3-04: Digital Electronics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Fundamental concepts: Number systems and codes, Basic logic Gates and Boolean algebra: Sign & magnitude representation, Fixed point representation, complement notation, various codes & arithmetic in different codes & their inter conversion. Features of logic algebra, postulates of Boolean algebra.Theorems of Boolean algebra.	8
2	Minimization Techniques and Logic Gates: Principle of Duality - Boolean expression -Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization.	8
3	Digital Logic Gate Characteristics: TTL logic gate characteristics. Theory & operation of TTL NAND gate circuitry. Open collector TTL. Three state output logic. TTL subfamilies.MOS& CMOS logic families. Realization of logic gates in RTL, DTL, ECL, C-MOS & MOSFET.	8
4	Combinational Circuits: Combinational logic circuit design, adder, subtractor, BCD adder encoder, decoder, BCD to 7-segment decoder, multiplexer demultiplexer.	
5	Sequential Circuits: Latches, Flip-flops - SR, JK, D, T, and Master-Slave Characteristic table and equation,counters and their design, Synchronous counters – Synchronous Up/Down counters – Programmable counters – State table and state transition diagram ,sequential circuits design methodology. Registers –shift registers.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-05: Data Structures and Algorithms

Credit-3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.	8
2	Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues. Linked Lists:Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list.	10
3	Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.	7
4	Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.	7
5	Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms.Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-06: Object Oriented Programming

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction to different programming paradigm, characteristics of OOP, Class, Object, data member, member function, structures in C++, different access specifiers, defining member function inside and outside class, array of objects.	8
2	Concept of reference, dynamic memory allocation using new and delete operators, inline functions, function overloading, function with default arguments, constructors and destructors, friend function and classes, using this pointer.	8
3	Inheritance, types of inheritance, multiple inheritance, virtual base class, function overriding, abstract class and pure virtual function	9
4	Constant data member and member function, static data member and member function, polymorphism, operator overloading, dynamic binding and virtual function	9
5	Exception handling, Template, Stream class, File handling.	6
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-07: Software Engineering

Credit-3
3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction, software life-cycle models, software requirements specification, formal requirements specification, verification and validation.	8
2	Software Project Management: Objectives, Resources and their estimation, LOC and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project scheduling.	8
3	Requirement Analysis: Requirement analysis tasks, Analysis principles. Software prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured Analysis: Data and control flow diagrams, control and process specification behavioral modeling	8
4	Software Design: Design fundamentals, Effective modular design: Data architectural and procedural design, design documentation.	8
5	Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling. Object Oriented Design: OOD concepts, Class and object relationships, object modularization, Introduction to Unified Modeling Language	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-21: Data Structures and Algorithms Lab

Credit-1.5 0L+0T+3P

Max. Marks :100 (IA:60, ETE:40)

SN	CONTENTS
1	Write a simple C program on a 32 bit compiler to understand the concept of array storage, size of a word. The program shall be written illustrating the concept of row major and column major storage. Find the address of element and verify it with the theoretical value. Program may be written for arrays up to 4-dimensions.
2	Simulate a stack, queue, circular queue and dequeue using a one dimensional array as storage element. The program should implement the basic addition, deletion and traversal operations.
3	Represent a 2-variable polynomial using array. Use this representation to implement addition of polynomials
4	Represent a sparse matrix using array. Implement addition and transposition operations using the representation.
5	Implement singly, doubly and circularly connected linked lists illustrating operations like addition at different locations, deletion from specified locations and traversal.
6	Repeat exercises 2, 3 & 4 with linked structure.
7	Implementation of binary tree with operations like addition, deletion, traversal.
8	Depth first and breadth first traversal of graphs represented using adjacency matrix and list.
9	Implementation of binary search in arrays and on linked Binary Search Tree.
10	Implementation of different sorting algorithm like insertion, quick, heap, bubble and many more sorting algorithms.

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-22 : Object Oriented Programming Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS			
1	Understand the basics of C++ library, variables, data input-output.			
2	C++ program using with the concept of structures.			
3	Implement class and object concepts and function overloading.			
4	Write programs to understand dynamic memory allocation and array of objects.			
5	Program to understand different types of constructors and destructor.			
6	Implement friend function to access private data of a class and usage of this			
6	pointer.			
7	Write programs to understand the usage of constant data member and member			
1	function, static data member and member function in a class.			
8	Implement different types of inheritance, function overriding and virtual			
0	function			
9	Implement Operator overloading concepts.			
10	Write programs to understand function template and class template.			
11	Write programs to understand exception handling techniques.			
12	Write programs to understand file handling techniques.			

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-23: Software Engineering Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
	Development of requirements specification, function oriented design using SA/SD, object-oriented design using UML, test case design, implementation using Java and testing. Use of appropriate CASE tools and other tools such as
1	configuration management tools, program analysis tools in the software life cycle.
•	Develop Software Requirements Specification (SRS) for a given problem in IEEE
2	template.
3	Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.
4	Develop structured design for the DFD model developed.
5	Developed all Structure UML diagram of the given project.
6	Develop Behavior UML diagram of the given project.
7	Manage file, using ProjectLibre project management software tool.

Credit-1.5 0L+0T+3P Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (Data Science)

3CDS4-24: Digital Electronics Lab

Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
1	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also
	to verify truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gateswith 2, 3,
	& 4 inputs).
•	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized usingNAND&
2	NOR gates.
3	To realize an SOP and POS expression.
	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR
4	gatesand to verify their truth tables.
F	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor&
5	basic Full Adder/ Subtractor.
	To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize
6	the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer
6	and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4
	demultiplexer.
7	Design & Realize a combinational circuit that will accept a 2421 BCD code and
1	drive a TIL -312 seven-segment display.
8	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without
ð	clock signal and verify their truth table.
9	Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary
9	counter and ring counter for a particular output pattern using D flip flop.
	Perform input/output operations on parallel in/Parallel out and Serial in/Serial
	out registers using clock. Also exercise loading only one of multiple values into
10	the register using multiplexer. Note: As far as possible, the experiments shall be
	performed on bread board. However, experiment Nos. 1-4 are to be performed on
	bread board only.

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (Data Science) 2nd Year - IV Semester

			THEOR	Y							
SN	Categ		Course	Contact Marks hrs/week				Cr			
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4CDS2-01	Discrete Mathematics Structure	3	0	0	3	30	70	100	3
2	HSMC	4CDS1-03/ 4CDS1-02	Managerial Economics and Financial Accounting /Technical	2	0	0	2	30	70	100	2
3	ESC	4CDS3-04	Communication Microprocessor & Interfaces	3	0	0	3	30	70	100	3
4		4CDS4-05	Database Management System	3	0	0	3	30	70	100	3
5	PCC	4CDS4-06	Theory of Computation	3	0	0	3	30	70	100	3
6		4CDS4-07	Data Communication and Computer Networks	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
			PRACTICAL & S	FCCI		<u>л т</u>					
7		4CDS4-21	Microprocessor & Interfaces Lab	0	0	2		60	40	100	1
8	PCC	4CDS4-22	Database Management System Lab	0	0	3		60	40	100	1.5
9		4CDS4-23	Network Programming Lab	0	0	3		60	40	100	1.5
10		4CDS4-24	Linux Shell Programming Lab	0	0	2		60	40	100	1
11		4CDS4-25	Java Lab	0	0	2		60	40	100	1
12	SODE CA	4CDS8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		TOT	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS2-01: Discrete Mathematics Structure

Credit:	3
21 . 07	۸Ъ

Max. Marks: 100(IA:30, ETE:70)

3L+(OT+OP End Term Exam: 3	B Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	 Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality (Inclusion-Exclusion & Addition Principles) Venn Diagrams, proofs of some general identities on sets. Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem. Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction. Composition of Functions. The Pigeonhole and Generalized Pigeonhole Principles. 	7
3	Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2 way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.	8
4	Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions.	8
5	Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.	8
6	Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching, vertex/edge covering.	8
	Office of Dean Academic Afai	^{rs} 40

Rajasthan Technical University, Kota

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS1-03/3CDS1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS1-02/3CDS1-02: Technical Communication

Credit-2 2L+0T+0P Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS3-04: Microprocessor & Interfaces

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SL+01+0P End Term Exam: 5 H		5 nouis
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Microprocessors, microcontroller; 8085 Microprocessor Architecture, pin description, Bus concept and organization; concept of multiplexing and de-multiplexing of buses; concept of static and dynamic RAM, type of ROM, memory map.	7
3	Software architecture registers and signals, Classification of instruction, Instruction set, addressing modes, Assembly Language Programming and Debugging, Programming Technique, instruction Format and timing.	8
4	Advance Assembly Language Programming, Counter and time delay; types of Interrupt and their uses, RST instructions and their uses, 8259 programmable interrupt controller; Macros, subroutine; Stack- implementation and uses with examples; Memory interfacing.	8
5	8085 Microprocessor interfacing:, 8255 Programmable Peripheral Interface, 8254 programmable interval timer, interfacing of Input/output device, 8279 Key board/Display interface.	8
6	Microprocessor Application: Interfacing scanned multiplexed display and liquid crystal display, Interfacing and Matrix Keyboard, MPU Design; USART 8251, RS232C and RS422A, Parallel interface- Centronics and IEEE 488.	8
	Total	40

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-05: Database Management System

Max. Marks: 100(IA:30, ETE:70)

3L+OT+OP End Term Exam: 3		
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	 Introduction to database systems: Overview and History of DBMS. File System v/s DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries in DBMS.Structure of a DBMS. Entity Relationship model: Overview of Data Design Entities, 	
	Attributes and Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key Constraints, Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation v/s ternary Relationship Conceptual Design for a Large Enterprise.	7
3	Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus.	
	SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL, ODBC and JDBC, Triggers and Active Databases.	8
4	Schema refinement and Normal forms: Introductions to Schema Refinement, Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-Decomposition into BCNF Decomposition into 3-NF.	8
5	Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent Executions. Need of Serializability, Conflict vs. View Serializability, Testing for Serializability, Recoverable Schedules, Cascadeless Schedules.	8
6	 Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-based protocols, Validation-based protocols, Deadlock handling, Database Failure and Recovery: Database Failures, Recovery 	8
	Schemes: Shadow Paging and Log-based Recovery, Recovery with Concurrent transactions. Total	
	Iotai	U T U

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

Credit: 3

4CDS4-06: Theory Of Computation

Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam: 3 H		
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Finite Automata & Regular Expression: Basic machine, Finite state machine, Transition graph, Transition matrix, Deterministic and non- deterministic finite automation, Equivalence of DFA and NDFA, Decision properties, minimization of finite automata, Mealy & Moore machines.	
	Alphabet, words, Operations, Regular sets, relationship and conversion between Finite automata and regular expression and vice versa, designing regular expressions, closure properties of regular sets, Pumping lemma and regular sets, Myhill- Nerode theorem, Application of pumping lemma, Power of the languages.	7
3	Context Free Grammars (CFG), Derivations and Languages, Relationship between derivation and derivation trees, leftmost and rightmost derivation, sentential forms, parsing and ambiguity, simplification of CFG, normal forms, Greibach and Chomsky Normal form , Problems related to CNF and GNF including membership problem.	8
4	Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA, Deterministic PDA, and Deterministic PDA and Deterministic CFL, The pumping lemma for CFL's, Closure Properties and Decision properties for CFL, Deciding properties of CFL.	8
5	Turing Machines: Introduction, Definition of Turing Machine, TM as language Acceptors and Transducers, Computable Languages and functions, Universal TM & Other modification, multiple tracks Turing Machine. Hierarchy of Formal languages: Recursive & recursively enumerable languages, Properties of RL and REL, Introduction of Context sensitive grammars and languages, The Chomsky Hierarchy.	8
6	Tractable and Untractable Problems: P, NP, NP complete and NP hard problems, Un-decidability, examples of these problems like vertex cover problem, Hamiltonian path problem, traveling sales man problem. Total	8 40
	Iotai	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-07: Data Communication and Computer Networks

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introductory Concepts: Network hardware, Network software, topologies, Protocols and standards, OSI model, TCP model, TCP/IP model, Physical Layer: Digital and Analog Signals, Periodic Analog Signals, Signal Transmission, Limitations of Data Rate, Digital Data Transmission, Performance Measures, Line Coding, Digital Modulation, Media and Digital Transmission System	7
3	Data Link Layer: Error Detection and Correction, Types of Errors, Two dimensional parity check, Detection verses correction, Block Coding, Linear Block Coding, Cyclic Codes, Checksum, Standardized Polynomial Code, Error Correction Methods, Forward Error Correction, Protocols: Stop and wait, Go-back-N ARQ, Selective Repeat ARQ, Sliding window, Piggy backing, Pure ALOHA, Slotted ALOHA, CSMA/CD, CSMA/CA	9
4	Network Layer: Design issues, Routing algorithms: IPV4, IPV6, Address mapping: ARQ, RARQ, Congestion control, Unicast, Multicast, Broadcast routing protocols, Quality of Service, Internetworking	8
5	Transport Layer: Transport service, Elements of transport protocols, User Datagram Protocol, Transmission Control Protocol, Quality of service, Leaky Bucket and Token Bucket algorithm	8
6	Application Layer: WWW, DNS, Multimedia, Electronic mail, FTP, HTTP, SMTP, Introduction to network security	7
	Total	40

Syllabus

II Year-

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-21: Microprocessor & Interfaces Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Add the contents of memory locations XX00 &XX01 & place the result in memory location XX02.
- 2. Add the 16 bit numbers stored in memory location & store the result in another memory location.
- 3. Transfer a block of data from memory location XX00 to another memory location XX00 in forward & reverse order.
- 4. Write a program to swap two blocks of data stored in memory.
- 5. Write a program to find the square of a number.
- 6. Write a main program and a conversion subroutine to convert Binary to its equivalent BCD.
- 7. Write a program to find largest & smallest number from a given array.
- 8. Write a program to Sort an array in ascending & descending order.
- 9. Write a program to multiply two 8 bit numbers whose result is 16 bit.
- 10. Write a program of division of two 8 bit numbers.
- 11. Generate square wave from SOD pin of 8085 & observe on CRO.
- 12. Write a program to perform traffic light control operation.
- 13. Write a program to control the speed of a motor.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-22: Database Management System Lab

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- 3. Write a SQL statement for implementing ALTER, UPDATE and DELETE.
- 4. Write the queries to implement the joins.
- 5. Write the query for implementing the following functions: MAX (), MIN (), AVG () and COUNT ().
- 6. Write the query to implement the concept of Integrity constrains.
- 7. Write the query to create the views.
- 8. Perform the queries for triggers.
- 9. Perform the following operation for demonstrating the insertion , updation and deletion
- 10.Using the referential integrity constraints.
- 11.Write the query for creating the users and their role.

Data Base Designing Project:

For better understanding students (group of 3-4 students) should design data base for any data base project, understand the requirement and design methodology of project by its own.

Some example of data base design project like:

College management system, Inventory management system and Hospital management system.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-23: Network Programming Lab

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Study of Different Type of LAN& Network Equipments.
- 2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- 3. LAN installations and Configurations.
- 4. Write a program to implement various types of error correcting techniques.
- 5. Write a program to implement various types of framing methods.
- 6. Write two programs in C: hello_client and hello_server
 - a. The server listens for, and accepts, a single TCP connection; it reads all the data it can from that connection, and prints it to the screen; then it closes the connection
 - b. The client connects to the server, sends the string "Hello, world!", then closes the connection
- 7. Write an Echo_Client and Echo_server using TCP to estimate the round trip time from client to the server. The server should be such that it can accept multiple connections at any given time.
- 8. Repeat Exercises 6 & 7 for UDP.
- 9. Repeat Exercise 7 with multiplexed I/O operations.
- 10. Simulate Bellman-Ford Routing algorithm in NS2.

Office of Dean Academic Affairs

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-24: Linux Shell Programming Lab

Max. Marks: 100(IA:60, ETE:40)

0L+(0T+2P
List	of Experiments:
1.	Use of Basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch,
	file, wc, sort, cut, grep, dd, dfspace, du, ulimit.
2.	Commands related to inode, I/O redirection and piping, process control
	commands, mails.
3.	Shell Programming: Shell script based on control structure- If-then-fi, if-then-
	else-if, nested if-else, to find:
	3.1 Greatest among three numbers.
	3.2 To find a year is leap year or not.
	3.3 To input angles of a triangle and find out whether it is valid triangle or not.
	3.4 To check whether a character is alphabet, digit or special character.
	3.5 To calculate profit or loss.
4.	Shell Programming - Looping- while, until, for loops
	4.1 Write a shell script to print all even and odd number from 1 to 10.
	4.2 Write a shell script to print table of a given number
	4.3 Write a shell script to calculate factorial of a given number.
	4.4 Write a shell script to print sum of all even numbers from 1 to 10.
	4.5 Write a shell script to print sum of digit of any number.
5.	Shell Programming - case structure, use of break
	5.1 Write a shell script to make a basic calculator which performs addition,
	subtraction,
	Multiplication, division
	5.2 Write a shell script to print days of a week.
	5.3 Write a shell script to print starting 4 months having 31 days.
6.	Shell Programming - Functions
	6.1 Write a shell script to find a number is Armstrong or not.
	6.2 Write a shell script to find a number is palindrome or not.
	6.3 Write a shell script to print Fibonacci series.
	6.4 Write a shell script to find prime number.
	6.5 Write a shell script to convert binary to decimal and decimal to binary
7.	Write a shell script to print different shapes- Diamond, triangle, square,
	rectangle, hollow square etc.
8.	Shell Programming – Arrays
	8.1 Write a C program to read and print elements of array.
	8.2 Write a C program to find sum of all array elements.
	8.3 Write a C program to find reverse of an array.
	8.4 Write a C program to search an element in an array.
	8.5 Write a C program to sort array elements in ascending or descending order.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Credit: 1

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (Data Science)

4CDS4-25: Java Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

List of Experiment: 1. Develop an in depth understanding of programming in Java: data types, variables, operators, operator precedence, Decision and control statements, arrays, switch statement, Iteration Statements, Jump Statements, Using break, Using continue, return. 2. Write Object Oriented programs in Java: Objects, Classes constructors, returning and passing objects as parameter, Inheritance, Access Control, Using super, final with inheritance Overloading and overriding methods, Abstract classes, Extended classes. 3. Develop understanding to developing packages & Interfaces in Java: Package, concept of CLASSPATH, access modifiers, importing package, Defining and implementing interfaces. 4. Develop understanding to developing Strings and exception handling: String constructors, special string operations, character extraction, searching and comparing strings, string Buffer class. Exception handling fundamentals, Exception types, uncaught exceptions, try, catch and multiple catch statements. Usage of throw, throws and finally. 5. Develop applications involving file handling: I/O streams, File I/O. 6. Develop applications involving concurrency: Processes and Threads, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Joins, and Synchronization. **Indicative List of exercises:** 7. Programs to demonstrate basic concepts e.g. operators, classes, constructors, control & iteration statements, recursion etc. such as complex arithmetic, matrix arithmetic, tower of Hanoi problem etc. 8. Development of programs/projects to demonstrate concepts like inheritance, exception handling, packages, interfaces etc. such as application for electricity department, library management, ticket reservation system, payroll system etc. 9. Development of a project to demonstrate various file handling concepts. 10. Develop applications involving Applet: Applet Fundamentals, using paint method and drawing polygons. It is expected that each laboratory assignments to given to the students with an aim to In order to achieve the above objectives.

SEMESTER-V & VI

Syllabus

III Year-V Semester: Computer Science & Engineering (Data Science)

5CDS-01: Data Mining-Concepts and Techniques

Credit 2L+0T	
Cours	se Objectives:
	To introduce the fundamental processes data warehousing and major issues in
	data mining
2.	To impart the knowledge on various data mining concepts and techniques that can be applied to text mining, web mining etc.
3.	To develop the knowledge for application of data mining and social impacts of data mining.
Cours	se Outcomes: After completion of the course, students would be able to:
1.	Interpret the contribution of data warehousing and data mining to the decision- support systems.
2.	Prepare the data needed for data mining using preprocessing techniques.
3.	Extract useful information from the labeled data using various classifiers.
4.	Compile unlabeled data into clusters applying various clustering algorithms.
5.	Discover interesting patterns from large amounts of data using Association Rule Mining
6.	Demonstrate capacity to perform a self-directed piece of practical work that requires the application of data mining techniques.
Detai	iled Syllabus: (per session plan)
UNIT	Contents
1	Introduction to Data Mining: Introduction to data mining-Data mining functionalities-Steps in data mining process- Classification of data mining systems, Major issues in data mining. Data Wrangling and Preprocessing: Data Preprocessing: An overview-Data cleaning-Data transformation and Data discretization
2	Predictive Modeling: General approach to classification-Decision tree induction- Bayes classification methods- advanced classification methods: Bayesian belief networks- Classification by Backpropagation- Support Vector Machines-Lazy learners
3	Descriptive Modeling: Types of data in cluster analysis-Partitioning methods- Hierarchical methods-Advanced cluster analysis: Probabilistic model-based clustering- Clustering high- dimensional data-Outlier analysis
4	Discovering Patterns and Rules: Frequent Pattern Mining: Basic Concepts and a Road Map - Efficient and scalable frequent item set mining methods: Apriori algorithm, FP-Growth algorithm- Mining frequent itemsets using vertical data format- Mining closed and max patterns- Advanced Pattern Mining: Pattern Mining in Multilevel, Multidimensional Space
5	Data Mining Trends and Research Frontiers: Other methodologies of data mining: Web mining- Temporal mining-Spatial mining-Statistical data mining- Visual and audio data mining- Data mining applications- Data mining and society: Ubiquitous and invisible data mining- Privacy, Security, and Social Impacts of data mining

Syllabus

III Year-V Semester: Computer Science & Engineering (Data Science)

TEXT BOOKS:

- 1. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, third edition ,2013
- 2. Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar, Introduction to Data Mining, second edition, Pearson, 2019

REFERENCE BOOKS:

- 1. Ian.H.Witten, Eibe Frank and Mark.A.Hall, Data Mining:Practical Machine Learning Tools and Techniques,third edition, 2017
- 2. Alex Berson and Stephen J. Smith, Data Warehousing, Data Mining & OLAP, Tata McGraw Hill Edition, Tenth Reprint, 2008.
- 3. Hand, D., Mannila, H. and Smyth, P. Principles of Data Mining, MIT Press: Massachusets. third edition, Pearson, 2013

Syllabus

B.Tech.: Computer Science & Engineering (Data Science)

5CDS-02: Compiler Design

Credit: 3

Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam		n: 3 Hours
SN	SN Contents	
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction: Objective, scope and outcome of the course. Compiler, Translator, Interpreter definition, Phase of compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling.	06
3	Review of CFG Ambiguity of grammars: Introduction to parsing. Top down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, Bottom up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of automatic parser generator: YACC error handling in LR parsers.	10
4	Syntax directed definitions; Construction of syntax trees, S- Attributed Definition, L-attributed definitions, Top down translation. Intermediate code forms using postfix notation, DAG, Three address code, TAC for various control structures, Representing TAC using triples and quadruples, Boolean expression and control structures.	10
5	Storage organization; Storage allocation, Strategies, Activation records, Accessing local and non-local names in a block structured language, Parameters passing, Symbol table organization, Data structures used in symbol tables.	08
6	Definition of basic block control flow graphs; DAG representation of basic block, Advantages of DAG, Sources of optimization, Loop optimization, Idea about global data flow analysis, Loop invariant computation, Peephole optimization, Issues in design of code generator, A simple code generator, Code generation from DAG.	07
	Total	42

Syllabus

B.Tech.: Computer Science & Engineering (Data Science)

5CDS-03: Operating System

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction and History of Operating systems: Structure and operations; processes and files Processor management: inter process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling and algorithms, critical sections, threads, multithreading	04
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study	05
4	 Deadlock: Shared resources, resource allocation and scheduling, resource graph models, deadlock detection, deadlock avoidance, deadlock prevention algorithms Device management: devices and their characteristics, device drivers, device handling, disk scheduling algorithms and policies 	15
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication	07
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS	08
6		

Syllabus

B.Tech.: Computer Science & Engineering (Data Science)

5CDS-04: Data visualization- R Programming/ Power BI

Credit: 3 Max. Marks: 100(IA:30, B 3L+0T+0P End Term Exam:	
SN Contents	Hours
1 Introduction: Objective, scope and outcome of the course.	01
2 Introduction to Data Science and Data Visualization: Data Science Introduction: Concepts, lifecycle, applications Role of Data Visualization in Analysis and Decision Making Basics of R Programming: Variables, data types, operators Data Visualization Fundamentals: Principles, visualization types.	07
3 Data Preprocessing and EDA with R: Data Collection and Sources: Structured, unstructured, web scraping Data Cleaning: Handling missing data, outliers Data Transformation Techniques: Normalization, standardization, encoding Exploratory Data Analysis (EDA): Univariate, bivariate, multivariate analysis Advanced EDA Plotting: ggplot2 for customized visualizations, faceting, distributions.	10
4 Advanced Data Analysis and Visualization with R: - Statistical Analysis: Descriptive stats, hypothesis testing Data Visualization Libraries in R: ggplot2 Machine Learning Concepts: Introduction to ML, basic models in R R Shiny: Building interactive web applications.	08
5 Power BI for Data Visualization and Dashboard Creation: Introduction to Power BI: Interface, data connection, roles Creating Basic Visualizations: Bar charts, line charts, scatter plots Building Interactive Dashboards: Design principles, combining visualizations Effective Data Storytelling using Power BI.	08
6 Advanced Data Visualization and Integration: Advanced Visualization Techniques in R Integrating R with Power BI: Using R scripts and calculations Data Visualization Ethics and Best Practices Capstone Project: Applying skills using R and Power BI.	08
Total	41

Textbooks

- R for Data Science by Hadley Wickham and Garrett Grolemund
- Hands-On Data Visualization with R by Claus O. Wilke
- Power BI for Data Science by Ryan Sleeper
- Data Visualization with Power BI by Daniel Murray
- Data Storytelling with Power BI by Anupam Jain

Reference Books

- The Visual Display of Quantitative Information by Edward Tufte
- Data Visualization: A Practical Introduction by Kieran Healy
- The Functional Art of Data Visualization by Alberto Cairo
- Storytelling with Data by Cole Nussbaumer Knaflic
- Information Visualization: Perception for Design by Colin Ware

Syllabus

B.Tech.: Computer Science & Engineering (Data Science)

5CDS-05: Analysis of Algorithms

•	Credit: 3 Max. Marks: 100(IA:30, I 3L+0T+0P End Term Exam:	
Hours	Contents	
01	Introduction: Objective, scope and outcome of the course.	
06	Background : Review of Algorithm, Complexity Order Notations: definitions and calculating complexity.	
08	Divide And Conquer Method : Binary Search, Merge Sort, Quick sort and Strassen's matrix multiplication algorithms.	
10	Greedy Method : Knapsack Problem, Job Sequencing, Optimal Merge Patterns and Minimal Spanning Trees.	
	Dynamic Programming : Matrix Chain Multiplication. Longest Common Subsequence and 0/1 Knapsack Problem.	
08	Branch And Bound : Traveling Salesman Problem and Lower Bound Theory. Backtracking Algorithms and queens problem.	
	Pattern Matching Algorithms : Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms.	
	Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem.	
08	Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multi commodity flow, Flow shop scheduling and Network capacity assignment problems.	
08	Problem Classes Np, Np-Hard And Np-Complete: Definitions of P, NP-Hard and NP-Complete Problems. Decision Problems. Cook's Theorem. Proving NP- Complete Problems - Satisfiability problem and Vertex Cover Problem. Approximation Algorithms for Vertex Cover and Set Cover Problem.	
41	Total	

Syllabus

B.Tech.: Computer Science & Engineering (Data Science)

5CDS-11: Fundamentals of Block chain

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. The students should be able to understand a broad overview of the essential concepts of block chain technology.
- 2. To familiarize students with Bitcoin protocol followed by the Ethereum protocol to lay the foundation necessary for developing applications and programming.
- 3. Students should be able to learn about different types of block chain and consensus algorithms.

Course Outcomes: After completion of the course, students would be able to:

- 1. To explain the basic notion of distributed systems.
- 2. To use the working of an immutable distributed ledger and trust model that defines block chain.
- 3. To illustrate the essential components of a block chain platform.

Detailed Syllabus: (per session plan)

UNIT	Contents
1	Basics: The Double-Spend Problem, Byzantine Generals' Computing Problems, Public-Key Cryptography, Hashing, Distributed Systems, Distributed Consensus.
2	Technology Stack: Block chain, Protocol, Currency. Bitcoin Block chain: Structure, Operations, Features, Consensus Model, Incentive Model
3	Ethereum Block chain: Smart Contracts, Ethereum Structure, Operations, Consensus Model, Incentive Model.
4	Tiers of Block chain Technology: Block chain 1.0, Block chain 2.0, Block chain 3.0, Types of Block chain: Public Block chain, Private Block chain, Semi-Private Block chain, Sidechains.
5	Types of Consensus Algorithms: Proof of Stake, Proof of Work, Delegated Proof of Stake, Proof Elapsed Time, Deposite-Based Consensus, Proof of Importance, Federated Consensus or Federated Byzantine Consensus, Practical Byzantine Fault Tolerance. Block chain Use Case: Supply Chain Management.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Syllabus B.Tech.: Computer Science & Engineering (Data Science)

TEXT BOOKS:

- 1. Kirankalyan Kulkarni, Essentials of Bitcoin and Blockchain, Packt Publishing.
- 2. Anshul Kaushik, Block Chain & Crypto Currencies, Khanna Publishing House.
- 3. Tiana Laurence, Blockchain for Dummies, 2nd Edition 2019, John Wiley & Sons.
- 4. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks by Imran Bashir, Packt Publishing (2017).

REFERENCE BOOKS:

- 1. Blockchain: Blueprint for a New Economy by Melanie Swan, Shroff Publisher O'Reilly Publisher Media; 1st edition (2015).
- 2. Mastering Bitcoin: Programming the Open Blockchain by Andreas Antonopoulos.

Syllabus

5CDS-12: Probability and Statistics for Data Science

redit: L+0T+	
	To provide advanced statistical background for analyzing data and drawing inferences from that analysis. Predictive Analytics using linear and generalized linear models.
Outco	
	completion of the course, students would be able to:
•	Students will be able to learn advanced statistical techniques and apply them to the analysis of real data sets from different fields.
	ed Syllabus: (per session plan)
UNIT	Contents
1	Descriptive Statistics:
	a) Measures of Central Tendencies – Grouped and Ungrouped Data; Mean, Sample Mean– Weighted mean; Median, Quartiles, b) Deciles and Percentiles, Box plot, Mode Measures of Variability– Dispersion, Range, Standard deviation, Population v/s sample variance and standard deviation, Skewness, Kurtosis.
2	Introduction to Probability and Sampling distribution:
	a) Methods of Assigning probabilities, Probability Space, conditions of probability model, Events, simple and compound, Laws of probability Probability density function, Cumulative distribution function, Expected values of Mean and Variance. Marginal, union, joint and conditional probabilities, Bayes' Theorem b) Random variables, discrete and continuous distributions, Expectation, moments of a distribution, Binomial, Poisson uniform, and normal distributions, Normal approximation to the binomia distribution, Distributions of several random variables, moments of join distributions, independence, covariance, correlation coefficient, Centra Limit Theorem.
3	 Hypothesis Testing: a) Large Sample estimation of the population parameters and Hypothesis testing: Basics of Estimating the populations mean and difference estimating the proportion and difference; large sample test for population mean, difference; large sample test for proportion, difference. b) Estimation of a population variance: Sampling distribution of variance estimation. c) Inferences from small sample: Student's t distribution; Small sample t test for following – A population mean, A difference between two means Confidence interval.
4	 Regression Model: a) least squares and linear regression: Introduction; Notation; Ordinary least squares; Regression to the mean; Linear regression; Residuals; Regression inference b) Multivariable regression: Multivariate regression; Multivariate examples Adjustment; Residual variation and diagnostics; Multiple variables Interaction Terms, Non-linear Transformations of the Predictors, Qualitative Predictors.

Syllabus

5	Generalized linear models:
	Logistic Regression, Binary outcomes,
	Count outcomes, Multiple Logistic
	Regression
	ANOVA/MANOVA: Chi-Square and Analysis of Variance, Multivariate
	analysis of variance Extension of regression analysis: Ridge Regression,
	The Lasso

Text Books:

1. An Introduction to Statistical Learning with application in R . Hastie T, Robert T. (2014). Springer Science Business Media: New York

Reference Books:

- 1. Statistics for Management, Seventh Edition, by Richard I. Levin, David S. Rubin, Pearson
- 2. An Introduction to Categorical Data Analysis. Agresti, A. (2012). John Wiley & sons
- 3. The Element of Statistical Learning, Data mining, Inference and Prediction. Hastie, T, Tibshirani, R, & Friedman, J. (2011). New York: Springer Series in Statistics.
- 4. Hair, Black, Babin, Anderson and Tatham (2009). Multivariate Data Analysis, Pearson

Syllabus

B.Tech.: Computer Science & Data Science

5CDS-13: Programming for Data Science

Credit:	2
2L+0T+	0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

1. To provide necessary knowledge on data manipulation and to perform analy	
1. To provide necessary knowledge on data manipulation and to perform analy	vsis on the
practical problems using statistical and machine learning approach	
2. To generate report and visualize the results in graphical form using program	nming tool
Expected Course Outcome:	0
1. Ability to gain basic knowledge on data science	
2. Convert the real time data into suitable form for analysis	
3. Gain the insights from the data through statistical inferences	
4. Develop suitable models using machine learning techniques and to analyze	its
performance	
5. Identify the requirement and visualize the results	
6. Analyze on the performance of the model and the quality of the results	
Unit:1 INTRODUCTION	4
	hours
Data Science: Introduction to Data Science – Digital Universe – Sources of Da	ta –
Information Commons	
 Data Science Project Life Cycle: OSEMN Framework 	
Unit:2 DATA PREPROCESSING & CONCEPT LEARNING	6
	hours
Introduction to Data Preprocessing – Reading, Selecting, Filtering Data – Filte	ring
Missing Values – Manipulating, Sorting, Grouping, Rearranging, Ranking Dat	0
Formulation of Hypothesis – Probabilistic Approximately Correct Learning - V	
Dimension – Hypothesis elimination – Candidate Elimination	С
	С
Algorithm	С
* =	C 8
Algorithm	
Algorithm	8 hours
Algorithm Unit:3 ESSENTIALS OF R	8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E	8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label	8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction	8 hours Engineering
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction	8 hours Ingineering 8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R	8 hours Ingineering 8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision Tage	8 hours Ingineering 8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision Tr Bayes, SVM and	8 hours Ingineering 8 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision T Bayes, SVM and Random Forest, Clustering Models – K Means and Hierarchical clustering Unit:5	8 hours Angineering 8 hours ree, Naïve 6 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision T Bayes, SVM and Random Forest, Clustering Models – K Means and Hierarchical clustering Unit:5 VISUALIZATION Data visualization: Box plot, histogram, scatter plot, heat map – Working with Ta	8 hours Angineering 8 hours ree, Naïve 6 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision T Bayes, SVM and Random Forest, Clustering Models – K Means and Hierarchical clustering Unit:5 VISUALIZATION Data visualization: Box plot, histogram, scatter plot, heat map – Working with Ta Outlier detection –	8 hours Angineering 8 hours ree, Naïve 6 hours
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision T Bayes, SVM and Random Forest, Clustering Models – K Means and Hierarchical clustering Unit:5 VISUALIZATION Data visualization: Box plot, histogram, scatter plot, heat map – Working with Ta Outlier detection – Data Balancing	8 hours Angineering 8 hours ree, Naïve 6 hours bleau –
Algorithm Unit:3 ESSENTIALS OF R R Basics - data types and objects - control structures – data frame -Feature E - scaling, Label Encoding and One Hot Encoding, Reduction Unit:4 MODEL FIT USING R Regression Models- Linear and Logistic Model, Classification Models – Decision T Bayes, SVM and Random Forest, Clustering Models – K Means and Hierarchical clustering Unit:5 VISUALIZATION Data visualization: Box plot, histogram, scatter plot, heat map – Working with Ta Outlier detection –	8 hours Angineering 8 hours ree, Naïve 6 hours

Syllabus

Loss Function and Error: Mean Squared Error, Root Mean Squared Error – Model Selection and Evaluation criteria: Accuracy, Precision, F1 score, Recall Score – Binary Predictive Classification – Sensitivity –

Specificity.

Text Book(s)

- 1. Ethem Alpaydin, Introduction to Machine Learning, Fourth Edition, MIT Press, 2020
- 2. Hadley Wickham, Garrett Grolemund, R for data science : Import, Tidy, Transform, Visualize, And Model Data Paperback, 2017

Reference Books

- 1. Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan Kaufmann. 2011
- Carl Shan, Henry Wang, William Chen, Max Song. The Data Science Handbook: Advice and Insight from 25 Amazing Data Scientists. The Data Science Bookshelf. 2016
- 3. James, G., Witten, D., T., Tibshirani, R. An Introduction to statistical learning with applications in R. Springer. 2013

Credit: 1

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

B.Tech.: Computer Science & Data Science

5CDS-21: R Programming Lab

Max. Marks:100 (IA:60, ETE:40) End Term Exam: 2 Hours

OT +	2P End Term Exam: 2 Hours
SN	List of Experiments
1	 Write R code to create variables and assign values to them. Use R operators to perform basic mathematical operations.
2	• Use control flow statements to create conditional and iterative statements.
3	Write R functions to perform common tasks.Import and export data from various sources.
4	Clean and wrangle data to remove errors and inconsistencies.
5	Summarize data using descriptive statistics.
6	Create basic visualizations using R, such as bar charts, line charts, and scatte plots.
7	Create advanced visualizations using R, such as heatmaps, tree maps, and interactive visualizations.
8	Use R to build machine learning models.
9	Use R to create web applications.
10	Use R to work with big data.
11	Use R to deploy models in production.
12	Drawing three dimensional objects and Scenes
13	 Use R to automate tasks and improve efficiency. Collaborate with others on data analysis projects using R and Power BI.

Syllabus

B.Tech.: Computer Science & Data Science

5CDS-22: Compiler Design Lab

Max. Marks: 100 (IA:60, ETE:40)

+0T-	DT+2P End Term Exam: 2 Ho	
SN	List of Experiments	
1	Introduction: Objective, scope and outcome of the course.	
2	To identify whether given string is keyword or not.	
3	Count total no. of keywords in a file. [Taking file from user]	
4	Count total no of operators in a file. [Taking file from user]	
5	Count total occurrence of each character in a given file. [Taking file from user]	
6	Write a C program to insert, delete and display the entries in Symbol Table.	
7	 Write a LEX program to identify following: 1. Valid mobile number 2. Valid url 3. Valid identifier 4. Valid date (dd/mm/yyyy) 5. Valid time (hh:mm:ss) 	
8	Write a lex program to count blank spaces,words,lines in a given file.	
9	Write a lex program to count the no. of vowels and consonants in a C file.	
10	Write a YACC program to recognize strings aaab,abbb using a^nb^n, where b>=0.	
11	Write a YACC program to evaluate an arithmetic expression involving operators +,-,* and /.	
12	Write a YACC program to check validity of a strings abcd,aabbcd using gramma a^nb^nc^md^m, where n , m>0	
13	Write a C program to find first of any grammar.	

Credit: 1 0L+0T+2P

Syllabus

B.Tech.: Computer Science & Data Science

5CDS-23: Analysis of Algorithms Lab

Credit: 1 0L+0T+2P

Max. Marks: 100 (IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
1	Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
2	Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.
3	a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.
4	Implement 0/1 Knapsack problem using Dynamic Programming.
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.
6	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.
7	a. Print all the nodes reachable from a given starting node in a digraph using BFS method. b. Check whether a given graph is connected or not using DFS method.
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
9.	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
10	Implement N Queen's problem using Back Tracking.

B.Tech.: Computer Science & Data Science

5CDS-24: Advance Java Lab

Credit: 1 Max. Marks: 100 (IA:60, ETE: L+0T+2P End Term Exam: 2 Ho	
SN	List of Experiments
1	Introduction To Swing, MVC Architecture, Applets, Applications and Pluggable Look and Feel, Basic swing components : Text Fields, Buttons, Toggle Buttons, Checkboxes, and Radio Buttons
2	Java database Programming, java.sql Package, JDBC driver, Network Programming With java.net Package, Client and Server Programs, Content And Protocol Handlers
3	RMI architecture, RMI registry, Writing distributed application with RMI, Naming services, Naming And Directory Services, Overview of JNDI, Object serialization and Internationalization
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform, HTTP protocol, web application, Web containers and Application servers
5	Server side programming with Java Servlet, HTTP and Servlet, Servlet API, life cycle, configuration and context, Request and Response objects, Session handling and event handling, Introduction to filters with writing simple filter application
6	JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag Extension API, Tag handlers, JSP Fragments, Tag Files, JSTL, Core Tag library, overview of XML Tag library, SQL Tag library and Functions Tag library

Syllabus

Syllabus of

UNDERGRADUATE DEGREE COURSE

B.Tech. VI Semester

Computer Science & Engineering (Data Science)

Rajasthan Technical University, Kota Effective from session: 2021-22

Syllabus B.Tech.: Computer Science & Data Science

6CDS-01: Digital Image Processing

•	Credit: 2 Max. Marks: 100(IA:30, 2L+0T+0P End Term Exam:	
Hour		SN
01	Introduction: Objective, scope and outcome of the course.	1
	Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation.	2
06	Image Transformation & Filtering: Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, frequency domain filters, colour models, Pseudo colouring, colour transforms, Basics of Wavelet Transforms.	3
07	Image Restoration: Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering.	4
05	Image Compression: Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression.	5
	Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors.	6
28	Total	

Syllabus B.Tech.: Computer Science & Data Science

6CDS-02: Machine Learning

Credit: 3 Max. Marks: 100(IA:30, I 3L+0T+0P End Term Exam:		•
SN	Contents	Hour s
1	Introduction: Objective, scope and outcome of the course.	01
2	Supervised learning algorithm: Introduction, types of learning, application, Supervised learning: Linear Regression Model, Naive Bayes classifier Decision Tree, K nearest neighbor, Logistic Regression, Support Vector Machine, Random Forest algorithm	09
3	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model.	08
4	Introduction to Statistical Learning Theory , Feature extraction - Principal component analysis, Singular value decomposition. Feature selection – feature ranking and subset selection, filter, wrapper and embedded methods, Evaluating Machine Learning algorithms and Model Selection.	08
5	Semi supervised learning, Reinforcement learning: Markov decision process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA), Model-based Reinforcement Learning.	08
6	Recommended system, Collaborative filtering, Content-based filtering Artificial neural network, Perceptron, Multilayer network, Backpropagation, Introduction to Deep learning.	08
	Total	42

Syllabus B.Tech.: Computer Science & Data Science

6CDS-03: Information Security System

	T+OP End Term Exar	
N	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to security attacks: services and mechanism, classical encryption techniques- substitution ciphers and transposition ciphers, cryptanalysis, stream and block ciphers.	06
3	Modern block ciphers : Block Cipher structure, Data Encryption standard (DES) with example, strength of DES, Design principles of block cipher, AES with structure, its transformation functions, key expansion, example and implementation.	06
	Multiple encryption and triple DES, Electronic Code Book, Cipher Block Chaining Mode, Cipher Feedback mode, Output Feedback mode, Counter mode.	
4	Public Key Cryptosystems with Applications: Requirements and Cryptanalysis, RSA cryptosystem, Rabin cryptosystem, Elgamal cryptosystem, Elliptic curve cryptosystem.	06
5	Cryptographic Hash Functions, their applications: Simple hash functions, its requirements and security, Hash functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA).	
	Message Authentication Codes, its requirements and security, MACs based on Hash Functions, Macs based on Block Ciphers. Digital Signature, its properties, requirements and security, various digital signature schemes (Elgamal and Schnorr), NIST digital Signature algorithm.	05
6	Key management and distribution: symmetric key distribution using symmetric and asymmetric encryptions, distribution of public keys, X.509 certificates, Public key infrastructure. Remote user authentication with symmetric and asymmetric encryption, Kerberos	04
	Web Security threats and approaches, SSL architecture and protocol, Transport layer security, HTTPS and SSH.	
	Total	28

Syllabus B.Tech.: Computer Science & Data Science 6CDS-04: Computer Architecture and Organization

Credit: 3 Max. Marks: 100(IA:30 3L+0T+0P End Term Exam	•
SN Contents	Hours
1 Introduction: Objective, scope and outcome of the course.	01
2 Computer Data Representation: Basic computer data types, Complements, Fixed point representation, Register Transfer and Micro-operations: Floating point representation, Register Transfer language, Register Transfer, Bus and Memory Transfers (Tree-State Bus Buffers, Memory Transfer), Arithmetic Micro-Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logical shift unit. Basic Computer Organization and Design Instruction codes, Computer registers, computer instructions, Timing and Control, Instruction cycle, Memory-Reference Instructions, Input-output and interrupt, Complete computer description, Design of Basic computer, design of Accumulator Unit.	10
3 Programming The Basic Computer: Introduction, Machine Language, Assembly Language, assembler, Program loops, Programming Arithmetic and logic operations, subroutines, I-O Programming. Micro programmed Control: Control Memory, Address sequencing, Micro program Example, design of control Unit	7
4 Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, data transfer and manipulation, Program Control, Reduced Instruction Set Computer (RISC)Pipeline And Vector Processing, Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline, RISC Pipeline, Vector Processing, Array Processors	8
 5 Computer Arithmetic: Introduction, Addition and subtraction, Multiplication Algorithms (Booth Multiplication Algorithm), Division Algorithms, Floating Point Arithmetic operations, Decimal Arithmetic Unit. Input-Output Organization, Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority Interrupt, DMA, Input-Output Processor (IOP), CPUIOP Communication, Serial communication. 	8
6 Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory. Multipreocessors: Characteristics of Multiprocessors, Interconnection Structures, Inter-processor Arbitration, Inter- processor Communication and Synchronization, Cache Coherence, Shared Memory Multiprocessors.	8
Total	42

Syllabus B.Tech.: Computer Science & Data Science

6CDS-05: Principles of Artificial Intelligence

Credit: 2 Max. Marks: 100(IA:30, 2L+0T+0P End Term Exam:		
SN	Contents	
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to AI and Intelligent agent: Different Approach of AI, Problem Solving : Solving Problems by Searching, Uninformed search, BFS, DFS, Iterative deepening, Bi directional search, Hill climbing, Informed search techniques: heuristic, Greedy search, A* search, AO* search, constraint satisfaction problems.	03
3	Game Playing: Minimax, alpha-beta pruning, jug problem, chess problem, tiles problem	06
4	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order logic, situation calculus. Theorem Proving in First Order Logic. Planning, partial order planning. Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.	06
5	Learning: Overview of different forms of learning, Supervised base learning: Learning Decision Trees, SVM, Unsupervised based learning, Market Basket Analysis, Neural Networks.	07
6	Introduction to Natural Language Processing: Different issues involved in NLP, Expert System, Robotics.	05
	Total	28

Credit: 3

Syllabus B.Tech.: Computer Science & Data Science

6CDS-06: Cloud Computing

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

	T+OP End Term Exan	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell of cloud computing, Enabling Technology, Historical development, Vision, feature Characteristics and components of Cloud Computing. Challenges, Risks and Approaches of Migration into Cloud. Ethical Issue in Cloud Computing, Evaluating the Cloud's Business Impact and economics, Future of the cloud. Networking Support for Cloud Computing. Ubiquitous Cloud and the Internet of Things	06
3	Cloud Computing Architecture: Cloud Reference Model, Layer and Types of Clouds, Services models, Data centre Design and interconnection Network, Architectural design of Compute and Storage Clouds. Cloud Programming and Software: Fractures of cloud programming, Parallel and distributed programming paradigms-Map Reduce, Hadoop, High level Language for Cloud. Programming of Google App engine.	10
4	Virtualization Technology: Definition, Understanding and Benefits	
-	of Virtualization. Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor VMware, KVM, Xen. Virtualization: of CPU, Memory, I/O Devices, Virtual Cluster and Resources Management, Virtualization of Server, Desktop, Network, and Virtualization of data-centre.	10
5	Securing the Cloud: Cloud Information security fundamentals,	
	Cloud security services, Design principles, Policy Implementation, Cloud Computing Security Challenges, Cloud Computing Security Architecture. Legal issues in cloud Computing. Data Security in Cloud: Business Continuity and Disaster Recovery, Risk Mitigation , Understanding and Identification of Threats in Cloud, SLA-Service Level Agreements, Trust Management	08
6	Cloud Platforms in Industry: Amazon web services, Google	
	AppEngine, Microsoft Azure Design, Aneka: Cloud Application Platform -Integration of Private and Public Clouds Cloud applications: Protein structure prediction, Data Analysis, Satellite Image Processing, CRM	07
	Total	42

Syllabus B.Tech.: Computer Science & Data Science

6CDS-11: Artificial Neural Network

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

	se Objectives:
1.	To understand the biological neural network and to model equivalent neuron
	models.
2.	To understand the architecture, learning algorithm and issues of various feed forward and feedback neural networks.
Cours	Se Outcomes: By completing this course the student will be able to:
	Create different neural networks of various architectures both feed forward and feed backward.
	Perform the training of neural networks using various learning rules.
•	Perform the testing of neural networks and do the perform analysis of these networks for various pattern recognition applications.
Detai	led Syllabus: (per session plan)
UNIT	Contents
1	Introduction: A Neural Network, Human Brain, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial Intelligence and Neural Networks. Learning Process: Error Correction Learning, Memory Based Learning,
	Hebbian Learning,
	Competitive, Boltzmann Learning, Credit Assignment Problem, Memory,
	Adaption, Statistical Nature of the Learning Process.
2	 Single Layer Perceptrons: Adaptive Filtering Problem, Unconstraine Organization Techniques, Linear Least Square Filters, Least Mean Squar Algorithm, Learning Curves, Learning Rate Annealing Techniques Perceptron –Convergence Theorem, Relation Between Perceptron and Baye Classifier for a Gaussian Environment. Multilayer Perceptron: Back Propagation Algorithm XOR Problem Heuristics, Output Representation and Decision Rule, Compute Experiment, Feature Detection.
3	Back Propagation: Back Propagation and Differentiation, Hessian Matrix, Generalization, Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning.
4	Self-Organizing Maps (SOM): Two Basic Feature Mapping Models, Self-
-	Organization Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector Quantization, Adaptive Pattern Classification.
5	Neuro Dynamics: Dynamical Systems, Stability of Equilibrium States,
•	Attractors, Neuro Dynamical Models, Manipulation of Attractors as a Recurrent Network Paradigm.

Hopfield Models – Hopfield Models, Computer Experiment.

TEXT BOOKS:

1. Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.

REFERENCE BOOKS:

- 1. Artificial Neural Networks B. Vegnanarayana Prentice Hall of India P Ltd 2005
- 2. Neural Networks in Computer Intelligence, Li Min Fu MC GRHILL EDUCATION 2003:
- 3. Neural Networks -James A Freeman David M S Kapura Pearson Education 2004.
- 4. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006.

Syllabus B.Tech.: Computer Science & Data Science

6CDS-12: Nature Inspired Computing (NLP)

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- To establish basic knowledge in NP hard problems and understand the need for approximation algorithms.
- Design algorithms that include operators, representations, fitness functions and potential hybridizations for non-trivial problems.
- Design algorithms that utilize the collective intelligence of simple organisms to solve problems.
- Design and implement an artificial neural network that employs learning to solve nontrivial problems.

Course Outcomes: After completion of the course, students would be able to:

- 1. Understand fundamental concepts of NP-hardness and computational complexity
- 2. Understand the strengths, weaknesses and appropriateness of nature-inspired algorithms.
- 3. Apply nature-inspired algorithms to optimization, design and learning problems.

4. Analyse the Behaviour systems of nature inspired algorithm applied in real world problems.

5. Understand the theory behind the design of immune networks and DNA computing and their potential applications.

Detailed Syllabus: (per session plan) UNIT Contents Evolutionary Systems: Pillars of Evolutionary Theory, The Genotype, Artificial 1 Evolution, Genetic representations, Initial Population, Fitness Functions, Selection and Reproduction, Genetic Operators, Evolutionary Measures, Types of Evolutionary Algorithms 2 Collective Systems: Particle Swarm Optimization Algorithm, Hybrid PSO algorithms, Ant Colony Optimization, Artificial Bee Colony, Firefly Algorithm Artificial Neural Networks: History, Mathematical model of neuron, ANN architectures, learning rules Backpropagation network, Backpropagation learning and its applications, Variants of BPA. Behaviour in Cognitive Science, Behaviour in Artificial Intelligence, Behaviour-3 Based Robotics, Biological Inspiration for Robots, Robots as Biological Models, Robot Learning, Evolution of Behavioural Systems Evolution and Learning in Behavioural Systems, Evolution and Neural Development in Behavioural Systems. Immuno Computing: Introduction- Immune System, Physiology and main 4 components,Immune Network Theory- Danger Theory, Evaluation Interaction-Immune Algorithms, Bone Marrow Models, Forest's Algorithm, Artificial Immune Networks.

5 DNA Computing: Motivation, DNA Molecule, Adleman's experiment, Test tube programming language, Universal DNA Computers, PAM Model, Splicing Systems, Lipton's Solution to SAT Problem, Scope of DNA Computing, From Classical to DNA Computing.

TEXT BOOKS:

1. Xin-She Yang, "Nature-Inspired Computation and Swarm Intelligence Algorithms, Theory and Applications", Elsevier, Academic Press, 2020.

REFERENCE BOOKS:

- 1. Leandro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications", Chapman & Hall/ CRC, Taylor and Francis Group, 2007.
- 2. Floreano D. and Mattiussi C., "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", MIT Press, Cambridge, MA, 2008.
- 3. Licheng Jiao, Ronghua Shang, Fang Liu, Weitong Zhang, Brain and Nature-Inspired Learning, Computation and Recognition, Elsevier, 2020.

Syllabus B.Tech.: Computer Science & Data Science

edit: 2 +0T+0	
Cour	se Objectives:
•	To establish basic knowledge in NP hard problems and understand the need for approximation algorithms. Design algorithms that include operators, representations, fitness functions and potential hybridizations for non-trivial problems. Design algorithms that utilize the collective intelligence of simple organisms to solve problems. Design and implement an artificial neural network that employs learning to solve non- trivial problems.
Cour	se Outcomes: After completion of the course, students would be able to:
	Understand fundamental concepts of NP-hardness and computational complexity
2.	Understand the strengths, weaknesses and appropriateness of nature- inspired algorithms.
3.	Apply nature-inspired algorithms to optimization, design and learning problems.
4.	Analyze the Behaviour systems of nature inspired algorithm applied in real world problems.
5.	Understand the theory behind the design of immune networks and DNA computing and their potential applications.
Detai	led Syllabus: (per session plan)
UNIT	Contents
1	Introduction to Big Data and Hadoop : - Characteristics of big data and its impact on industries Overview of Hadoop history, ecosystem components Hadoop Architecture: HDFS structure, basic data operations Setting up a Hadoop cluster: Installation, configuration basics.
2	Hadoop Data Storage and Processing : - Understanding HDFS: Storage model, fault tolerance Introduction to MapReduce: Concepts, basic data flow MapReduce Workflow: Mapper, Reducer, Combiner, basi use cases Hands-on MapReduce: Writing simple MapReduce jobs,
	analyzing output.
3	Hadoop Ecosystem and Data Processing: - Hadoop Ecosystem Overview: HBase, Hive, Pig, Spark Hive Basics: Creating tables, querying structured data Pig Fundamentals: Data flow, basic Pig Latin scripting. Introduction to Spark: RDDs, basic transformations and actions.
4	Big Data Analytics Techniques:- Introduction to Big Data Analytics: Role, challenges Data Preprocessing: Basics of cleaning, transformation, feature extraction Exploratory Data Analysis (EDA): Using visualizations

for insights. - Introduction to Machine Learning on Big Data: Overview of algorithms.

5 Advanced Topics and Capstone Project:- Advanced Hadoop Concepts: Brief on YARN, security mechanisms. - Real-time Data Processing: Basic introduction to Kafka and Storm. - Big Data Analytics with Spark: Overview of MLlib, GraphX. - Capstone Project: Applying learned techniques to a real-world problem.

TEXT BOOKS:

1. White, T. (2015). Hadoop: The Definitive Guide. O'Reilly Media.

REFERENCE BOOKS:

- 1. "Hadoop: The Definitive Guide" by Tom White.
- 2. "Big Data Analytics with R and Hadoop" by Vignesh Prajapati.
- 3. "Learning Spark" by Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia.
- 4. "Big Data for Dummies" by Judith Hurwitz, Alan Nugent, Fern Halper, Marcia Kaufman.

Syllabus B.Tech.: Computer Science & Data Science

6CDS-21: Digital Image Processing Lab

	lit: 1.5 Max. Marks: 100(IA:60, ETE:40) OT+3P End Term Exam: 2 Hours
SN	List of Experiments
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform
3	Linear filtering using convolution. Highly selective filters.
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.

Syllabus B.Tech.: Computer Science & Data Science 6CDS-22: Machine Learning Lab

100/74 60

. . .

Credi	t: 1.5 Max. Marks: 100(IA:60, ETE:40)
0L+0	T+3PEnd Term Exam: 2 Hours
SN	List of Experiments
1	Implement and demonstrate the FIND-Salgorithm for finding the most specific
	hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and
	demonstrate the Candidate-Elimination algorithm output a description of the
	set of all hypotheses consistent with the training examples.
3	Write a program to demonstrate the working of the decision tree based ID3
	algorithm. Use an appropriate data set for building the decision tree and
	apply this knowledge toclassify a new sample
4	Build an Artificial Neural Network by implementing the Backpropagation
	algorithm and test the same using appropriate data sets
5	Write a program to implement the naïve Bayesian classifier for a sample
	training data set stored as a .CSV file. Compute the accuracy of the classifier,
	considering few test data sets.
6	Assuming a set of documents that need to be classified, use the naïve Bayesian
	Classifier model to perform this task. Built-in Java classes/API can be used to
	write the program. Calculate the accuracy, precision, and recall for your data
	set.
7	Write a program to construct aBayesian network considering medical data. Use
	this model to demonstrate the diagnosis of heart patients using standard Heart
-	Disease Data Set. You can use Java/Python ML library classes/API.
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same
	data set for clustering using k-Means algorithm. Compare the results of these
	two algorithms and comment on the quality of clustering. You can add
	Java/Python ML library classes/API in the program.
9	Write a program to implement k-Nearest Neighbour algorithm to classify the
	iris data set. Print both correct and wrong predictions. Java/Python ML library
10	classes can be used for this problem.
10	Implement the non-parametric Locally Weighted Regression algorithm in order
	to fit data points. Select appropriate data set for your experiment and draw
	graphs.

Syllabus

B.Tech.: Computer Science & Data Science

6CDS-23: Python Lab

Max. Marks: 100(IA:60, ETE:40) Credit: 1.5 End Term Exam: 2 Hours **0L+0T+3P** SN List of Experiments 1 Write a program to demonstrate basic data type in python. Write a program to compute distance between two points taking input from the 2 user Write a program add.py that takes 2 numbers as command line arguments and prints its sum. Write a Program for checking whether the given number is an even number or 3 not. Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . . . , 1/10 Write a Program to demonstrate list and tuple in python. 4 Write a program using a for loop that loops over a sequence. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero. Find the sum of all the primes below two million. 5 By considering the terms in the Fibonacci sequence whose values do not exceed four million, WAP to find the sum of the even-valued terms. Write a program to count the numbers of characters in the string and store them 6 in a dictionary data structure Write a program to use split and join methods in the string and trace a birthday of a person with a dictionary data structure Write a program to count the frequency of characters in a given file. Can you 7 use character frequency to tell whether the given file is a Python program file, C program file or a text file? Write a program to count the frequency of characters in a given file. Can you use character frequency to tell whether the given file is a Python program file, C program file or a text file? Write a program to print each line of a file in reverse order. 8 Write a program to compute the number of characters, words and lines in a file. Write a function nearly equal to test whether two strings are nearly equal. Two 9 strings a and b are nearly equal when a can be generated by a single mutation on. Write a function to compute gcd, lcm of two numbers. Each function shouldn't exceed one line. Write a program to implement Merge sort. 10 Write a program to implement Selection sort, Insertion sort.

Syllabus B.Tech.: Computer Science & Data Science

6AID4-24/6CAI4-24: Mobile Application Development Lab

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
	To study Android Studio and android studio installation. Create a "Hello World" application.
	To understand Activity, Intent, Create sample application with login module.(Check username and password).
3	Design simple GUI application with activity and intents e.g. calculator.
4	Develop an application that makes use of RSS Feed.
5	Write an application that draws basic graphical primitives on the screen
6	Create an android app for database creation using SQLite Database.
7	Develop a native application that uses GPS location information
8	Implement an application that writes data to the SD card.
9	Design a gaming application
10	Create an application to handle images and videos according to size.

Syllabus and Scheme

B.Tech. in Electronics & Communication Engineering

(2023-24)

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	H	Iou	rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
			and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

I & II Semester Common to all branches of UG Engineering & Technology

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

I & II Semester Common to all branches of UG Engineering & Technology

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'T' and the material 'Body' Understanding the needs of Self ('T') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'T',Understanding the characteristics and activities of 'T' and harmony in 'T' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations – First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.
	1

SEMESTER-III & IV

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Teaching & Examination Scheme B.Tech. : Electronics & Communication Engineering 2nd Year - III Semester

			Mathematics-I N								
			Course	С	onta	lct					
SN	Categ			hrs	s/we	ek			Cr		
	ory	Code	Title		Т	Р		IA	ETE	Total	
1	BSC	3EC2-01		3	0	0	3	30	70	100	3
2	HSMC 3EC1-02/ Communication/Mana 3EC1-03 gerial Economics and Financial Accounting		2	0	0	2	30	70	100	2	
3		$\begin{array}{c c c c c c c c c c c c c c c c c c c $		3							
4		3EC4-05	Signal & Systems	3	0	0	3	30	70	100	3
5	PCC	3EC4-06	Network Theory	3	1	0	3	30	70	100	4
6		3EC4-07	Electronics Devices	3	1	0	3	30	70	100	4
			Sub Total	17	2	0					19
				SESS	SION	AL	1		•		
8		3EC4-21		0	0	2		60	40	100	1
9	PCC	3EC4-22	0 0	0	0	2		60	40	100	1
10		3EC4-23	Signal Processing Lab	0	0	2		60	40	100	1
11	ESC	3EC3-24	-	0	0	2		60	40	100	1
13	PSIT	3EC7-30	Industrial Training	0	0	1		60	40	100	1
14	SODE CA	3EC8-00	Discipline & Extra							100	0.5
			Sub- Total	0	0	9					5.5
		тс	TAL OF III SEMESTER	17	2	9					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC2-01: Advance Engineering Mathematics-I

3 Credits

May Marks 100 (IA.30 ETE.100)

3 C	redits Max. Marks: 100 (IA:30, E	ГE:100)
3L:(OT:OP End Term Exam: 3	3 Hours
SN	Contents	Hours
1	Numerical Methods – 1: Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Gauss's forward and backward interpolation formulae. Stirling's Formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae. Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	10
2	Numerical Methods – 2: Numerical solution of ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge- Kutta method of fourth order for solving first and second order equations. Milne's and Adam's predicator-corrector methods. Solution of polynomial and transcendental equations-Bisection method, Newton-Raphson method and Regula-Falsi method.	8
3	Laplace Transform: Definition and existence of Laplace transform, Properties of Laplace Transform and formulae, Unit Step function, Dirac Delta function, Heaviside function, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs by Laplace transforms method.	10
4	Fourier Transform: Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem, application of Fourier transforms to partial ordinary differential equation (One dimensional heat and wave equations only).	7
5	Z-Transform: Definition, properties and formulae, Convolution theorem, inverse Z- transform, application of Z-transform to difference equation.	5
	Total	40

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC1-02/4EC1-02: Technical Communication

2 Credit 2L:0T:0P

Max. Marks: 100 (IA:30, ETE:100) End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	Total	26

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC1-03/4EC1-03: Managerial Economics And Financial Accounting 2 Credit Max. Marks: 100 (IA:30, ETE:100) 2L:0T:0P End Term Exam: 2 Hours

2L:(DT:OP End Term Exam:	2 Hours
SN	Contents	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds-flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	Total	26

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC4-04: Digital System Design

3 Credits 3L:0T:0P

Max. Marks: 100 (IA:30, ETE:100) End Term Exam: 3 Hours

SN	Contents	Hours
1	Logic Simplification and Combinational Logic Design: Review of Boolean Algebra and De Morgan's Theorem, SOP & POS forms, Canonical forms, Karnaugh maps up to 6 variables, Binary codes, Code Conversion.	7
2	MSI devices like Comparators, Multiplexers, Encoder, Decoder, Driver & Multiplexed Display, Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder, Barrel shifter and ALU	8
3	Sequential Logic Design: Building blocks like S-R, JK and Master- Slave JK FF, Edge triggered FF, Ripple and Synchronous counters, Shift registers, Finite state machines, Design of Synchronous FSM, Algorithmic State Machines charts. Designing synchronous circuits like Pulse train generator, Pseudo Random Binary Sequence generator, Clock generation.	9
4	Logic Families and Semiconductor Memories: TTL NAND gate, Specifications, Noise margin, Propagation delay, fan-in, fan-out, Tristate TTL, ECL, CMOS families and their interfacing, memory elements, Concept of Programmable logic devices like FPGA. Logic implementation using programmable devices.	8
5	VLSI Design flow: Design entry: Schematic, FSM & HDL, different modeling styles in VHDL, Data types and objects, Dataflow, Behavioral and Structural Modeling, Synthesis and Simulation VHDL constructs and codes for combinational and sequential circuits.	8
	Total	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course Code	Course Name	Course Outco me	Details
		CO 1	Develop the understanding of number system and its application in digital electronics.
	ц	CO 2	Development and analysis of K-map to solve the Boolean function to the simplest form for the implementation of compact digital circuits.
3EC4-04	Digital System Design	CO 3	Design various combinational and sequential circuits using various metrics: switching speed, throughput/latency, gate count and area, energy dissipation and power.
3E	Digital S	CO 4	Understanding Interfacing between digital circuits and analog component using Analog to Digital Converter (ADC), Digital to Analog Converter (DAC) etc.
		CO 5	Design and implement semiconductor memories, programmable logic devices (PLDs) and field programmable gate arrays (FPGA) in digital electronics.

CO-PO Mapping:

Subject	Course Outcome s	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
B	CO 1	3	2	2	1		1						
04 /stei n	CO 2	3	2	3	2								
3EC4-04 gital Syst Design	CO 3	2	2	3	1	1							
3EC4-04 Digital System Design	CO 4	3	2	1	1	1							
	CO 5	2	1	3	1	1							
	3: \$	Strong	gly	2	2: Mo	derat	te	•			of Dean	Acader ical Uni	

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Zero Lecture
Lecture 2	Review of Boolean Algebra
Lecture 3	DeMorgan's Theorem, SOP & POS forms,
Lecture 4	Problem of SOP and POS forms of boolean functions.
Lecture 5	Simplification of karnaugh map up to 6 variables
Lecture 6	Simplification of karnaugh map up to 6 variables
Lecture 7	Simplification of karnaugh map up to 6 variables
Lecture 8	Binary codes and code conversion
Lecture 9	Binary codes and code conversion
Lecture 10	Encoder, Decoder
Lecture 11	Half and Full Adders, Subtractors, Serial and Parallel Adders
Lecture 12	BCD Adder, Barrel shifter
Lecture 13	S-R FF, edge triggered and level triggered
Lecture 14	D and J-K FF
Lecture 15	Master-Slave JK FF and T FF
Lecture 16	Ripple and Synchronous counters
Lecture 17	Other type of counters
Lecture 18	Shift registers, Finite state machines, Asynchronous FSM
Lecture 19	Design of synchronous FSM
Lecture 20	Design of synchronous FSM
Lecture 21	Design of synchronous FSM
Lecture 22	Designing synchronous circuits (pulse train generator, pseudo random binary sequence generator, clock generation)

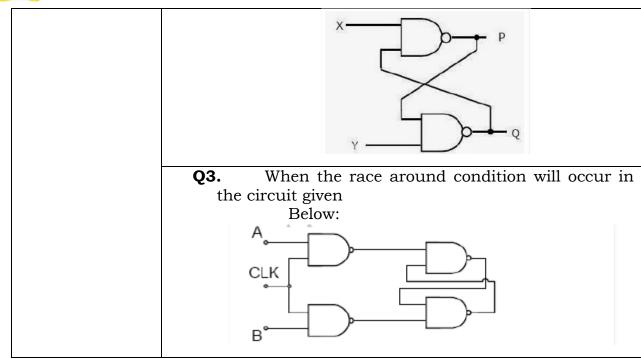
RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Lecture 23	TTL NAND gate, specifications, noise margin, propagation delay, fan-in, fan-out
Lecture 24	TTL NAND gate
Lecture 25	Tristate TTL, ECL
Lecture 26	CMOS families and their interfacing
Lecture 27	CMOS families and their interfacing
Lecture 28	Read-Only Memory, Random Access Memory
Lecture 29	Programmable Logic Arrays (PLA)
Lecture 30	Programmable Array Logic (PAL),
Lecture 31	Field Programmable Gate Array (FPGA)
Lecture 32	Combinational PLD-Based State Machines,
Lecture 33	State Machines on a Chip
Lecture 34	Schematic, FSM & HDL
Lecture 35	Different modeling styles in VHDL
Lecture 36	Data types and objects, Data flow
Lecture 37	Behavioral and Structural Modeling
Lecture 38	Behavioral and Structural Modeling
Lecture 39	Simulation VHDL constructs and codes for combinational and sequential circuits
Lecture 40	Simulation VHDL constructs and codes for combinational and sequential circuits

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- 3. Hand-outs


RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Sample Assignments:

Assignment 1	 Q1.Using K-maps, find the minimal Boolean expression of the following SOP and POS representations. a. f (w,x,y,z) = Σ (7,13,14,15) b. f(w,x,y,z) = Σ (1,3,4,6,9,11,14,15) c. f(w,x,y,z) = Π(1,4,5,6,11,12,13,14,15) d. f(w,x,y,z) = Σ (1,3,4,5,7,8,9,11,15) e. f(w,x,y,z) = Π (0,4,5,7,8,9,13,15) Q2. Find the function h(a,b,c,d) such that f = f^d. f (a,b,c,d) = a ·b· c + (a · c + b)· d + h(a,b,c,d) 											
	Q3. Using K-maps of the functions f1 and f2, find the following: (provide											
	the canonical form expression and simplify)											
	a. T1 = f1 \cdot f2											
	b. $T2 = f1 + f2$											
	c. T3 = f1 ⊕ f2											
	where f1(w,x,y,z) = Σ (0,2,4,9,12,15), f2(w,x,y,z) = Σ (1,2,4,5,12,13)											
Assignment 2	Q1 . Draw the state diagram of a serial adder.											
	Q2. In the following circuit, given binary values were applied to the											
	Inputs X and Y inputs of the NAND latch shown in the figure. X =											
	0, Y = 1; X = 0, Y = 0; X = 1, Y = 1. Find out the corresponding stable output P, Q.											

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC4-05: Signals & Systems

3 Credits 3L:0T:0P

Max. Marks: 100 (IA:30, ETE:100) End Term Exam: 3 Hours

SN	Contents	Hours
1	Energy and power signals, continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability.	6
2	Linear shift-invariant (LSI) systems, impulse response and step response, convolution, input output behavior with aperiodic convergent inputs. Characterization of causality and stability of linear shift-invariant systems. System representation through differential equations and difference equations	7
3	Periodic and semi-periodic inputs to an LSI system, the notion of a frequency response and its relation to the impulse response, Fourier series representation, the Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. The idea of signal space and orthogonal bases	8
4	The Laplace Transform, notion of eigen functions of LSI systems, a basis of eigen functions, region of convergence, poles and zeros of system, Laplace domain analysis, solution to differential equations and system behavior.	6
5	The z-Transform for discrete time signals and systems- eigen functions, region of convergence, z-domain analysis.	5
6	State-space analysis and multi-input, multi-output representation. The state-transition matrix and its role. The Sampling Theorem and its implications- Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first- order hold, and so on. Aliasing and its effects. Relation between continuous and discrete time systems.	8
	Total	40

Course Outcome:

Course Code	Course Name	Course Outcom e	Details				
		CO 1	Analyze different types of signals and system properties				
3EC4-05	Signals & Systems	CO 2	Represent continuous and discrete systems in time and frequency domain using different transforms				
Ŭ Ê	Sig	CO 3	Investigate whether the system is stable.				
	02	CO 4	Sampling and reconstruction of a signal.				
		CO 5	Acquire an understanding of MIMO systems				

CO-PO Mapping:

Subject	Course Outcome s	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ms	CO 1	3	3	1	2	2			1				2
05 Systems	CO 2	3	1		2	3			1				2
6 7 8	CO 3	3	2	2	3								2
3E Signals	CO 4	3	2	3	3	1							
Sig	CO 5	3	2	2	3	1			2				1
	3: Strongly				2: Moderate				1: Weak				

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

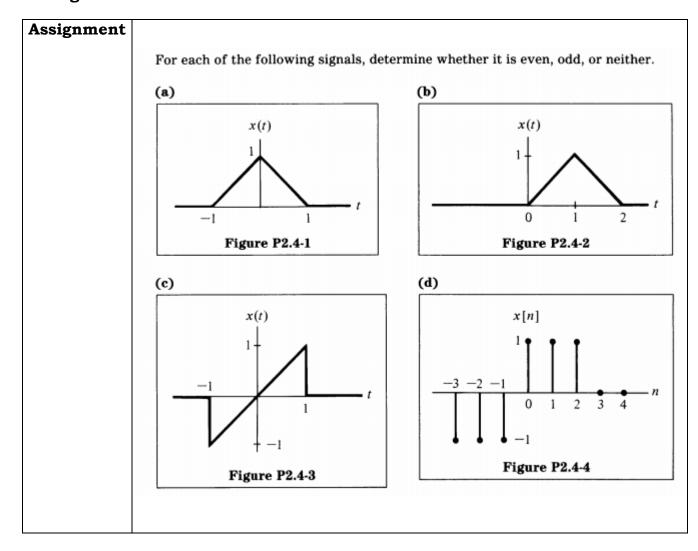
II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Zero Lecture
Lecture 2	Energy signals power signals
Lecture 3	Continuous and discrete time signals
Lecture 4	Continuous amplitude signals
Lecture 5	and discrete amplitude signals
Lecture 6	System properties: linearity: additivity and homogeneity
Lecture 7	shift-invariance, causality
Lecture 8	stability, realizability.
Lecture 9	Linear shift-invariant (LSI) systems
Lecture 10	impulse response
Lecture 11	Step response
Lecture 12	Convolution.
Lecture 13	Input output behavior with aperiodic convergent inputs
Lecture 14	Characterization of causality and stability of linear shift-invariant
	systems.
Lecture 15	System representation through differential equations and
	difference equations.
Lecture 16	Characterization of causality and stability of linear shift-invariant
	systems.
Lecture 17	System representation through differential equations and
	difference equations.
Lecture 18	Periodic and semi-periodic inputs to an LSI system
Lecture 19	The notion of a frequency response.
Lecture 20	Its relation to the impulse response
Lecture 21	Fourier series representation
Lecture 22	Fourier Transform
Lecture 23	Convolution/multiplication and their effect in the frequency
	domain
Lecture 24	Magnitude and phase response
Lecture 25	Fourier domain duality.
Lecture 26	The Discrete-Time Fourier Transform (DTFT) and Discrete Fourier
	Transform (DFT).
Lecture 27	Parseval's Theorem. The idea of signal space and orthogonal
	bases
Lecture 28	The Laplace Transform
Lecture 29	Notion of eigen functions of LSI systems Office of Dean Academic Affair
	Rajasthan Technical University, I

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)


A basis of eigen functions, region of convergence									
Poles and zeros of system, Laplace domain analysis,									
Solution to differential equations and system behavior.									
The z-Transform for discrete time signals and systems- eigen									
functions,									
Region of convergence, z-domain analysis.									
State-space analysis and multi-input, multi-output									
representation.									
The state-transition matrix and its role.									
The Sampling Theorem and its implications- Spectra of sampled									
signals.									
Reconstruction: ideal interpolator, zero-order hold, first-order									
hold, and so on									
Aliasing and its effects.									
Relation between continuous and discrete time systems.									

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- **3.** Animation
- 4. Hand-outs

Assignments:

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Evaluate the following sums:

(a)
$$\sum_{n=0}^{5} 2\left(\frac{3}{a}\right)^{n}$$

(b)
$$\sum_{n=2}^{6} b^{n}$$

(c)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^{2n}$$

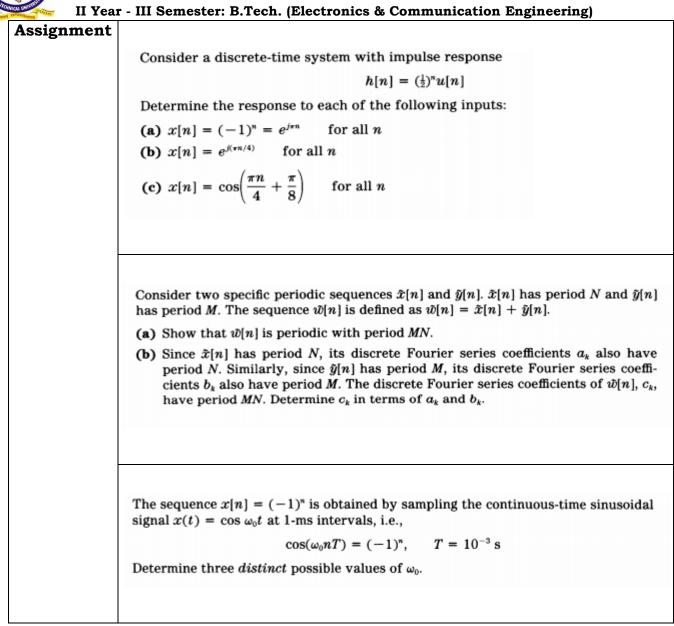
Hint: Convert each sum to the form

$$C\sum_{n=0}^{N-1} \alpha^n = S_N$$
 or $C\sum_{n=0}^{\infty} \alpha^n = S_{\infty}$

and use the formulas

$$S_N = C\left(rac{1-lpha^N}{1-lpha}
ight), \qquad S_\infty = rac{C}{1-lpha} \qquad ext{for } |lpha| < 1$$

The first-order difference equation y[n] - ay[n - 1] = x[n], 0 < a < 1, describes a particular discrete-time system initially at rest.


- (a) Verify that the impulse response h[n] for this system is h[n] = aⁿu[n].
- (b) Is the system
 - (i) memoryless?
 - (ii) causal?
 - (iii) stable?

Clearly state your reasoning.

(c) Is this system stable if |a| > 1?

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC4-06: Network Theory

Max. Marks: 100 (IA:30, ETE:100)

4 Credits 3L:1T:0P

		_	_	
End	Term	Exam:	3	Hours

02.1									
SN	Contents	Hours							
1	Node and Mesh Analysis, matrix approach of network containing voltage and current sources, and reactances, source transformation and duality.	7							
2	Network theorems: Superposition, reciprocity, Thevenin's, Norton's, Maximum power Transfer, compensation and Tallegen's theorem as applied to AC. circuits.	7							
3	Trigonometric and exponential Fourier series: Discrete spectra and symmetry of waveform, steady state response of a network to non- sinusoidal periodic inputs, power factor, effective values, Fourier transform and continuous spectra, three phase unbalanced circuit and power calculation.	8							
4	Laplace transforms and properties: Partial fractions, singularity functions, waveform synthesis, analysis of RC, RL, and RLC networks with and without initial conditions with Laplace transforms evaluation of initial conditions	8							
5	Transient behavior, concept of complex frequency, Driving points and transfer functions poles and zeros of immittance function, their properties, sinusoidal response from pole-zero locations, convolution theorem and Two four port network and interconnections, Behaviors of series and parallel resonant circuits, Introduction to band pass, low pass, high pass and band reject filters.	10							
	Total	40							

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course Code	Course Name	Course Outcom e	Details						
	5	CO 1	Apply the basic circuital law and simplify the network using network theorems						
-06	Theory	CO 2	Appreciate the frequency domain techniques in different applications.						
3EC4-(CO 3	Apply Laplace Transform for steady state and transient analysis						
Yong Yong Yong CO 4 Evaluate transient response and twork parameters									
		CO 5	Analyze the series resonant and parallel resonant circuit and design filters						

II Year - III Semester: B.Tech. (Electronics & Communication Engineering) CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ry	CO 1	3	2		3	2							
06 Theory	CO 2	3	3	1	2	2							1
	CO 3	3	2	2		2							1
3EC4 Network	CO 4	2	3	2	2	1							
Ne	CO 5	2	3	3	2	1							
	3: Strongly 2: Moderate									·We	2 k		

3: Strongly

2: Moderate

1: Weak

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Overview of Network Theory and its significance
Lecture 2	Node and Mesh Analysis
Lecture 3	matrix approach of network containing voltage and current sources and reactances
Lecture 4	source transformation and duality
Lecture 5	Network theorems: Superposition and reciprocity
Lecture 6	Thevenin's and Norton's theorem
Lecture 7	Maximum power Transfer theorem
Lecture 8	compensation and Tallegen's theorem as applied to AC. Circuits
Lecture 9	Trigonometric and exponential Fourier series
Lecture 10	Fourier series: Discrete spectra and symmetry of waveform
Lecture 11	Steady state response of a network to non-sinusoidal periodic inputs
Lecture 12	power factor and effective values
Lecture 13	Fourier transform and continuous spectra
Lecture 14	three phase unbalanced circuit and power calculation
Lecture 15	three phase unbalanced circuit and power calculation
Lecture 16	Laplace transforms
Lecture 17	Laplace transforms
Lecture 18	Laplace transforms properties: Partial fractions
Lecture 19	singularity functions and waveform synthesis

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Yea	r - III Semester: B.Tech. (Electronics & Communication Engineering)								
Lecture 20	analysis of RC networks								
Lecture 21	analysis of RL networks								
Lecture 22	analysis of RLC networks								
Lecture 23	Analysis of networks with and without initial conditions								
Lecture 24	Analysis of networks with and without initial conditions								
Lecture 25	Analysis of networks with and without initial conditions with								
	lapalace transforms evaluation								
Lecture 26	Analysis of networks with and without initial conditions with								
	lapalace transforms evaluation of initial condition								
Lecture 27	Transient behavior								
Lecture 28	concept of complex frequency								
Lecture 29	Driving points and transfer functions poles and zeros of								
	immittance function								
Lecture 30	Driving points and transfer functions poles and zeros of								
	immittance function: their properties								
Lecture 31	sinusoidal response from pole-zero locations								
Lecture 32	sinusoidal response from pole-zero locations								
Lecture 33	convolution theorem								
Lecture 34	sinusoidal response from pole-zero locations								
Lecture 35	Two four port network and interconnections								
Lecture 36	Two four port network and interconnections								
Lecture 37	Behaviors of series and parallel resonant circuits								
Lecture 38	Introduction to band pass and low pass								
Lecture 39	Introduction to high pass and reject filters								
Lecture 40	Spill over class								

Content delivery method:

- **1.** Chalk and Duster
- **2.** PPT
- 3. Hand-outs

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - III Semester: B.Tech. (Electronics & Communication Engineering) Sample assignments:

Assignment 1	01.	Elaborate the significance of source
	¥	transformation with relevant example
	Q2.	State and prove time differentiation theorem in Laplace Transform
	Q3.	Find the Thevenin equivalent of the network shown in figure. What power would be delivered to a load of 100 ohms at a and b ?
		$20 \text{ V} \xrightarrow{40 \Omega} 100 \Omega \\ & \swarrow \\ 200 \Omega \\ & \downarrow i_1 \\ & \downarrow i_1 \\ & \bigcirc b \\ & & & \bigcirc b \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$
Assignment 2	Q4.	Calculate The venin equivalent circuit with respect to terminals a and b
		$-j300 \Omega$ $200 \Omega j100 \Omega$ $100 / 0^{\circ} V \xrightarrow{+} 100 / 90^{\circ} V \xrightarrow{a} b$
	Q5.	Derive transient current and voltage responses of sinusoidal driven RL and RC circuits.
	Q6.	

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC4-07: Electronic Devices

4 Credits 3L:1T:0P

Max. Marks: 100 (IA:30, ETE:100) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction to Semiconductor Physics: Introduction, Energy band gap structures of semiconductors, Classifications of semiconductors, Degenerate and non-degenerate semiconductors, Direct and indirect band gap semiconductors, Electronic properties of Silicon, Germanium, Compound Semiconductor, Gallium Arsenide, Gallium phosphide & Silicon carbide, Variation of semiconductor conductivity, resistance and bandgap with temperature and doping. Thermistors, Sensitors.	6
2	Review of Quantum Mechanics, Electrons in periodic Lattices, E-k diagrams. Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; sheet resistance, design of resistors.	6
3	Generation and recombination of carriers; Poisson and continuity equation P-N junction characteristics, I-V characteristics, and small signal switching models; Avalanche breakdown, Zener diode, Schottky diode.	8
4	Bipolar Junction Transistor, I-V characteristics, Ebers-Moll Model, MOS capacitor, C-V characteristics, MOSFET, I-V characteristics, and small signal models of MOS transistor, LED, photodiode and solar cell.	11
5	Integrated circuit fabrication process: oxidation, diffusion, ion implantation, Photolithography, etching, chemical vapor deposition, sputtering, twin-tub CMOS process.	9
	Total	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course Code	Course Name	Course Outco me	Details								
		CO 1	Understanding the semiconductor physics of the intrinsic, P and N materials.								
	Devices	CO 2 Understanding the characteristics of currer flow in a bipolar junction transistor as MOSFET.									
3EC4-07											
Ö	image: constraint of the section of										
		CO 5	Theoretical as well as experimental understanding of Integrated circuit fabrication.								

CO-PO Mapping:

Subject	Course Outcom es	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	1		2	1	1						
07 nic	CO 2	3	2	1			2						
3EC4-07 Electronic Devices	CO 3	2	1		2		1	2					
3E Ele	CO 4	3	1	1				2					
	CO 5	3	1	1	1	1							2
·	3: Strongly 2: Moderate 1: Weak												

II Year - III Semester: B.Tech. (Electronics & Communication Engineering) Lecture Plan:

Zero Lecture Introduction to Semiconductor Physics Introduction to Semiconductor Physics Introduction to Semiconductor Physics Review of Quantum Mechanics Electrons in periodic Lattices E-k diagrams Energy bands in intrinsic and extrinsic silicon
Introduction to Semiconductor Physics Introduction to Semiconductor Physics Review of Quantum Mechanics Electrons in periodic Lattices E-k diagrams
Introduction to Semiconductor Physics Review of Quantum Mechanics Electrons in periodic Lattices E-k diagrams
Review of Quantum Mechanics Electrons in periodic Lattices E-k diagrams
Electrons in periodic Lattices E-k diagrams
E-k diagrams
5
Energy bands in intrinsic and extrinsic silicon
Carrier transport: diffusion current, drift current, mobility and resistivity
Sheet resistance and design of resistors
Generation and recombination of carriers
Poisson and continuity equation
P-N junction characteristics and their I-V characteristics
P-N junction characteristics and their I-V characteristics
P-N junction small signal switching models
P-N junction small signal switching models
Avalanche breakdown
Zener diode and Schottky diode
Basics of Bipolar Junction Transistor
I-V characteristics of BJT
Ebers-Moll Model
MOS capacitor
MOS capacitor

SYLLABUS

II Yea	ar - III Semester: B.Tech. (Electronics & Communication Engineering)
Lecture 24	C-V characteristics
Lecture 25	Basics of MOSFET
Lecture 26	Basics of MOSFET
Lecture 27	I-V characteristics of MOSFET
Lecture 28	Small signal models of MOS transistor
Lecture 29	Small signal models of MOS transistor
Lecture 30	Light Emitting Diode
Lecture 31	Photodiode and solar cell
Lecture 32	Basics of Integrated Circuits
Lecture 33	Advancement in Integrated Circuits
Lecture 34	Oxidation, diffusion and ion implantation
Lecture 35	Photolithography and etching
Lecture 36	Chemical vapor deposition
Lecture 37	Sputtering
Lecture 38	Twin-tub CMOS process
Lecture 39	Spill over class
Lecture 40	Spill over class

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- 3. Hand-outs

Office of Dean Academic Affairs Rajasthan Technical University, Kota

II Year - III Semester: B.Tech. (Electronics & Communication Engineering) Sample assignments:

Assignment 1	Q1.	Investigates the input/output characteristics of various diodes?							
	Q2.	Investigate the applications of various diodes?							
	Q3.	A p-type sample of silicon has a resistivity of 5 Ω - cm. In this sample, the hole mobility, $\mu_h,$ is 600							
		$cm^2/V\text{-s}$ and the electron mobility, $\mu_e\text{,}$ is 1600							
		cm^2/V -s. Ohmic contacts are formed on the ends of the sample and a uniform electric field is imposed which results in a drift current density in							
	the sample is 2×10^3 A/cm ² .								
		[1]. What are the hole and electron concentrations in this sample?							
		[2]. What are the hole and electron drift velocities under these conditions?							
		[3]. What is the magnitude of the electric field?							
Assignment 2	Q1.	Discuss the applications of Ebers-Moll Model.							
	Q2.	Discuss different types of fabrication techniques.							
	Q3.	Discuss various characteristics of CMOS transistor.							

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC4-21: Electronics Devices Lab

1 Credit OL:OT:2P

Max. Marks: 100 (IA:60, ETE:40)

List of Experiments

Sr. No.	Name of Experiment
1.	Study the following devices: (a) Analog& digital multimeters (b) Function/ Signal generators (c) Regulated d. c. power supplies (constant voltage and constant current operations) (d) Study of analog and digital CRO, measurement of time period, amplitude, frequency & phase angle using Lissajous figures.
2.	Plot V-I characteristic of P-N junction diode & calculate cut-in voltage, reverse Saturation current and static & dynamic resistances.
3.	Plot the output waveform of half wave rectifier and effect of filters on waveform. Also calculate its ripple factor.
4.	Study bridge rectifier and measure the effect of filter network on D.C. voltage output & ripple factor.
5.	Plot and verify output waveforms of different clipper and clamper.
6.	Plot V-I characteristic of Zener diode
7.	Study of Zener diode as voltage regulator. Observe the effect of load changes and determine load limits of the voltage regulator
8.	Plot input-output characteristics of BJT in CB, CC and CE configurations. Find their h-parameters.
9.	Study of different biasing circuits of BJT amplifier and calculate its Q-point.
10.	Plot frequency response of two stage RC coupled amplifier & calculate its bandwidth .
11.	Plot input-output characteristics of field effect transistor and measure $I_{\rm dss}$ and $V_{\rm p}.$
12.	Plot frequency response curve for FET amplifier and calculate its gain bandwidth product.
	Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course	Cours	Course							
Code	е	Outcom	Details						
Coue	Name	е							
		CO 1	Understand the characteristics of different Electronic Devices.						
CO 2 Verify the rectifier circuits using of implement them using hardware.									
3EC4-21	Devices	CO 3	Design various amplifiers like CE, CC, common source amplifiers and implement them using hardware and also observe their frequency responses						
360	Electronic	CO 4	Understand the construction, operation and characteristics of JFET and MOSFET, which can be used in the design of amplifiers.						
	Ele	CO 5	Understand the need and requirements to obtain frequency response from a transistor so that Design of RF amplifiers and other high frequency amplifiers is feasible						

CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3	2	3	2	1							1
21 nic Lab	CO 2	2	3	1	3	3							2
3EC4-21 Electronic Devices Lal	CO 3	2	1	2	3	3							
3EC4- Blectro Devices	CO 4	3	2	3	2	2							1
	CO 5	3	2	1	2	2							
3: Strongly 2: Moderate 1: Weak													

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC4-22: Digital System Design Lab

Max. Marks: 100 (IA:60, ETE:40)

1 Credit 0L:0T:2P

List of	Experiments
S.No.	Name of Experiment
Part A:	Combinational Circuits
1.	To verify the truth tables of logic gates: AND, OR, NOR, NAND, NOR, Ex-OR and Ex-NOR
2.	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR logic gates realized using NAND & NOR gates.
3.	To realize an SOP and POS expression.
4.	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR gates and to verify their truth tables
5.	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor& basic Full Adder/ Subtractor.
6.	To design 4-to-1 multiplexer using basic gates and verify the truth table. Also verify the truth table of 8-to-1 multiplexer using IC
7.	To design 1-to-4 demultiplexer using basic gates and verify the truth table. Also to construct 1-to-8 demultiplexer using blocks of 1-to-4 demultiplexer
8.	To design 2x4 decoder using basic gates and verify the truth table. Also verify the truth table of 3x8 decoder using IC
9.	Design & Realize a combinational circuit that will accept a 2421 BCD code and drive a TIL -312 seven-segment display
Part B:	Sequential Circuits
10.	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without clock signal and verify their truth table.
11.	Construct a divide by 2, 4 & 8 asynchronous counter. Construct a 4-bit binary counter and ring counter for a particular output pattern using D flip flop.
12.	Design and construct unidirectional shift register and verify the
13.	Design and construct BCD ripple counter and verify the function.
14.	Design and construct a 4 Bit Ring counter and verify the function
15.	Perform input/output operations on parallel in/Parallel out and Serial in/Serial out registers using clock. Also exercise loading only one of multiple values into the register using multiplexer.

Course Outcome:

Course Code	Cours e Name	Course Outcome	Details
		CO 1	
ğ	rstem Lab	CO 2	To minimize the complexity of digital logic circuits.
3EC4-22	ital Syste esign Lal	CO 3	To design and analyse combinational logic circuits.
3E	gita Jes	CO 4	To design and analyse sequential logic circuits.
	Digit De	CO 5	Able to implement applications of combinational & sequential logic circuits.

CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
u	CO 1	3	3	1									1
4-22 System n Lab	CO 2	3	3	2	1	1							1
3EC4-22 ital Syst esign La		3	3	3	2	3	1						2
3EC4 Digital S Design	CO 4	3	3	3	2	3	1						2
D	CO 5	3	3	3	3	3	3						3
<u> </u>	3: Strongly 2: Moderate 1: Weak												

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering) 3EC4-23: Signal Processing Lab

Max. Marks: 100 (IA:60, ETE:40)

1 Credit

0L:0T:2P

List of Experiments

Sr. No.	Name of Experiment (Simulate using MATLAB environment)						
1.	Generation of continuous and discrete elementary signals (periodic and						
1.	non periodic) using mathematical expression.						
2.	Generation of Continuous and Discrete Unit Step Signal.						
3.	Generation of Exponential and Ramp signals in Continuous & Discrete						
5.	domain.						
4.	Continuous and discrete time Convolution (using basic definition).						
5.	Adding and subtracting two given signals. (Continuous as well as						
5.	Discrete signals)						
6.	To generate uniform random numbers between (0, 1).						
7.	To generate a random binary wave.						
	To generate and verify random sequences with arbitrary distributions,						
	means and variances for following:						
8.	(a) Rayleigh distribution						
	(b) Normal distributions: N(0,1).						
	(c) Gaussion distributions: N (m, x)						
9.	To plot the probability density functions. Find mean and variance for						
9.	the above distributions						

Course Outcome:

Course Code	Course Name	Course Outcom e	Details
	Lab	CO 1	Able to generate different Continuous and Discrete time signals.
	ssing	CO 2	Understand the basics of signals and different operations on signals.
	Processing	CO 3	Develop simple algorithms for signal processing and test them using MATLAB
4-23	Signal P	CO 4	Able to generate the random signals having different distributions, mean and variance.
3EC4	Sig	CO 5	Design and conduct experiments, interpret and analyse data and report results.

II Year - III Semester: B.Tech. (Electronics & Communication Engineering) CO-PO Mapping:

Subject	Course Outcom es	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ng	CO 1	2		1		2							
23 essi	CO 2	3		1									
3EC4-23 al Processing Lab	CO 3	1	2	3	1	3							
3E Signal	CO 4	2	1	1		2							
Sig	CO 5	1	1	2	2	2							
L	3: \$	Strong	gly	2	2: Mo	derat	te	1	1	:We	ak		

SYLLABUS

II Year - III Semester: B.Tech. (Electronics & Communication Engineering)

3EC3-24: Computer Programming Lab-I

Max. Marks: 100 (IA:60, ETE:40)

0L:(DT:2P
1.	Write a simple C program on a 32 bit compiler to understand the concept of array storage, size of a word. The program shall be written illustrating the concept of row major and column major storage. Find the address of element and verify it with the theoretical value. Program may be written for arrays upto 4-dimensions.
2.	Simulate a stack, queue, circular queue and dequeue using a one dimensional array as storage element. The program should implement the basic addition, deletion and traversal operations.
3.	Represent a 2-variable polynomial using array. Use this representation to implement addition of polynomials.
4.	Represent a sparse matrix using array. Implement addition and transposition operations using the representation.
5.	Implement singly, doubly and circularly connected linked lists illustrating operations like addition at different locations, deletion from specified locations and traversal.
6.	Repeat exercises 2, 3 & 4 with linked structures.
7.	Implementation of binary tree with operations like addition, deletion, traversal.
8.	Depth first and breadth first traversal of graphs represented using adjacency matrix and list.
9.	Implementation of binary search in arrays and on linked Binary Search Tree.
10.	Implementation of insertion, quick, heap, topological and bubble sorting algorithms.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

1 Credit 0L:0T:2P

Teaching & Examination Scheme B.Tech. : Electronics & Communication Engineering 2nd Year - IV Semester

			THEO	RY							
ON	Ontern	Course		-	onta		Mark	Cr			
SN	Categ ory	Code	Title		s/we	eek P	Dener		DØD	(Tradial)	
				L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4EC2-01	Advanced Engineering Mathematics-II	3	0	0	3	30	70	100	3
2	HSMC	4EC1-03/ 4EC1-02	Managerial Economics and Financial Accounting/ Technical Communication	2	0	0	2	30	70	100	2
3	PCC	4EC4-04	Analog Circuits	3	0	0	3	30	70	100	3
4	PCC	4EC4-05	Microcontrollers	3	0	0	3	30	70	100	3
5	ESC	4EC3-06	Electronics Measurement & Instrumentation		0	0	3	30	70	100	3
6	PCC	4EC4-07	Analog and Digital Communication	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
			PRACTICAL &	SESS	SION	AL					
8		4EC4-21	Analog and Digital Communication Lab	0	0	3		60	40	100	1.5
9	-	4EC4-22	Analog Circuits Lab	0	0	3		60	40	100	1.5
10	PCC	4EC4-23	Microcontrollers Lab	0	0	3		60	40	100	1.5
11			Electronics Measurement & Instrumentation Lab	0	0	3		60	40	100	1.5
12	SODE CA	4EC18-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		TO	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC2-01: Advance Engineering Mathematics-II

Credit: 3

3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

02.		e 110415
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Complex Variable – Differentiation: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.	7
3	Complex Variable - Integration: Contour integrals, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Liouville's theorem and Maximum-Modulus theorem (without proof); Taylor's series, zeros of analytic functions, singularities, Laurent's series; Residues, Cauchy Residue theorem (without proof).	8
4	Applications of complex integration by residues: Evaluation of definite integral involving sine and cosine. Evaluation of certain improper integrals.	4
5	Special Functions: Legendre's function, Rodrigues formula, generating function, Simple recurrence relations, orthogonal property. Bessel's functions of first and second kind, generating function, simple recurrence relations, orthogonal property.	10
6	Linear Algebra: Vector Spaces, subspaces, Linear independence, basis and dimension, Inner product spaces, Orthogonality, Gram Schmidt orthogonalization, characteristic polynomial, minimal polynomial, positive definite matrices and canonical forms, QR decomposition.	10
	Total	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC1-03/3EC1-03: Managerial Economics And Financial Accounting

2 Cr		
2L:0	T:0P End Term Exam	2 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts: Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis: Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis: Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory: Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis: Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds-flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	Total	26

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC1-02/3EC1-02: Technical Communication

2 Credit 2L:0T:0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing- Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	Total	26

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-04: Analog Circuits

Credit: 3

3L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Diode Circuits, Amplifier models: Voltage amplifier, current amplifier, trans- conductance amplifier and trans-resistance amplifier. Biasing schemes for BJT and FET amplifiers, bias stability, various configurations (such as CE/CS, CB/CG, CC/CD) and their features, small signal analysis, low frequency transistor models, estimation of voltage gain, input resistance, output resistance etc., design procedure for particular specifications, low frequency analysis of multistage amplifiers.	8
3	High frequency transistor models, frequency response of single stage and multistage amplifiers, cascode amplifier. Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues. Feedback topologies: Voltage series, current series, voltage shunt, current shunt, effect of feedback on gain, bandwidth etc., calculation with practical circuits, concept of stability, gain margin and phase margin.	8
4	Oscillators: Review of the basic concept, Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.), LC oscillators (Hartley, Colpitt, Clapp etc.), non-sinusoidal oscillators. Current mirror: Basic topology and its variants, V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load. Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR. OP-AMP design: design of differential amplifier for a given specification, design of gain stages and output stages, compensation.	8
5	OP-AMP applications: review of inverting and non-inverting amplifiers, integrator and differentiator, summing amplifier, precision rectifier, Schmitt trigger and its applications. Active filters: Low pass, high pass, band pass and band stop, design guidelines.	8
6	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc. Analog to digital converters (ADC): Single slope, dual slope, successive approximation, flash etc. Switched capacitor circuits: Basic concept, practical configurations, application in amplifier, integrator, ADC etc.	7
	Total	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Understand the characteristics of diodes and transistors
-04	Circuits	CO 2	Design and analyze various rectifier and amplifier circuits
4EC4-04	-	CO 3	Design sinusoidal and non-sinusoidal oscillators
4E(Analog	CO 4	Understand the functioning of OP-AMP and design OP- AMP based circuits
		CO 5	Understanding the designing of ADCs and DACs

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
	CO 1	3		1	1	2							
/4-04 Circuits	CO 2	1	1	2		1							
4EC4-04 alog Circu	CO 3	3	1		1								
4EC Analog (CO 4	2				2							
ł	CO 5	2	3		2								
3: Strongly						2: Mo	derat	e	1	: Wea	k		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Zero Lecture
Lecture 2	Diode Circuits and Amplifier models
Lecture 3	Voltage amplifier, current amplifier, trans-conductance amplifier and trans- resistance amplifier
Lecture 4	Biasing schemes for BJT and FET amplifiers
Lecture 5	Bias stability in various configurations such as CE/CS, CB/CG, CC/CD
Lecture 6	Small signal analysis of BJT and FET
Lecture 7	low frequency transistor models
Lecture 8	Estimation of voltage gain, input resistance, output resistance etc.
Lecture 9	Design procedure for particular specifications, low frequency analysis of multistage amplifiers.
Lecture 10	High frequency transistor models
Lecture 11	frequency response of single stage and multistage amplifiers
Lecture 12	Cascode Amplifier
Lecture 13	Various classes of operation (Class A, B, AB, C etc.), their power efficiency and linearity issues
Lecture 14	Feedback topologies: Voltage series, current series, voltage shunt, current shunt
Lecture 15	Effect of feedback on gain, bandwidth etc.,
Lecture 16	Calculation with practical circuits
Lecture 17	Concept of stability, gain margin and phase margin.
Lecture 18	Basics of oscillator
Lecture 19	Barkhausen criterion, RC oscillators (phase shift, Wien bridge etc.)
	Office of Dean Academic Affairs

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

Lecture 20	LC oscillators (Hartley, Colpitt, Clapp etc.)
Lecture 21	Non-sinusoidal oscillators. Current mirror: Basic topology and its variants,
Lecture 22	V-I characteristics, output resistance and minimum sustainable voltage (VON), maximum usable load.
Lecture 23	Differential amplifier: Basic structure and principle of operation, calculation of differential gain, common mode gain, CMRR and ICMR.
Lecture 24	OP-AMP design: design of differential amplifier for a given specification
Lecture 25	Design of gain stages and output stages, compensation
Lecture 26	OP-AMP applications: review of inverting and non-inverting amplifiers
Lecture 27	Integrator and differentiator, summing amplifier
Lecture 28	Precision rectifier, Schmitt trigger and its applications
Lecture 29	Active filters: Low pass, high pass
Lecture 30	Band pass and band stop Filters
Lecture 31	Filter Design guidelines
Lecture 32	Digital-to-analog converters (DAC): Weighted resistor, R-2R ladder, resistor string etc
Lecture 33	Analog to digital converters (ADC): Single slope, dual slope
Lecture 34	successive approximation, flash TYPE ADC
Lecture 35	Switched capacitor circuits: Basic concept
Lecture 36	Switched capacitor circuits: practical configurations
Lecture 37	Switched capacitor circuits: applications
Lecture 38	Spill over classes
Lecture 39	Spill over classes
Lecture 40	Spill over classes
L	

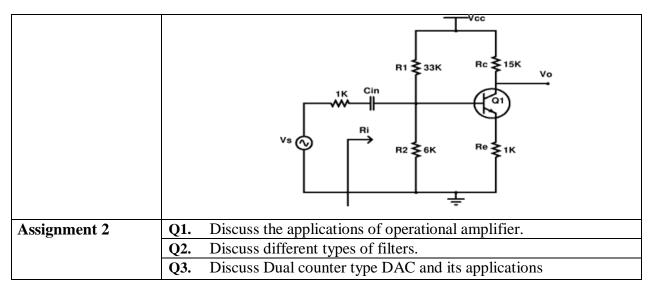
II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- 3. Hand-outs

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)


Sample assignments:

Assignment 1	 Q1. Assume that a silicon transistor with β =50, V_{BEactive}=0.7 V, V_{CC} =15V and R_C=10K is used in the Fig.1.It is desired to establish a Q-point at V_{CE}=7.5 V and I_C=5mA and stability factor S≤5.Find Re,R₁and R₂. Q2. In the Darlington stage shown in Fig.2 , V_{CC}=15V , β₁=50, β₂=75, V_{BE}=0.7, R_C=750 Ω and R_E=100 Ω. If at the quiescent point V_{CE2}=6V determine the value of R.
	Q3. For the amplifier shown in Fig.3 using a transistor whose parameters are h _{ie} =1100,h _{re} =2.5×10 ⁻⁴ ·h _{fe} =50,h _{oe} =24μA/V.Find A _I , A _V , A _{VS} and R _i .

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-05: Microcontrollers

Credit: 3

3L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of microcomputer systems and their building blocks, memory interfacing, concepts of interrupts and Direct Memory Access, instruction sets of microprocessors (with examples of 8085 and 8086);	10
3	Interfacing with peripherals - timer, serial I/O, parallel I/O, A/D and D/A converters; Arithmetic Coprocessors; System level interfacing design;	8
4	Concepts of virtual memory, Cache memory, Advanced coprocessor Architectures- 286, 486, Pentium; Microcontrollers: 8051 systems,	10
5	Introduction to RISC processors; ARM microcontrollers interface designs.	11
	Total	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Develop assembly language programming skills.
)5	Microcontrollers	CO 2	Able to build interfacing of peripherals like, I/O, A/D, D/A, timer etc.
4EC4-05	conti	CO 3	Develop systems using different microcontrollers.
44	licro	CO 4	Explain the concept of memory organization.
	M	CO 5	Understand RSIC processors and design ARM microcontroller based systems.

CO-PO Mapping:

Subject	Course Outcomes	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
rs	CO 1			3	1								
- rolle	CO 2			3		1							
4EC04- croconti	CO 3	1	2	3									
4EC04- 05Microcontrollers	CO 4	3	2	1									
051	CO 5			3	2	1							
3: Strongly						2: Mo	derat	e	1:	: Wea	k		

Lecture Plan:

Lecture	Content to be taught					
No.						
Lecture 1	Zero Lecture					
Lecture 2	Overview of microcomputer systems and their building blocks					
Lecture 3	Overview of microcomputer systems and their building blocks					
Lecture 4	Memory interfacing					
Lecture 5	Memory interfacing					
Lecture 6	Concepts of interrupts Office of Dean Academic Affairs					
	Rajasthan Technical University, Ko					

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Lecture 7	Direct Memory Access
Lecture 8	Direct Memory Access
Lecture 9	Instruction sets of microprocessors (with examples of 8085 and 8086)
Lecture 10	Instruction sets of microprocessors (with examples of 8085 and 8086)
Lecture 11	Instruction sets of microprocessors (with examples of 8085 and 8086)
Lecture 12	Instruction sets of microprocessors (with examples of 8085 and 8086)
Lecture 13	Interfacing with peripherals
Lecture 14	Timer
Lecture 15	Serial I/O
Lecture 16	Parallel I/O
Lecture 17	A/D and D/A converters;
Lecture 18	A/D and D/A converters
Lecture 19	Arithmetic Coprocessors
Lecture 20	System level interfacing design
Lecture 21	Concepts of virtual memory, Cache memory
Lecture 22	Concepts of virtual memory, Cache memory
Lecture 23	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 24	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 25	Advanced coprocessor Architectures- 286, 486, Pentium
Lecture 26	Microcontrollers: 8051 systems,
Lecture 27	Microcontrollers: 8051 systems,
Lecture 28	Microcontrollers: 8051 systems,
Lecture 29	Microcontrollers: 8051 systems,
Lecture 30	Microcontrollers: 8051 systems,
Lecture 31	Introduction to RISC processors
Lecture 32	Introduction to RISC processors
Lecture 33	Introduction to RISC processors
Lecture 34	ARM microcontrollers interface designs
Lecture 35	ARM microcontrollers interface designs
Lecture 36	ARM microcontrollers interface designs
Lecture 37	ARM microcontrollers interface designs
Lecture 38	ARM microcontrollers interface designs
Lecture 39	Spill Over Classes
Lecture 40	Spill Over Classes

Content delivery method:

- **1.** Chalk and Duster
- **2.** PPT
- 3. Hand-outs

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Assignments:

Assignment 1	Q1. Compare between microprocessor & microcontroller based on no. of instructions used, registers, memory and applications.					
	Q2. Interface external program memory with 8051 & explain how the data is transfer.					
	Q3. List the I/O ports of microcontroller 8051. Explain their alternative function?					
Assignment 2	Q1. Explain RISC and CISC?					
	Q2. Without using MUL instruction, perform multiplication operation					
	on any two operands, with both of them being:					
	a. Positive numbers					
	b. One positive and other negative number					
	c. Both negative numbers					
	Verify the values computed.					
	Q3. Can you brief up the evolution of ARM architecture?					

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC3-06: Electronics Measurement & Instrumentation

Credit: 3

3L+0T+0P

End Term Exam: 3 Hours

Max. Marks: 100(IA:30, ETE:70)

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	THEORY OF ERRORS - Accuracy & precision, Repeatability, Limits of errors, Systematic & random errors, Modeling of errors, Probable error & standard deviation, Gaussian error analysis, Combination of errors.	8
3	ELECTRONIC INSTRUMENTS - Electronic Voltmeter, Electronic Multimeters, Digital Voltmeter, and Component Measuring Instruments: Q meter, Vector Impedance meter, RF Power & Voltage Measurements, Introduction to shielding & grounding.	8
4	OSCILLOSCOPES – CRT Construction, Basic CRO circuits, CRO Probes, Techniques of Measurement of frequency, Phase Angle and Time Delay, Multibeam, multi trace, storage & sampling Oscilloscopes.	7
5	SIGNAL GENERATION AND SIGNAL ANALYSIS - Sine wave generators, Frequency synthesized signal generators, Sweep frequency generators. Signal Analysis - Measurement Technique, Wave Analyzers, and Frequency - selective wave analyser, Heterodyne wave analyser, Harmonic distortion analyser, and Spectrum analyser.	8
6	TRANSDUCERS - Classification, Selection Criteria, Characteristics, Construction, Working Principles and Application of following Transducers:- RTD, Thermocouples, Thermistors, LVDT, Strain Gauges, Bourdon Tubes, Seismic Accelerometers, Tachogenerators, Load Cell, Piezoelectric Transducers, Ultrasonic Flow Meters.	8
	Total	40

Course Outcome:

Course Code	Course Name	Course Outcome	Details
	MENT & DN	CO 1	Describe the use of various electrical/electronic instruments, their block diagram, applications, dnd principles of operation, standards eorrs and units of measurements.
6	SURE	CO 2	Develop basic skills in the design of electronic equipments
4EC3-06	JECTRONIC MEASUREMENT INSTRUMENTATION	CO 3	Analyse different electrical/electronic parameters using state of equipments of measuring instruments which is require to all types of industries.
	NOXI CO 4		Solve : Identify electronics/ electrical instruments, understanding associated with the instruments
	ELEC	CO 5	Explain use of transducers in different types of field applications

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
& NN	CO 1	3	2	1									
6 NIC ENT a	CO 2	2	2	2	3								
4EC3-06 ELECTRONIC MEASUREMENT & INSTRUMENTATION	CO 3	2	3										
	CO 4	2	1	1				2					
	CO 5	3	1										2
3: Strongly		2: Mo	oderat	e	1	: Wea	k						I

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Zero Lecture
Lecture 2	Theory of errors
Lecture 3	Accuracy & precision, Repeatability
Lecture 4	Limits of Time-Hours errors
Lecture 5	Systematic & random errors
Lecture 6	Modeling of errors
Lecture 7	Probable error
Lecture 8	standard deviation
Lecture 9	Gaussian error analysis
Lecture 10	Combination of errors
Lecture 11	Electronic instruments - Electronic Voltmeter
Lecture 12	Electronic Multimeters
Lecture 13	Digital Voltmeter
Lecture 14	Component Measuring Instruments: Q meter
Lecture 15	Vector Impedance meter
Lecture 16	RF Power & Voltage Measurements
Lecture 17	Introduction to shielding & grounding
Lecture 18	Oscilloscopes - CRT Construction
Lecture 19	Basic CRO circuits, CRO Probes
Lecture 20	Techniques of Measurement of frequency, Phase Angle and Time Delay
Lecture 21	Multibeam, multi trace, storage & sampling Oscilloscopes
Lecture 22	Multibeam, multi trace, storage & sampling Oscilloscopes
Lecture 23	Signal generation and signal analysis - Sine wave generators,
Lecture 24	Frequency synthesized signal generators
Lecture 25	Sweep frequency generators
Lecture 26	Signal Analysis - Measurement Technique
Lecture 27	Wave Analyzers, and Frequency - selective wave analyser
Lecture 28	Heterodyne wave analyser
Lecture 29	Harmonic distortion analyser
Lecture 30	Spectrum analyser
Lecture 31	Transducers – Classification
Lecture 32	Selection Criteria Characteristics
Lecture 33	Construction, Working Principles and Application of following Transducers:- RTD Office of Dean Academic Afr
	Rajasthan Technical Universit

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Lecture 34	Thermocouples				
Lecture 35	Thermistors				
Lecture 36	LVDT Strain Gauges, Bourdon Tubes				
Lecture 37	Seismic Accelerometers				
Lecture 38	Tachogenerators, Load Cell,				
Lecture 39	Piezoelectric Transducers				
Lecture 40	Ultrasonic Flow Meters				

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT
- **3.** Hand-outs

Sample assignments:

Assignment 1	Q1.	Write the principal of an AC Bridge used for the measurement of Unknown capacitor
	Q2.	Distinguish Between Accuracy and Precision?
	Q3.	Explain flow measurement with a suitable example.
Assignment 2	Q1.	What are primary sensing elements and transducers?
	Q2.	A Wheatstone Bridge requires to change of 7Ω in unknown
		arm of bridge to change in deflection of 14 mm. of galvanometer deter mine the sensitivity and deflection factor.
	Q3.	Explain the terms static error, static correction, relative error and percentage relative error.

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-07: Analog and Digital Communication

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Review of signals and systems, Frequency domain representation of signals, Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations. Angle Modulation, Representation of FM and PM signals, Spectral characteristics of angle modulated signals.	8
3	Review of probability and random process. Gaussian and white noise characteristics, Noise in amplitude modulation systems, Noise in Frequency modulation systems. Pre- emphasis and Deemphasis, Threshold effect in angle modulation.	7
4	Pulse modulation. Sampling process. Pulse Amplitude and Pulse code modulation (PCM), Differential pulse code modulation. Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers.	8
5	Elements of Detection Theory, Optimum detection of signals in noise, Coherent communication with waveforms- Probability of Error evaluations. Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion. Pass band Digital Modulation schemes- Phase Shift Keying, Frequency Shift Keying, Quadrature Amplitude Modulation, Continuous Phase Modulation and Minimum Shift Keying.	8
6	Digital Modulation tradeoffs. Optimum demodulation of digital signals over band- limited channels- Maximum likelihood sequence detection (Viterbi receiver). Equalization Techniques. Synchronization and Carrier Recovery for Digital modulation.	8
	Total	40

Course Outcome:

Course Code	Course Name	Course Outcome	Details						
		CO 1	Analyze and compare different analog modulation schemes for their efficiency and bandwidth						
	Digital cation	CO 2	Analyze the behavior of a communication system in presence of noise						
4EC4-07	unicat	CO 3	Investigate pulsed modulation system and analyze their system performance						
4E0	ignorphic presence of noise CO 3 Investigate pulsed modulation system and analy system performance CO 4 Analyze different digital modulation schemes compute the bit error performance								
	Design a communication system comprised of both analog and digital modulation techniques								

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
I	CO 1	3	3		3		1				1		
24-07 & Digital Inication	CO 2	3	2		3		1						
4EC4-07 log & Di nmunica	CO 3	3	2		3		2						
4EC4-07 Analog & Digita Communication	CO 4	3	3		3		2				1		
A O	CO 5	3	2	3	3		3			2	2		
		3: Stro	ongly		2:	Mode	rate		1: V	Veak			

Content delivery method:

- 1. Chalk and Duster
- **2.** PPT

Lecture Plan:

Lecture No.	Content to be taught
Lecture 1	Introduction to the COURSE
Lecture 2	Review of signals and systems, Frequency domain representation of signals
Lecture 3	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 4	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 5	Principles of Amplitude Modulation Systems- DSB, SSB and VSB modulations
Lecture 6	Angle Modulation, Representation of FM and PM signals
Lecture 7	Angle Modulation, Representation of FM and PM signals
Lecture 8	Spectral characteristics of angle modulated signals.
Lecture 9	Review of probability and random process
Lecture 10	Review of probability and random process
Lecture 11	Noise in amplitude modulation systems
Lecture 12	Noise in amplitude modulation systems
Lecture 13	Noise in Frequency modulation systems
Lecture 14	Pre-emphasis and Deemphasis
Lecture 15	Threshold effect in angle modulation
Lecture 16	Pulse modulation. Sampling
Lecture 17	Pulse Amplitude and Pulse code modulation (PCM)
Lecture 18	Pulse Amplitude and Pulse code modulation (PCM)
Lecture 19	Differential pulse code modulation
Lecture 20	Delta modulation
Lecture 21	Noise considerations in PCM

Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Lecture 22	Time Division multiplexing, Digital Multiplexers
Lecture 23	Elements of Detection Theory
Lecture 24	Optimum detection of signals in noise
Lecture 25	Coherent communication with waveforms- Probability of Error evaluations
Lecture 26	Coherent communication with waveforms- Probability of Error evaluations
Lecture 27	Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion
Lecture 28	Baseband Pulse Transmission- Inter symbol Interference and Nyquist criterion
Lecture 29	Pass band Digital Modulation schemes
Lecture 30	Phase Shift Keying
Lecture 31	Frequency Shift Keying
Lecture 32	Quadrature Amplitude Modulation
Lecture 33	Continuous Phase Modulation and Minimum Shift Keying.
Lecture 34	Digital Modulation tradeoffs
Lecture 35	Optimum demodulation of digital signals over band-limited channels
Lecture 36	Optimum demodulation of digital signals over band-limited channels
Lecture 37	Maximum likelihood sequence detection (Viterbi receiver)
Lecture 38	Equalization Techniques
Lecture 39	Synchronization and Carrier Recovery for Digital modulation
Lecture 40	Synchronization and Carrier Recovery for Digital modulation

Assignments:

Assignment 1	Q1. Design Modulator and Demodulator of SSB-SC Modulation based on its mathematical expression.								
	Q2. Derive the figure of merit in a) FM Receiver b) PM Receiver								
	Q3. A Carrier signal $c(t) = 20 \cos (2\pi 10^6 t)$ is modulated by a message signal having three frequencies 5 KHz, 10 KHz & 20 KHz. The corresponding modulation indexes are 0.4, 0.5 & 0.6. Sketch the spectrum. Calculate bandwidth, power and efficiency.								
Assignment 2	Q1. Derive the expression for probability of error in ASK, FSK and PSK systems and compare them.								
	Q2. With block diagrams explain about DPCM & DM. also compare them.								
	 Q3. A message signal m(t) = 4 cos (2π10³t) is sampled at nyquist rate and transmitted through a channel using 3-bit PCM system. i. Calculate all the parameters of the PCM. ii. If the sampled values are 3.8, 2.1, 0.5, -1.7, -3.2 & -4 then determine the quantizer output, encoder output andquantization error per each sample. iii. Sketch the transfer characteristics of the quantizer. 								

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-21: Analog and Digital Communication Lab

Credit: 1.5

Max. Marks: 100(IA:60, ETE:40)

0L+0T+3P

List o	of Experiments
Sr. No.	Name of Experiment
1.	Observe the Amplitude modulated wave form & measure modulation index and demodulation of AM signal.
2.	Harmonic analysis of Amplitude Modulated wave form.
3.	Generation & Demodulation of DSB – SC signal.
4.	Modulate a sinusoidal signal with high frequency carrier to obtain FM signal and demodulation of the FM signal.
5.	Verification of Sampling Theorem.
6.	To study & observe the operation of a super heterodyne receiver.
7.	PAM, PWM & PPM: Modulation and demodulation.
8.	To observe the transmission of four signals over a single channel using TDM-PAM method.
9.	To study the PCM modulation & demodulation and study the effect of channel like attenuation, noise in between modulator & demodulator through the experimental setup.
10.	To study the 4 channel PCM multiplexing & de-multiplexing in telephony system.
11.	To study the Delta & Adaptive delta modulation & demodulation and also study the effect of channel like attenuation, noise in between modulator & demodulator through the experimental setup.
12.	To perform the experiment of generation and study the various data formatting schemes (Unipolar, Bipolar, Manchester, AMI etc.)
13.	To perform the experiment of generation and detection of ASK, FSK, BPSK, DBPSK signals with variable length data pattern.

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Understand different analog modulation schemes and evaluate modulation index
	igital m Lab	CO 2	Able to understand the principle of superhetrodyne receiver
4EC4-21	Analog and Digital Communication La	CO 3	Develop time division multiplexing concepts in real time applications
7	Analog Commui	CO 4	Develop and able to comprehend different data formatting schemes
		CO 5	Comprehend and analyze the concepts of different digital modulation techniques in communication.

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
al	CO 1	3	2		1								
21 Digit ion L	CO 2	3	2	1									
4EC4-21 Analog and Digital Communication Lab	CO 3	3	3	2	2	1							
4E nalog	CO 4	3	3	2	2	1							
Ar Col	CO 5	3	3	2	2	1							
	1	3: Stro	ongly	1	2:	Mode	rate		1: V	Veak			

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-22: Analog Circuits Lab

0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

List o	of Experiments
Sr. No.	Name of Experiment
1.	Study and implementation of Voltage Series and Current Series Negative Feedback Amplifier.
2.	Study and implementation of Voltage Shunt and Current Shunt Negative Feedback Amplifier.
3.	Plot frequency response of BJT amplifier with and without feedback in the emitter circuit and calculate bandwidth, gain bandwidth product with and without negative feedback.
4.	Study and implementation of series and shunt voltage regulators and calculate line regulation and ripple factor.
5.	Plot and study the characteristics of small signal amplifier using FET.
6.	Study and implementation of push pull amplifier. Measure variation of output power & distortion with load and calculate the efficiency.
7.	Study and implementation of Wein bridge oscillator and observe the effect of variation in oscillator frequency.
8.	Study and implementation of transistor phase shift oscillator and observe the effect of variation in R & C on oscillator frequency and compare with theoretical value.
9.	Study and implementation of the following oscillators and observe the effect of variation of capacitance on oscillator frequency: (a) Hartley (b) Colpitts.
10.	Study and implementation of the Inverting And Non-Inverting Operational Amplifier.
11.	Study and implementation of Summing, Scaling And Averaging of Operational Amplifier
12.	Implementation of active filters using OPAMP.

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Discuss and observe the operation of a bipolar junction transistor and field-effect transistor in different region of operations.
	Lab	CO 2	Analyze and design of transistor Amplifier and Oscillators. Importance of negative feedback.
4EC4-22	og Circuits Lab	CO 3	Analyze the frequency response of amplifiers and operational amplifier circuits. Develop an intuition for analog circuit behavior in both linear and nonlinear operation.
	Analog (CO 4	Design op-amps for specific gain, speed, or switching performance. Compensate operational amplifiers for stability.
		CO 5	Design and conduct experiments, interpret and analyze data, and report results.

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
ab	CO 1	3	2	1	2	2							
22 iits L	CO 2	2	3	1	2	3							
4EC4-22 g Circuits Lab	CO 3	1	3	2	3	2							
4E Analog (CO 4	1	2	3	2	3							
Ans	CO 5	1	2	3	3	3							
	1	3: Stro	ongly		2:	Mode	rate	1	1: V	Veak	1	1	I

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-23: Microcontrollers Lab

Credit: 1.5

Max. Marks: 100(IA:60, ETE:40)

List o	of Experiments
Sr. No.	Name of Experiment
Follo	wing exercises has to be Performed on 8085
	Write a program for
1.	1.1 Multiplication of two 8 bit numbers
	1.2 Division of two 8 bit numbers
2.	Write a program to arrange a set of data in Ascending and Descending order.
3.	Write a program to find Factorial of a given number.
	Write a program to generate a Software Delay.
4.	4.1 Using a Register
	4.2 Using a Register Pair
8085	Interfacing Programs
5.	5.1 Write a program to Interface ADC with 8085.
	5.2 Write a program to interface Temperature measurement module with 8085.
6.	Write a program to interface Keyboard with 8085.
7.	Write a program to interface DC Motor and stepper motor with 8085.
Follo	wing exercises has to be Performed on 8051
8.	Write a program to convert a given Hex number to Decimal.
9.	Write a program to find numbers of even numbers and odd numbersamong 10 Numbers.
10.	Write a program to find Largest and Smallest Numbers among 10 Numbers.
11.	11.1 To study how to generate delay with timer and loop.
	11.2 Write a program to generate a signal on output pin using timer.
8051	Interfacing Programs
12	12.1 Write a program to interface Seven Segment Display with 8051.
	12.2 Write a program to interface LCD with 8051.
13	Write a program for Traffic light Control using 8051.
14	Write a program for Elevator Control using 8051.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

Course Outcome:

Course	Course	Course	Details									
Code	Name	Outcome	Dualis									
		CO 1 Develop skills related to assembly level programming of microprocessors and microcontroller.										
	q											
	Lab	CO 2	CO 2 Interpret the basic knowledge of microprocessor and									
			microcontroller interfacing, delay generation, waveform									
	lle		generation and Interrupts.									
	tro	CO 3	Interfacing the external devices to the microcontroller									
	uo		and microprocessor to solve real time problems.									
-23	Microcontrollers	CO 4	Illustrate functions of various general purpose									
4-2	lic		interfacing devices.									
EC4.	Z	CO 5	Develop a simple microcontroller and microprocessor									
4			based systems									

CO-PO Mapping:

Subject	Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
Lab	CO 1	2	1	2	1	3							
3 lers I	CO 2	3	2	1	2	1							
4EC4-23 controlle	CO 3	1	1	3	1	3							
4EC4-23 Microcontrollers	CO 4	2	2	1									
Mic	CO 5	1	1	3	2	2		2					
L	1	3: Stro	ongly	1	2:	Mode	rate		1: W	Veak			

SYLLABUS

II Year - IV Semester: B.Tech. (Electronics & Communication Engineering)

4EC4-24: Electronics Measurement & Instrumentation Lab

Credit: 1.5

Max. Marks: 100(IA:60, ETE:40)

0L+0T+3P

List o	of Experiments								
Sr.									
No.	Name of Experiment								
1.	Measure earth resistance using fall of potential method.								
2.	Plot V-I characteristics & amp; measure open circuit voltage & amp; short circuit current of a solar panel.								
3.	Measure unknown inductance capacitance resistance using following bridges (a) Anderson Bridge (b) Maxwell Bridge								
4.	To measure unknown frequency & amp; capacitance using Wein's bridge.								
5.	Measurement of the distance with the help of ultrasonic transmitter & amp; receiver.								
6.	Measurement of displacement with the help of LVDT.								
7.	Draw the characteristics of the following temperature transducers (a) RTD (Pt-100) (b) Thermistors.								
8.	Draw the characteristics between temperature & amp; voltage of a K type thermocouple								
9.	Calibrate an ammeter using D.C. slide wire potentiometer								
10.	Measurement of strain/force with the help of strain gauge load cell.								
11.	Study the working of Q-meter and measure Q of coils.								
12.	Calibrate a single-phase energy meter (Analog and Digital) by phantom loading at different power factor by: (i) Phase shifting transformer (ii) Auto transformer.								

Course Outcome:

Course Code	Course Name	Course Outcome	Details
		CO 1	Understanding of the fundamentals of Electronic
	int &		Instrumentation. Explain and identify measuring instruments.
	ireme on La	CO 2	Able to measure resistance, inductance and capacitance by various methods.
	Electronic Measurement Instrumentation Lab	CO 3	Design an instrumentation system that meets desired specifications and requirements.
4	ronic	CO 4	Design and conduct experiments, interpret and analyze data, and report results.
4EC4-24	Electi In	CO 5	Explain the principle of electrical transducers. Confidence to apply instrumentation solutions for given industrial applications.
			Office of Dean Academic Affa

CO-PO Mapping:

Subject	Course Outcomes	РО 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
lent ,ab	CO 1	3	2	1	2	2							
4 surem tion L	CO 2	2	3	1	2	3							
4EC4-24 iic Measu umentati	CO 3	1	3	2	3	2							
4EC4-24 Electronic Measurement & Instrumentation Lab	CO 4	1	2	3	2	3							
Elec &]	CO 5	1	2	3	3	3							

3: Strongly

2: Moderate

1: Weak

SEMESTER-V & VI

Teaching & Examination Scheme B.Tech. : Electronics & Communication Engineering 3rd Year –V Semester

			THEO	RY							
			Course	-	onta s/w			Ma	Cr		
SN	Categ ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	ESC	5EC 3-01	Computer Architecture	2	0	0	2	20	80	100	2
2		5EC 4-02	Electromagnetics Waves	3	0	0	3	30	120	150	3
3		5EC 4-03	Control system	3	0	0	3	30	120	150	3
4	-	5EC 4-04	Digital Signal Processing	3	0	0	3	30	120	150	3
5	PCC/ PEC	5EC 4-05	Microwave Theory & Techniques	3	0	0	3	30	120	150	3
6	FEC	Profess	ional Elective I (any one)	2	0	0	2	20	80	100	2
		5EC 5-11	Bio-Medical Electronics								
		5EC 5-12	Embedded Systems								
		5EC 5-13	Probability Theory & Stochastic Process								
		5EC 5-14	Satellite Communication								
			Sub Total	16	0	0		160	640	800	16
			PRACTICAL &								
7		5EC 4-21	RF Simulation Lab	0	0	3	2	45	30	75	1.5
8	PCC	5EC 4-22	Digital Signal Processing Lab	0	0	3	2	45	30	75	1.5
9		5EC 4-23	Microwave Lab	0	0	2	2	30	20	50	1
10	PSIT	5EC 7-30	Industrial Training	0	0	1		75	50	125	2.5
11	SODE CA	5EC 8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			25	25	0.5
			Sub- Total	0	0	9	_	195	155	350	7
			L OF V SEMESTER	16	0	9		355	795	1150	23

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, **IA:** Internal Assessment

Teaching & Examination Scheme B. Tech.: Electronics & Communication Engineering 3rd Year – VI Semester

			THEC	RY							
	a <i>i</i>		Course		onta s/we			Ma	Cr		
SN	Categ ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	ESC	6EC 3-01	Power Electronics	2	0	0	2	20	80	100	2
2		6EC 4-02	Computer Network	3	0	0	3	30	120	150	3
3		6EC 4-03	Fiber Optics Communications	3	0	0	3	30	120	150	3
4	PCC/ PEC	6EC 4-04	Antennas and Propagation	3	0	0	3	30	120	150	3
5		6EC 4-05 Information the and coding		3	0	0	3	30	120	150	3
6		Professi	onal Elective II (any one)	3	0	0	3	30	120	150	3
		6EC 5-11	Introduction to MEMS								
		6EC 5-12	Nano Electronics								
		6EC 5-13	Neural Network And Fuzzy Logic Control								
		6EC 5-14	High Speed Electronics								
			Sub Total	17	0	0		170	680	850	17
	[(70.4.01	PRACTICAL &					60	10	100	
7		6EC 4-21	Computer Network Lab	0	0	4	2	60	40	100	2
8	PCC	6EC 4-22	Antenna and wave propagation Lab	0	0	2	2	30	20	50	1
9		6EC 4-23	Electronics Design Lab	0	0	4	2	60	40	100	2
10		6EC 4-24	Power Electronics Lab	0	0	2	2	30	20	50	1
11	SODE CA	6EC 8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			25	25	0.5
			Sub- Total	0	0	12		180	145	325	6.5
		TOTAI	L OF VI SEMESTER	17	0	12		350	825	1175	23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, **IA:** Internal Assessment

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC3-01: Computer Architecture

Credit: 2	Max. Marks: 100(IA:20, ETE:80)
2L+0T+0P	End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic Structure of Computers, Functional units, software, performance issues software, machineinstructions and programs, Types of instructions, Instruction sets: Instruction formats, Assembly language, Stacks, Ques, Subroutines.	6
3	Processor organization, Information representation, number formats. Multiplication & division, ALU design, Floating Point arithmetic, IEEE 754 floating pointformats	5
4	Control Design, Instruction sequencing, Interpretation, Hard wired controlDesignmethods, and CPU control unit. Microprogrammed Control - Basic concepts, minimizing microinstruction size, multiplier control unit. Microprogrammed computers - CPU control unit	6
5	Memory organizations, device characteristics, RAM, ROM, Memory management, Concept ofCache & associative memories, Virtual memory.	5
6	System organization, Input - Output systems, Interrupt, DMA, Standard I/O interfacesConcept of parallel processing, Pipelining, Forms of parallel processing, interconnect network	5
	Total	28

5EC4-02: Electromagnetics Waves

Credit: 3	
3L+OT+OP	

: 3 Hou	-OT+OP End Term Exam:						
Hours	Contents	SN					
01	Introduction: Objective, scope and outcome of the course.	1					
08	Transmission Lines-Equations of Voltage and Current on TX line, Propagation constant and characteristic impedance, and reflection coefficient and VSWR, Impedance Transformation on Loss-less and Low loss Transmission line, Power transfer on TX line, Smith Chart, Admittance Smith Chart, Applications of transmission lines: Impedance Matching, use transmission line sections as circuit elements.	2					
03	Maxwell's Equations-Basics of Vectors, Vector calculus, Basic laws of Electromagnetics, Maxwell's Equations, Boundary conditions at Media Interface.	3					
08	Uniform Plane Wave-Uniform plane wave, Propagation of wave, Wave polarization, Poincare's Sphere, Wave propagation in conducting medium, phase and group velocity, Power flow and Poynting vector, Surface current and power loss in a conductor.	4					
07	Plane Waves at a Media Interface-Plane wave in arbitrary direction, Reflection and refraction at dielectric interface, Total internal reflection, wave polarization at media interface, Reflection from a conducting boundary.	5					
08	Waveguides- Wave propagation in parallel plate waveguide, Analysis of waveguide general approach, Rectangular waveguide, Modal propagation in rectangular waveguide, Surface currents on the waveguide walls, Field visualization, Attenuation in waveguide.	6					
07	Radiation-Solution for potential function, Radiation from the Hertz dipole, Power radiated by hertz dipole, Radiation Parameters of antenna, receiving antenna, Monopole and Dipole antenna	7					
42	Total						

1.4 0

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC4-03: Control system

Credit: 3 Max. Marks: 150(IA:30, ETE: 3L+0T+0P End Term Exam: 3 H						
SN	Contents	3 Hours Hours				
1	Introduction: Objective, scope and outcome of the course.	1				
2	Introduction to control problem- Industrial Control examples. Transfer function. System with dead-time. System response. Control hardware and their models: potentiometers, synchros, LVDT, dc and ac servomotors, tacho-generators, electro hydraulic valves, hydraulicservomotors, electro pneumatic valves, pneumatic actuators. Closed-loop systems. Block diagram and signal flow graph analysis.	8				
3	Feedback control systems- Stability, steady-state accuracy,transient accuracy, disturbance rejection, insensitivity and robustness. proportional, integral and derivative systems. Feedforward and multi-loop control configurations, stability concept, relative stability, Routhstability criterion.	7				
4	Time response of second-order systems- steady-state errors and error constants. Performance specifications in time-domain. Root locus method of design. Lead and lag compensation.	6				
5	Frequency-response analysis- Polar plots, Bode plot, stability in frequency domain, Nyquistplots. Nyquist stability criterion. Performance specifications in frequency-domain. Frequency domain methods of design, Compensation & their realization in time & frequency domain. Lead and Lag compensation. Op-amp based and digital implementation of compensators. Tuning of process controllers. State variable formulation and solution.	8				
6	State variable Analysis- Concepts of state, state variable, state model, state modelsfor linearcontinuous time functions, diagonalization of transfer function, solution of state equations, concept of controllability &observability.	6				
7	Introduction to Optimal control & Nonlinear control, Optimal Control problem, Regulator problem, Output regulator, treking problem. Nonlinear system – Basic concept & analysis.	6				
	Total	42				

1 50/14 00 505 100

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC4-04: Digital Signal Processing

Crea	Credit: 3 Max. Marks: 150(IA:30, 1	
3L+(3L+OT+OP End Term Exam: 3	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete time signals: Sequences; representation of signals on orthogonal basis; Sampling and reconstruction of signals; Discrete systems attributes, Z-Transform, Analysis of LSI systems, frequency Analysis, Inverse Systems	10
3	Discrete Fourier Transform (DFT), Fast Fourier Transform Algorithm, Implementation of Discrete Time Systems	9
4	Design of FIR Digital filters: Window method, Park-McClellan's method. Design of IIR DigitalFilters: Butterworth, Chebyshev and Elliptic Approximations; Lowpass, Bandpass, Bandstop and High pass filters.	10
5	Effect of finite register length in FIR filter design. Parametric and non- parametric spectral estimation. Introduction to mult-irate signal processing. Application of DSP.	10
	Total	40

1 50/14 00 505 100

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC4-05: Microwave Theory & Techniques

3L+0T+0P End Term Exam:						
SN	Contents	Hours				
1	Introduction: Objective, scope and outcome of the course.	1				
2	Introduction to Microwaves-History of Microwaves, Microwave Frequency bands; Applications of Microwaves: Civil and Military, Medical, EMI/ EMC.	4				
3	Mathematical Model of Microwave Transmission-Concept of Mode, Features of TEM, TE and TM Modes, Losses associated with microwave transmission, Concept of Impedance in Microwave transmission.	5				
4	Analysis of RF and Microwave Transmission Lines-Coaxial line, Rectangularwaveguide, Circular waveguide, Strip line, Micro strip line.	4				
5	Microwave Network Analysis-Equivalent voltages and currents for non- TEMlines, Networkparameters for microwave circuits, Scattering Parameters.	4				
6	Passive and Active Microwave Devices-Microwave passive components: Directional Coupler, Power Divider, Magic Tee, Attenuator, Resonator.Microwave active components: Diodes, Transistors, Oscillators, Mixers.Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes, Schottky Barrier diodes, PIN diodes.Microwave Tubes: Klystron, TWT, Magnetron.	6				
7	Microwave Design Principles-Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power Amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design. Microwave Antennas- Antenna parameters, Antenna for ground based systems, Antennas for airborne and satellite borne systems, Planar Antennas.	6				
8	Microwave Measurements-Power, Frequency and impedance measurement at microwave frequency, Network Analyzer and measurement of scattering parameters, Spectrum Analyzerand measurement of spectrum of a microwave signal, Noise at microwave frequency and measurement of noise figure. Measurement of Microwave antenna parameters.	6				
9	Microwave Systems-Radar, Terrestrial and Satellite Communication, Radio Aidsto Navigation, RFID, GPS. Modern Trends in Microwaves Engineering- Effect of Microwaves on human body, Medical and Civil applications of microwaves, Electromagnetic interference and Electromagnetic Compatibility (EMI & EMC), Monolithic Microwave ICs, RFMEMS for microwave components, Microwave Imaging.	6				

Rajasthan Technical University, Kota

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC5-11: Bio-Medical Electronics

Credit: 2 Max. Marks: 100(IA:20, ETE:80) 2L+0T+0P End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Brief introduction to human physiology. Biomedical transducers: displacement, velocity, force, acceleration, flow, temperature, potential, dissolved ions and gases.	9
3	Bio-electrodes and biopotential amplifiers for ECG, EMG, EEG, etc.	7
4	Measurement of blood temperature, pressure and flow. Impedance plethysmography. Ultrasonic, X-ray and nuclear imaging.Prostheses and aids: pacemakers, defibrillators, heart-lung machine, artificial kidney, aids for the handicapped. Safety aspects.	11
	Total	28

5EC5-12: Embedded Systems

Cred	redit: 2 Max. Marks: 100(IA:20, F	
2L+(OT+OP End Term Exa	m: 2 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	The concept of embedded systems design, Embedded microcontroller cores, embedded memories.	5
3	Examples of embedded systems, Technological aspects of embedded systems: interfacing between analog and digital blocks, signal conditioning, digital signal processing. Sub system interfacing, interfacing with external systems, user interfacing.	10
4	Design tradeoffs due to process compatibility, thermal considerations, etc., Software aspects of embedded systems: real time programming languages and operating systems for embedded systems.	12
	Total	28

5EC5-13: Probability Theory & Stochastic Process

Cred	lit: 2 Max. Marks: 100(IA:20	, ETE:80)
2L+(DT+OP End Term Exam	: 2 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Sets and set operations; Probability space; Conditional probability and Bayes theorem; Combinatorial probability and sampling models.	5
3	Discrete random variables, probability mass function, probability distribution function, example random variables and distributions; Continuous random variables, probability density function, probability distribution function, example distributions;	6
4	Joint distributions, functions of one and two random variables, moments of random variables; Conditional distribution, densities and moments; Characteristic functions of a random variable; Markov, Chebyshev and Chernoff bounds;	6
5	Random sequences and modes of convergence (everywhere, almost everywhere, probability, distribution and mean square); Limit theorems; Strong and weak laws of large numbers, central limit theorem	5
6	Random process. Stationary processes. Mean and covariance functions. Ergodicity. Transmission of random process through LTI. Power spectral density.	4
	Total	27

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC5-14: Satellite Communication

	Max. Marks: 100(IA:20, ETE:80) L+0T+0P End Term Exam: 2 Hours	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Satellite Communication: Principles and architecture of satellite Communication, Brief history of Satellite systems, advantages, disadvantages, applications and frequency bands used for satellite communication.	4
3	Orbital Mechanics: Orbital equations, Kepler's laws, Apogee and Perigee for an elliptical orbit, evaluation of velocity, orbital period, angular velocity etc. of a satellite, concepts of Solar day and Sidereal day.	4
4	Satellite sub-systems: Study of Architecture and Roles of various sub- systems of a satellite system such as Telemetry, tracking, command and monitoring (TTC & M), Attitude and orbit control system (AOCS), Communication sub-system, power sub-systems etc.	5
5	Typical Phenomena in Satellite Communication: Solar Eclipse on satellite, its effects, remedies for Eclipse, Sun Transit Outage phenomena, its effects and remedies, Doppler frequency shift phenomena and expression for Doppler shift. Satellite link budget	5
6	Flux density and received signal power equations, Calculation of System noise temperature for satellite receiver, noise power calculation, Drafting of satellite link budget and C/N ratio calculations in clear air and rainy conditions.	4
7	Modulation and Multiple Access Schemes: Various modulation schemes used in satellite communication, Meaning of Multiple Access, Multiple access schemes based on time, frequency, and code sharing namely TDMA, FDMA and CDMA.	4
	Total	27

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC4-21: RF Simulation Lab

Credi 0L+02	t: 1.5 Max. Marks: 75(IA:45, ETE:30) T+3P End Term Exam: 2 Hours
SN	Contents
1	Introduction: Objective, scope and outcome of the course.
2	Study of field pattern of various modes inside a rectangular and circular waveguide.
3	Find the change in characteristics impedance and reflection coefficients of the transmission line by changing the dielectric properties of materials embedded between two conductors.
4	Design and simulate the following Planar Transmission Lines:
	I. Strip and micro-strip lines
	II. Parallel coupled strip line
	III. Coplanar and Slot lines
	Determine their field patterns and characteristic impedance.
5	Design and simulate the following:
	I. 3-dB branch line coupler
	II. Wilkinson power divider
	III. Hybrid ring
	IV. Backward wave coupler
	V. Low pass filters
	VI. Band pass filters
6	Design RF amplifier using microwave BJT.
7	Design RF amplifier using microwave FET.

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC4-22: Digital Signal Processing Lab

Credi 0L+0	it: 1.5 Max. Marks: 75(IA:45, ETE:30) T+3P End Term Exam: 2 Hours
SN	Contents
1	Introduction: Objective, scope and outcome of the course.
2	Generation of continuous and discrete elementary signals (impulse,unit- step,ramp) using mathematical expression.
3	Perform basic operations on signals like adding, subtracting, shifting and scaling.
4	Perform continuous and discrete time Convolution (using basic definition).
5	Checking Linearity and Time variance property of a system using convolution, shifting.
6	To generate and verify random sequences with arbitrary distributions, means and variances for
	following:
	(a) Rayleigh distribution
	(b) Normal distributions: N(0,1).
	(c) Gaussion distributions: N (m, x)
	(d) Random binary wave.
7	To find DFT / IDFT of given DT signal.
8	N-point FFT algorithm.
9	To implement Circular convolution.
10	MATLAB code for implementing z-transform and inverse z-transform.
11	Perform inverse z-transform using residuez MATLAB function.
12	MATLAB program to find frequency response of analog LP/HP filters.
13	To design FIR filter (LP/HP) using windowing (rectangular, triangular, Kaiser) technique using simulink.

SYLLABUS

III Year - V Semester: B.Tech. (Electronics & Communication Engineering)

5EC4-23: Microwave Lab

Cred: 0L+0	it: 1 Max. Marks: 50(IA:30, ETE:20) T+2P End Term Exam: 2 Hours
SN	Contents
1	Introduction: Objective, scope and outcome of the course.
2	Study of various microwave components and instruments like frequency meter, attenuator, detector and VSWR meter. (a) Measurement of guide wavelength and frequency using a X-band
	(a) Measurement of galace wavelength and nequency using a result slotted line setup.(b) Measurement of low and high VSWR using a X-band slotted line setup.
3	Introduction to Smith chart, measurement of SWR, shift in minimum standing wave with unknown load and calculation of unknown load impedance using Smith chart.
4	Study the behavior of terminated coaxial transmission lines in time and frequency domain.
5	 (a) Draw the V-I characteristics of a Gunn diode and determine the output power and frequency as a function of voltage. (b) Study the square wave modulation of microwave signal using PIN diode.
6	Study the square wave modulation of microwave signal using PIN diode.Study and measure the power division and isolation characteristics of a microstrip 3dB power divider.
7	Study of rat race hybrid ring (equivalent of waveguide Magic-Tee) in micro-strip.
8	 (a) To study the characteristics of micro-strip 3dB branch line coupler, strip line backward wave coupler as a function of frequency and compare their bandwidth. (b) (b)Measure the microwave input, direct, coupled and isolated powers of a backward wave strip line coupler at the centre frequency using a power meter. From the measurements calculate the coupling, isolation and directivity of the coupler.

Syllabus of UNDERGRADUATE DEGREE COURSE

B.Tech. VI Semester

Electronics & Communication Engineering

Rajasthan Technical University, Kota Effective from session: 2019-20

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC3-01: Power Electronics

	lit: 2 Max. Marks: 100(IA:20, DT+0P End Term Exam:	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	SEMICONDUCTOR POWER DEVICES: Introduction. Basic characteristics &working of Power Diodes, Diac, Triac, MOSFETs, IGBT, GTO, Power Transistor and SCR- Principle of operation, V-I Characteristics, Turn-On mechanism and its applications	6
3	CONVERTERS: Basic concept, Working Principles of Single phase half Wave bridge converter, Single Phase Full Bridge Converter, 3 Phase Bridge Converter	5
4	INVERTERS: Voltage Source Inverter, Current Source Inverter, PWM Control of Voltage Source Converter and applications.	5
5	INDUSTRIAL POWER SUPPLIES: Principle of operation of choppers. Step up, Step down and reversible choppers. Chopper control techniques, High frequency electronic ballast, Switch Mode Power Supply: Fly back converter, forward/buck converter, Boost converter and buck-boost converter. Uninterruptible Power Supply.	6
6	MOTOR CONTROL: Introduction to speed control of DC motors using phase controlled converters and choppers, Basic idea of speed control of three phase induction motors using voltage and frequency control methods.	5
	Total	28

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC4-02: Computer Network

	lit: 3 Max. Marks: 150(IA:30, I DT+OP End Term Exam:	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Queuing Theory- Pure birth, Pure death & Birth-death processes, Mathematical models for $M/M/1$, $M/M/\infty$, $M/M/m$, $M/M/1/K$ and $M/M/m/m$ queues. Little's formula.	7
3	Introduction to computer networks and the Internet: Application layer: Principles of network applications, The Web and Hyper Text Transfer Protocol, File transfer, Electronic ail, Domain name system, Peer-to-Peer file sharing, Socket programming, Layering concepts. Packet switching, Blocking in packet switches, Three generations of packet switches, switch fabric, Buffering, Multicasting, Statistical Multiplexing.	9
4	Transport layer: Connectionless transport - User Datagram Protocol, Connection oriented transport – Transmission Control Protocol, Remote Procedure Call. Congestion Control and Resource Allocation: Issues in Resource Allocation, Queuing Disciplines, TCP congestion Control, Congestion Avoidance Mechanisms and Quality of Service.	9
5	Network layer: Virtual circuit and Datagram networks, Router, Internet Protocol, Routing algorithms, Broadcast and Multicast routing	7
6	Link layer: ALOHA, Multiple access protocols, IEEE 802 standards, Local Area Networks, addressing, Ethernet, Hubs, Switches.Fundamental of SDN, Open flow.	7
	Total	40

6EC4-03: Fiber Optics Communications

	lit: 3 Max. Marks: 150(IA:30, I DT+0P End Term Exam:	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to vector nature of light, propagation of light, propagation of light in a cylindrical dielectric rod, Ray model, wave model. Different types of optical fibers, Modal analysis of a step index fiber.	8
3	Signal degradation on optical fiber due to dispersion and attenuation. Fabrication of fibers and measurement techniques like OTDR	7
4	Optical sources - LEDs and Lasers, Photo-detectors - pin-diodes, APDs, detectorresponsivity, noise, optical receivers. Optical link design - BER calculation, quantum limit, power penalties.	8
5	Optical switches - coupled mode analysis of directional couplers, electro- optic switches.Optical amplifiers - EDFA, Raman amplifier.	8
6	WDM and DWDM systems. Principles of WDM networks.Nonlinear effects in fiber optic links. Concept of self-phase modulation, groupvelocity dispersion and solition based communication.	8
	Total	40

SYLLABUS

Credit: 3

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC4-04: Antennas and Propagation

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

3 Hour	OT+OP End Term Exam:	3L+(
Hours	Contents	SN
1	Introduction: Objective, scope and outcome of the course.	1
7	Fundamental Concepts-Physical concept of radiation, Radiation pattern, near andfar-field regions, reciprocity, directivity and gain, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions.	2
6	Radiation from Wires and Loops-Infinitesimal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop.	3
7	Aperture and Reflector Antennas-Huygens' principle, radiation from rectangular and circular apertures, design considerations, Babinet's principle, Radiation from sectoral and pyramidal horns, design concepts, prime-focus parabolic reflector and cassegrain antennas.	4
5	Broadband Antennas-Log-periodic and Yagi-Uda antennas, frequency independent antennas, broadcast antennas.	5
6	Micro strip Antennas-Basic characteristics of micro strip antennas, feeding methods, methods of analysis, design of rectangular and circular patch antennas.	6
5	Antenna Arrays-Analysis of uniformly spaced arrays with uniform and non-uniform excitation amplitudes, extension to planar arrays, synthesis of antenna arrays using Schelkun off polynomial method, Woodward-Lawson method.	7
4	Basic Concepts of Smart Antennas-Concept and benefits of smart antennas, fixed weight beamforming basics, Adaptive beam forming.	8
1	Different modes of Radio Wave propagation used in current practice.	9
42	Total	

6EC4-05: Information Theory and Coding

	lit: 3 Max. Marks: 150(IA:30, I DT+OP End Term Exam:	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Basics of information theory, entropy for discrete ensembles; Shannon's noiseless coding theorem; Encoding of discrete sources.	15
3	Markov sources; Shannon's noisy coding theorem and converse for discrete channels; Calculation of channel capacity and bounds for discrete channels; Application to continuous channels.	15
4	Techniques of coding and decoding; Huffman codes and uniquely detectable codes; Cyclic codes, convolutional arithmetic codes.	10
	Total	41

6EC5-11: Introduction to MEMS

Cred	Credit: 3 Max. Marks: 150(IA:30, ET	
3L+(0T+0P End Term Exam	: 3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction and Historical Background.	1
3	Mechanics of solids in MEMS/NEMS: Stresses, Strain, Hookes's law, Poisson effect, Linear Thermal Expansion, Bending; Energy methods, Overview of Finite Element Method, Modeling of Coupled Electromechanical Systems.	14
4	Scaling Effects. Micro/Nano Sensors, Actuators and Systems overview: Case studies. Review of Basic MEMS fabrication modules: Oxidation, Deposition Techniques, Lithography (LIGA), and Etching.	14
5	Micromachining: Surface Micromachining, sacrificial layer processes, Stiction; Bulk Micromachining, Isotropic Etching and Anisotropic Etching, Wafer Bonding.	10
	Total	40

6EC5-12: Nano Electronics

Credit: 3 Max. Marks: 150(IA:30, ET 3L+0T+0P End Term Exam: 3		•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to nanotechnology, meso structures, Basics of Quantum Mechanics: Schrodinger equation, Density of States. Particle in a box Concepts, Degeneracy. Band Theory of Solids. Kronig-Penny Model. Brillouin Zones.	15
3	Shrink-down approaches: Introduction, CMOS Scaling, The nano scale MOSFET, Finfets, Vertical MOSFETs, limits to scaling, system integration limits (interconnect issues etc.).	10
4	Resonant Tunneling Diode, Coulomb dots, Quantum blockade, Single electron transistors,Carbon nanotube electronics, Bandstructure and transport, devices, applications, 2D semiconductors and electronic devices, Graphene, atomistic simulation	14
	Total	40

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC5-13: Neural Network And Fuzzy Logic Control

Credit: 3Max. Marks: 150(IA:30, ET3L+0T+0PEnd Term Exam: 3		
SN Contents	Hours	
1 Introduction: Objective, scope and outcome of the course.	1	
2 NEUROPHYSIOLOGY: Introduction: Elementary neurophysiology – From neurons to ANNs - Neuron model McCulloch-Pitts model, Hebbian Hypothesis; limitations of single-layered neural networks.Applications Of Neural Networks: Pattern classification, Associative memories, Optimization, Applications in Image Processing-Iris, finger print & face, Applications in decision making.	8	
3 THE PERCEPTRON: The Perceptron and its learning law. Classification of linearly separable patterns. Linear Networks: Adaline - the adaptive linear element. Linear regression. The Wiener-Hopf equation. The Least- Mean-Square (Widrow-Hoff) learning algorithm. Method of steepest descent. Adaline as a linear adaptive filter. A sequential regression algorithm.Multi-Layer Feedforward Neural Networks: Multi-Layer Perceptrons. Supervised Learning. Approximation and interpolation of functions. Back-Propagation Learning law. Fast training algorithms. Applications of multilayer perceptrons: Image coding, Paint-quality inspection, Nettalk.	9	
4 FUZZY LOGIC: Introduction -Uncertainty & precision, Statistics and random process, Uncertainty in information, Fuzzy sets and membership. Membership Functions: Features of membership function. Standard forms and boundaries, Fuzzification, Membership value assignment – Intuition, Inference, Neural networks. Fuzzy To Crisp Conversions: Maximum membership principle.	7	
5 DEFUZZIFICATION METHODS- Centroid method, Weighted average method, Meanmax membership. Fuzzy Rule Based Systems: Natural language, linguistic hedges, Rule based system –Canonical rule forms, Decomposition of compound rules, Likelihood and truth qualification Aggregation of Fuzzy rules. Graphical techniques of reference.	8	
6 FUZZY CONTROL SYSTEM- Simple Fuzzy Logic controller, General FLC, Control System Design Problem Control (Decision) Surface, Assumptions in a Fuzzy Control System Design, Special forms of FLC system models, Industrial application: Aircraft Landing Control Problem.Fuzzy Engineering Process Control: Classical Feedback Control, Classical PID Control, Multi-input, Multi-output (MIMO) Control Systems, Fuzzy Statistical Process Control	9	
Total	42	

6EC5-14: High Speed Electronics

	lit: 3 Max. Marks: 150(IA:30, DT+OP End Term Exam	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Transmission line theory (basics) crosstalk and nonideal effects; signal integrity: impact ofpackages, vias, traces, connectors; non-ideal return current paths, high frequency powerdelivery,methodologies for design of high speed buses; radiated emissions and minimizing system noise;Noise Analysis: Sources, Noise Figure, Gain compression, Harmonic distortion,Intermodulation,Cross-modulation, Dynamic range	10
3	Devices: Passive and active, Lumped passive devices (models), Active (models, low vs High frequency)	6
4	RF Amplifier Design, Stability, Low Noise Amplifiers, Broadband Amplifiers (and Distributed)Power Amplifiers, Class A, B, AB and C, D E Integrated circuit realizations, Cross-overdistortion Efficiency RF power output stages	8
5	Mixers –Up conversion Down conversion, Conversion gain and spurious response. OscillatorsPrinciples.PLL Transceiver architectures	8
6	Printed Circuit Board Anatomy, CAD tools for PCB design, Standard fabrication, Micro viaBoards. Board Assembly: Surface Mount Technology, Through Hole Technology, ProcessControl and Design challenges.	8
	Total	41

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC4-21: Computer Network Lab

Cred	it: 2 Max. Marks: 100(IA:60, ETE:40)		
0L+0	T+4P End Term Exam: 2 Hours		
SN	Contents		
1	Introduction: Objective, scope and outcome of the course.		
2	PRELIMINARIES: Study and use of common TCP/IP protocols and term viz.		
	telnet rlogin ftp, ping, finger, Socket, Port etc.		
3	DATA STRUCTURES USED IN NETWORK PROGRAMMING: Representation		
	of unidirectional, Directional weighted and unweighted graphs.		
4	ALGORITHMS IN NETWORKS: computation of shortest path for one source-		
	one destination and one source –all destination		
5	SIMULATION OF NETWORK PROTOCOLS:		
	i. Simulation of $M/M/1$ and $M/M/1/N$ queues.		
	ii. Simulation of pure and slotted ALOHA.		
6	iii. Simulation of link state routing algorithm. Case study : on LAN Training kit		
Ŭ	i. Observe the behavior& measure the throughput of reliable data		
	transfer protocols under various Bit error rates for following DLL		
	layer protocols-		
	a. Stop & Wait		
	b. Sliding Window : Go-Back-N and Selective Repeat ii. Observe the behavior& measure the throughput under various		
	ii. Observe the behavior& measure the throughput under various network load conditions for following MAC layer Protocols		
	a. Aloha		
	b. CSMA, CSMA/CD & CSMA/CA		
	c. Token Bus & Token Ring		
7	Software and hardware realization of the following:		
	i. Encoding schemes: Manchester, NRZ.		
	ii. Error control schemes: CRC, Hamming code.		

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC4-22: Antenna and Wave Propagation Lab

Credi	
OL+OT+2P End Term Exam: 2 Hou	
SN	Contents
	PART-I (Antenna)
1	Study the gain pattern, HPBW, FNBW and Directivity of a dipole antenna.
2	Measurement of Radiation Pattern, Gain, HPBW of a folded dipole antenna.
3	Measurement of Radiation Pattern, Gain, HPBW of a loop antenna
4	Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection coefficient for given Monopole antenna
5	Measurement of Radiation Pattern, Gain, VSWR, input impedance and reflection coefficient for given Yagi antennas
6	Study of the Radiation Pattern, Gain, HPBW of a horn antenna
7	Study of the Radiation Pattern, Gain, HPBW of a reflector antennas
8	Study the radiation pattern, gain, VSWR, and input impedance of a rectangular microstrip patch antenna
9	Study the effect of inset feed on the input impedance of a rectangular patch antenna
10	Study the effect of ground plane on the radiation pattern of an antenna
11	Study antenna designing in CST Microwave Studio
12	Design a rectangular microstrip patch antenna using CST MWS
	PART-II (Optical Fiber)
	To perform following experiments based on Fiber Optic Trainer.
13	To set up Fiber Optic Analog link and Digital link.
14	Measurement of Propagation loss and numerical aperture.

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC4-23: Electronics Design Lab

Credi 0L+0'					
SN	Contents				
	To design the following circuits, assemble these on bread board and test them and Simulation of these circuits with the help of appropriate software.				
1	Op-Amp characteristics and get data for input bias current measure the output-offset voltage and reduce it to zero and calculate slew rate.				
2	Op-Amp in inverting and non-inverting modes.				
3	Op-Amp as scalar, summer and voltage follower.				
4	Op-Amp as differentiator and integrator.				
5	Design LPF and HPF using Op-Amp 741				
6	Design Band Pass and Band reject Active filters using Op-Amp 741.				
7	Design Oscillators using Op-Amp (i) RC phase shift (ii) Hartley (iii) Colpitts				
8	Design (i) Astable (ii) Monostable multivibrators using IC-555 timer				
9	Design Triangular & square wave generator using 555 timer.				
10	Design Amplifier (for given gain) using Bipolar Junction Transistor.				
11	Op-Amp characteristics and get data for input bias current measure the output-offsetvoltage and reduce it to zero and calculate slew rate.				
12	Op-Amp in inverting and non-inverting modes.				
13	Op-Amp as scalar, summer and voltage follower.				

Office of Dean Academic Affairs Rajasthan Technical University, Kota

SYLLABUS

III Year - VI Semester: B.Tech. (Electronics & Communication Engineering)

6EC4-24: Power Electronics Lab

Credi 0L+0	
SN	Contents
1	Study the characteristics of SCR and observe the terminal configuration, Measure the breakdown voltage, latching and holding current. Plot V-I characteristics.
2	Perform experiment on triggering circuits for SCR. i.e. R triggering, R-C triggering and UJT triggering circuit.
3	Study and test AC voltage regulators using triac, antiparallel thyristors and triac&diac.
4	Study and obtain the waveforms for single-phase bridge converter.
5	Perform experiment on single phase PWM inverter.
6	Perform experiment on buck, boost and buck-boost regulators.
7	Control speed of a dc motor using a chopper and plot armature voltage versus speed characteristic.
8	Control speed of a single-phase induction motor using single phase AC voltage regulator.
9	I. Study single-phase dual converter.II. Study speed control of dc motor using single-phase dual converter.
10	Study single-phase cyclo converter.
11	Perform experiment on Motor control – open loop & closed loop
12	Design, observe and perform experiment on various type of pulse generation from DSP/ FPGA Platform. Perform experiment for PWM inverters and choppers.

SEMESTER-VII & VIII

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

Teaching & Examination Scheme B.Tech. : Electronics & Communication Engineering 4th Year - VII Semester

	THEORY										
SN Category		Course		Contact hrs/week			Marks				Cr
SI	cutogory	Code	Title	L	Т	P	Exm Hrs	IA	ETE	Total	U1
			Program Elective								
1	PEC	7EC5-11	VLSI Design	3	0	0	3	30	70	100	3
1	TLC	7EC5-12	Mixed Signal Design	0		Ŭ	J	00	10	100	0
	-	7EC5-13	CMOS design								
2	OE		Open Elective-I	3	0	0	3	30	70	100	3
			Sub Total	6	0	0		60	140	200	6
			PRACTICAL & SESSI	ON/	\L						
3		7EC4-21	VLSI Design Lab	0	0	4	2	60	40	100	2
4	PCC	7EC4-22	Advance communication lab (MATLAB Simulation)	0	0	2	2	60	40	100	1
5	-	7EC4-23	Optical Communication Lab	0	0	2	2	60	40	100	1
6	PSIT	7EC7-30	Industrial Training	1	0	0		60	40	100	2.5
7	1 511	7EC7-40	Seminar	2	0	0		60	40	100	2
8	SODECA	7EC8-00	Social Outreach, Discipline & Extra Curricular Activities					60	40	100	0.5
			Sub Total	3	0	8		360	240	600	9
			TOTAL of VII SEMESTER	9	0	8		420	380	800	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

Teaching & Examination Scheme B.Tech. : Electronics & Communication Engineering 4th Year - VIII Semester

			THEORY								
SN	Catagomy	Course	Course Title	Contact hrs/week			Marks				Cr
21	Category	Code		L	Т	Р	Exm Hrs	IA	ETE	Total	Cr
			Program Elective								
1		8EC5-11	Artificial Intelligence And Expert Systems	3	0	0	3	20	70	100	3
1	PEC	8EC5-12	Digital Image and Video Processing	3	0	0	0 3	30	70	100	3
		8EC5-13 Adaptive Signal Processing									
2	OE		Open Elective-II	3	0	0	3	30	70	100	3
			Sub Total	6	0	0		60	140	200	6
			PRACTICAL & SESSI	ONA	L						
3	PCC	8EC4-21	Internet of Things (IOT) Lab	0	0	2	2	60	40	100	1
4	FCC	8EC4-22	Skill Development Lab	0	0	2	2	60	40	100	1
5	PSIT	8EC7-50	Project	3	0	0		60	40	100	7
6	SODECA	8EC8-00	Social Outreach, Discipline & Extra Curricular Activities					60	40	100	0.5
			Sub Total	3	0	4		240	160	400	9.5
			TOTAL of VIII SEMESTER	9	0	4		300	300	600	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

Subject Code	Title	Subject Code	Title
	Open Elective - I	Code	Open Elective - II
7AG6-60.1	Human Engineering and Safety	8AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management	8AG6-60.2	Waste and By-product Utilization
7AN6-60.1	Aircraft Avionic System	8AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing	8AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques	8CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering	8CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology	8CR6-60.1	Electrical and Electronic Ceramics
7CR6-60.2	Plant, Equipment and Furnace Design	8CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis	8CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management	8CE6-60.2	Fire and Safety Engineering
7CS6-60.1	Quality Management/ISO 9000	8CS6-60.1	Big Data Analytics
7CS6-60.2	Cyber Security	8CS6-60.2	IPR, Copyright and Cyber Lav of India
7EE6-60.1	Electrical Machines and Drives	8EE6-60.1	Energy Audit and Demand side Management
7EE6-60.2	Power Generation Sources.	8EE6-60.2	Soft Computing
7ME6-60.1	Finite Element Analysis	8ME6-60.1	Operations Research
7ME6-60.2	Quality Management	8ME6-60.2	Simulation Modeling and Analysis
7MI6-60.1	Rock Engineering	8MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing	8MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering	8PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control Engineering	8PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles	8TT6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology	8TT6-60.2	Disaster Management

Scheme & Syllabus of 4th Year B. Tech. (EIC) for students admitted in Session 2020-21 onwards. Page 4 Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

7EC5-11: VLSI Design (program elective-3)

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	INTRODUCTION TO MOSFET- Basic MOS transistors, Enhancement Mode transistor action, Depletion Mode transistor action, NMOS and CMOS fabrication. Aspects of threshold voltage, threshold voltage with body effect. I _{ds} versus V _{ds} relationship, channel length modulation. Transistor Trans-conductance g _m . MOS transistor circuit Model, Model parameter (oxide and junction capacitor, channel resistance) variation with scaling and biasing. High order effects (i.e. sub threshold conduction, hot electron effect, narrow channel effect and punch through effect.	12
3	CMOS LOGIC CIRCUITS- NMOS inverter (resistive and active load), Pull up to Pull-down ratio(β_p/β_n) for a NMOS Inverter and CMOS Inverter, determination of inverter parameter (VIL, VIH VOL VOH) and Noise Margin. Speed and power dissipation analysis of CMOS inverter. Combinational Logic, NAND Gate, NOR gate, XOR gate, Compound Gates, 2 input CMOS Multiplexer, Memory latches and registers, Transmission Gate (TG), estimation of Gate delays, Power dissipation and Transistor sizing. Basic physical design of simple Gates and Layout issues. Layout issues for CMOS inverter, Layout for NAND, NOR and Complex Logic gates, Layout of TG, Layout optimization using Eular path. DRC rules for layout and issues of interconnects, Latch up problem.	11
4	Dynamic CMOS circuits- Clocked CMOS (C ² MOS) logic, DOMINO logic, NORA logic, NP(ZIPPER) logic, PE (pre-charge and Evaluation) Logic. Basic Memory circuits, SRAM and DRAM.	08
5	Physical Design- Introduction to ECAD tools for front and back end design of VLSI circuits. Custom /ASIC design, Design using FPGA and VHDL. VHDL Code for simple Logic gates, flip-flops, shift registers.	08
	Total	40

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

Text	t/Reference Books:
1	Cmos Digital Integrated Circuits Analysis And Design. Sung-Mo (Steve) Kang, Yusuf Leblebigi, McGraw Hill (2008)
2	N.Weste and K. Eshraghian, Principles of CMOS VLSI, 2e, Pearson Education, 2011
3	VLSI Design, P PSahu , , McGraw, 2013
4	VLSI Design, D.P. Das, Oxford, 2011
5	Chip Design for Submicron VLSI: CMOS Layout & Simulation, Uyemura, cengage learning, 2009

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

7EC5-12: Mixed Signal Design(program elective-3)

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Analog and discrete-time signal processing, introduction to sampling theory; Analog continuous time filters: passive and active filters; Basics of analog discrete-time filters and Z-transform.	10
3	Basic logic gates with BJT and MOSFET combination, Switched- capacitor filters- Non idealities in switched-capacitor filters; Switched-capacitor filter architectures; Switched-capacitor filter applications.	07
4	Basics of data converters; Successive approximation ADCs, Dual slope ADCs, Flash ADCs, Pipeline ADCs, Hybrid ADC structures, High-resolution ADCs, DACs.	08
5	Mixed-signal layout, Interconnects and data transmission; Voltage-mode signal aligned data transmission; Current-mode signaling and data transmission.	08
6	Introduction to frequency synthesizers and synchronization; Basics of PLL, Analog PLLs; Digital PLLs; DLLs	06
	Total	40

Text	t/Reference Books:
1.	R. Jacob Baker, CMOS mixed-signal circuit design, Wiley India, IEEE press, reprint 2008.
2.	Behzad Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2003.
3.	R. Jacob Baker, CMOS circuit design, layout and simulation, Revised second edition, IEEE press, 2008.
4.	Rudy V. de Plassche, CMOS Integrated ADCs and DACs, Springer, Indian edition, 2005.
5.	Arthur B. Williams, Electronic Filter Design Handbook, McGraw-Hill, 1981.
6.	R. Schauman, Design of analog filters by, Prentice-Hall 1990 (or newer additions).
7.	M. Burns et al., An introduction to mixed-signal IC test and measurement by, Oxford university press, first Indian edition, 2008.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

7EC5-13: CMOS Design (program elective-3)

Credit: 3 Max. Marks: 100(IA:30, ETE:70) 3L+0T+0P End Term Exam: 3 Hours

SN	Contents	Hours			
1	Introduction: Objective, scope and outcome of the course.	01			
2	Review of MOS transistor models, Non-ideal behavior of the MOS	08			
	Transistor, Transistor as a switch, Inverter characteristics	08			
3	Integrated Circuit Layout: Design Rules, Parasitic, Delay: RC Delay				
	model, linear delay model, logical path efforts, Power, interconnect	07			
	and Robustness in CMOS circuit layout				
4	Combinational Circuit Design: CMOS logic families including static,				
	dynamic and dual rail logic.				
	NAND Gate, NOR gate, XOR gate, Compound Gates, 2 input CMOS				
	Multiplexer, Memory latches and registers, Transmission Gate,	10			
	estimation of Gate delays, Power dissipation and Transistor sizing.	10			
	Basic physical design of simple Gates and Layout issues. Layout				
	issues for CMOS inverter, Layout for NAND, NOR and Complex Logic				
	gates,				
5	Dynamic CMOS circuits- Clocked CMOS (C ² MOS) logic, DOMINO				
	logic, NORA logic, NP(ZIPPER) logic, PE (pre-charge and Evaluation)	08			
	Logic. Basic Memory circuits, SRAM and DRAM.				
6	Physical Design- Introduction to ECAD tools for first and back end				
	design of VLSI circuits. Custom /ASIC design, Design using FPGA	06			
	and VHDL. VHDL Code for simple Logic gates, flip-flops, shift				
	registers.				
	Total	40			

Text	/Reference Books:
1.	N.H.E. Weste and D.M. Harris, CMOS VLSI design: A Circuits and Systems
	Perspective, 4thEdition, Pearson Education India, 2011.
2.	Sung-Mo-Kang and Yusuf Leblebici, CMOS Digital Integrated Circuits
	Analysis &Design, McGraw Hill
3.	C.Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979.
4.	J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall
	India, 1997.
5.	P. Douglas, VHDL: programming by example, McGraw Hill, 2013.
6.	L. Glaser and D. Dobberpuhl, The Design and Analysis of VLSI Circuits,
	Addison Wesley, 1985.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

7EC4-21: VLSI Design Lab

Max. Marks: 100(IA:60, ETE:40)

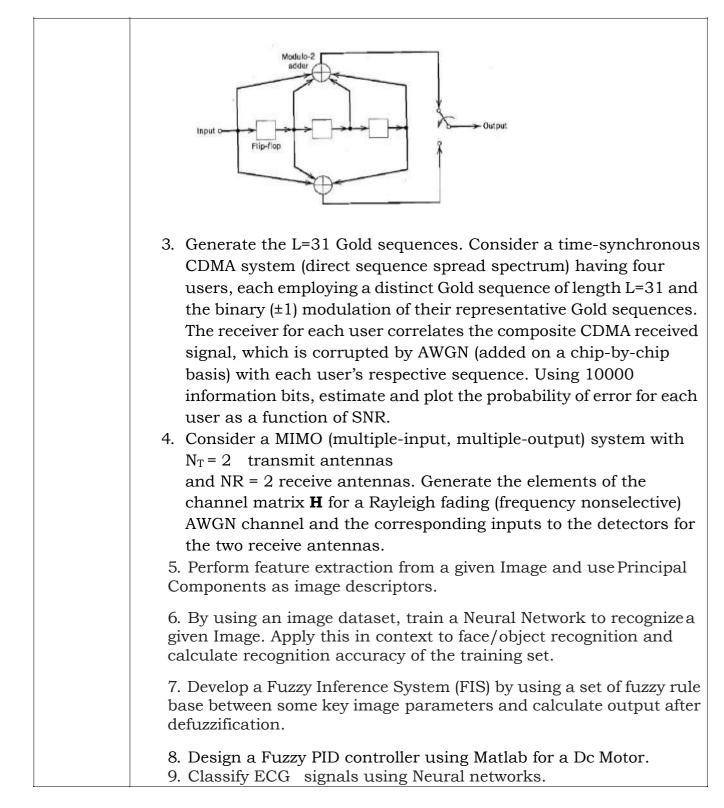
Credit: 0L+0T+4P

0L+0T+4	
SN	Contents
1	Introduction: Objective, scope and outcome of the course.
PART-A	Step1 Write the VHDL/Verilog code using VHDL software for following
	experiment and simulate them.
	Step 2. Burn the Written code in Xilling Board and test the output with
	real input signal
1	Design and simulate all the logic gates with 2 inputs using
	VHDL/Verilog.
2	Design and simulate 2-to-4 decoder,3-to-8 encoder and 8X1 multiplexer
	using VHDL/Verilog.
3	Design and simulate half adder and full adder using VHDL (data flow
	method)/Verilog.
4	Design and simulate D, T and J-K flip flop using VHDL/Verilog.
5	Design a 4bit binary Asynchronous and synchronous counter. Obtain its
	number of gates, area, and speed and power dissipation.
6	Design a 4- bit Serial in-serial out shift register. Obtain its number of
	gates, area, and speed and power dissipation.
PART-B	Step-1 Design and simulate following experiment using ECAD software
	Viz. Mentor graphics, Orcade Pspice, Cadence etc.
	Step-2 Draw the layout (without any DRC error)of the schematic obtain
	in step 1 and obtain post layout simulation using appropriate ECAD
	software.
1	Design and simulate all the logic gates (NOT, NAND and NOR) with 2
	inputs in CMOS Technology.
	Design and simulate Y = AB (C+D), Y = A+B(C+D) and 4X1 multiplexer
	using CMOS Technology.
	Design and simulate half adder and full adder using CMOS Technology.
4	Design and simulate SR flip flop using CMOS Technology.
	Design and Simulate any DRAM cell.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

7EC4-22: Advance Communication Lab (MATLAB Simulation)


Marks: 100 (IA:60, ETE:40)

0L+0T+2P	
SN	Contents
1	Introduction: Objective, scope and outcome of the course.
Part-A	Analog-to-digital conversion
	 Generate a sinusoidal signal. Sample and reconstruct a signal through interpolation. Vary the sampling rate below and above the Nyquist rate and hence verify the Sampling theorem. Generate a sequence of length 500 of zero-mean, unit variance Gaussian random variables. Using a uniform PCM scheme, quantize this sequence to 16, 64 and 128 levels. (a). Find and compare the resulting signal-to-quantization noise ratios. (b). Find the first ten values of the sequence, the corresponding quantized values and the corresponding code words for each case. (c). Plot the quantization error and the quantized value as a
	function of the input value for each case. Digital modulation techniques
	3. Simulate the transmitter and receiver for QPSK. Plot the signal and signal constellation diagram. Plot the average probability of symbol error as a function of SNR E_b/N_o , where E_b is the transmitted energy per bit and $N_o/2$ is the double sided power spectral density of additive white Gaussian noise (AWGN) with zero
	 mean. 4. Simulate the transmitter and receiver for 16-QAM. Plot the signal and signal constellation diagram.Plot the average probability of symbol error as a function of SNR E_b/N_o, where E_b is the transmitted energy per bit and N_o/2 is the double sided power spectral density of additive white Gaussian noise (AWGN) with zero mean.
PART-B	1. Find all the code words of the (15,11) Hamming code and verify
Attempt	that its minimum distance is equal to 3.
any four	2. Generate an equiprobable random binary information sequence of
experime	length 15. Determine the output of the convolutional encoder
nt	shown below for this sequence.

Scheme & Syllabus of 4th Year B. Tech. (EIC) for students admitted in Session 2017-18 onwards. Page 10 Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

7EC4-23: Optical Communication Lab

Credit: 1Max. 0L+0T+2P Marks: 100 (IA:60, ETE:40)

SN	Contents
1	Introduction: Objective, scope and outcome of the course.
	Hardware based experiment;
1	To set up Fiber Optic Analog and fiber Optic Digital link.
2	Measurement of Propagation loss and numerical aperture.
3	Measurement of optical power bending loss in a plastic optical fiber.
4	Study and measure characteristics of fiber optic LED's, LDR and Laser
	diode.
5	OTDR Measurement of Fiber Length, Attenuation and Dispersion Loss.
	Software based experiment;
6	Design and simulate of single and multimode transmission in optical fiber
	system.
7	Show and simulate the optical system performance analysis using Eye
	diagram and measure the value of Q-factor & BER of optical signals.
8	Study and simulate the linear and parabolic waveguide structure use in
	optical fiber communication.
9	Design and simulate the Dispersion compensators for fiber optic
	communication.
10	Design and calculate the power budget for optical communication link.
11	Design and simulate the DWDM and WDM techniques use in optical
	communication.
12	Design and simulate the Fiber Bragg grating and find its transmission
	characteristics and optical band-gap.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

8EC5-11: ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

(program elective-4)

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

		0
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to Artificial Intelligence: Intelligent Agents, State	
	Space Search, Uninformed Search, Informed Search, Two Players	08
	Games, Constraint Satisfaction Problems.	
3	Knowledge Representation: Knowledge Representation And Logic,	
	Interface in Propositional Logic, First Order Logic, Reasoning Using	07
	First Order Logic, Resolution in FOPL.	
4	KNOWLEDGE ORGANIZATION: Rule based System, Semantic Net,	08
	Reasoning in Semantic Net Frames, Planning	08
5	KNOWLEDGE SYSTEMS: Rule Based Expert System, Reasoning	08
	with Uncertainty, Fuzzy Reasoning.	08
6	KNOWLEDGE ACQUISITION: Introduction to Learning, Rule	
	Induction and Decision Trees, Learning Using neural Networks,	08
	Probabilistic Learning Natural Language Processing.	
	Total	40

Text/Reference Books:	
1.	Elaine Rich and Kevin Knight, Artificial Intelligence 3/e, TMH (1991)
2.	PADHY: ARTIFICIAL INTELLIGENCE & INTELLIGENT SYSTEMS, Oxford (2005)
3.	James A Anderson, An introduction to Neural Networks. Bradford Books 1995
4.	Dan. W Patterson, Artificial Intelligence and Expert Systems, PHI 1990
5.	Kumar Satish, "Neural Networks" Tata Mc Graw Hill 2004
6.	S. Rajsekaran& G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications" Prentice Hall of India. 2006
7.	SimanHaykin, "Neural Netowrks" Prentice Hall of India 1990
8.	Artificial Intelligence, Kaushik, cengage learning 1997

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

8EC5-12: Digital Image and Video Processing (program elective-4)

Credit: 3	
3L+0T+0P	

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Digital Image Fundamentals-Elements of visual perception, image sensing and acquisition, image sampling and quantization, basic relationships between pixels neighborhood, adjacency, connectivity, distance measures.	04
3	Image Enhancements and Filtering-Gray level transformations, histogram equalization and specifications, pixel-domain smoothing filters – linear and order-statistics, pixel-domain sharpening filters – first and second derivative, two-dimensional DFT and its inverse, frequency domain filters – low-pass and high-pass.	03
4	Color Image Processing-Color models–RGB, YUV, HSI; Color transformations-formulation, color complements, color slicing, tone and color corrections; Color image smoothing and sharpening; Color Segmentation.	04
5	Image Segmentation- Detection of discontinuities, edge linking and boundary detection, Thresholding – global and adaptive, region-based segmentation.	04
6	Wavelets and Multi-resolution image processing- Uncertainty principles of Fourier Transform, Time-frequency localization, continuous wavelet transforms, wavelet bases and multi-resolution analysis, wavelets and Sub-band filter banks, wavelet packets.	06
7	Image Compression-Redundancy–inter-pixel and psycho-visual; Lossless compression – predictive, entropy; Lossy compression- predictive and transform coding; Discrete Cosine Transform; Still image compression standards – JPEG and JPEG-2000.	06
8	Fundamentals of Video Coding- Inter-frame redundancy, motion estimation techniques – full search, fast search strategies, forward and backward motion prediction, frame classification – I, P and B; Video sequence hierarchy – Group of pictures, frames, slices, macro-blocks and blocks; Elements of a video encoder and decoder; Video coding standards – MPEG and H.26X.	06
9	Video Segmentation- Temporal segmentation-shot boundary detection, hard-cuts and soft-cuts; spatial segmentation – motion-based; Video object detection and tracking.	06
	Total	40

Scheme & Syllabus of 4th Year B. Tech. (EIC) for students admitted in Session 2017-18 onwards. Page 14 Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

Text/Reference Books:

1.	R.C. Gonzalez and R.E. Woods, Digital Image Processing, Second Edition, Pearson Education 3rd edition 2008
2	R.C. Gonzalez, R.E. Woods and S.L. Eddins, Digital Image Processing using Matlab, McGraw Hill,2 nd Edition
3.	Anil Kumar Jain, Fundamentals of Digital Image Processing, Prentice Hall of India.2 nd edition 2004
4.	Murat Tekalp , Digital Video Processing" Prentice Hall, 2nd edition 2015

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

8EC5-13: Adaptive Signal Processing (program elective-4)

Credit: 3 3L+0T+0P Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

3L+	OT+OP End Term Exam:	5 nours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	General concept of adaptive filtering and estimation, applications and motivation, Review of probability, random variables and stationary random processes, Correlation structures, properties of correlation matrices.	08
3	Optimal FIR (Wiener) filter, Method of steepest descent, extension to complex valued The LMS algorithm (real, complex), convergence analysis, weight error correlation matrix, excess mean square error and mis-adjustment Variants of the LMS algorithm: the sign LMS family, normalized LMS algorithm, block LMS and FFT based realization, frequency domain adaptive filters, Sub-band adaptive filtering.	07
4	Signal space concepts - introduction to finite dimensional vector space theory, subspace, basis, dimension, linear operators, rank and nullity, inner product space, orthogonality, Gram-Schmidt orthogonalization, concepts of orthogonal projection, orthogonal decomposition of vector spaces.	08
5	Vector space of random variables, correlation as inner product, forward and backward projections, Stochastic lattice filters, recursive updating of forward and backward prediction errors, relationship with AR modeling, joint process estimator, gradient adaptive lattice.	08
6	Introduction to recursive least squares (RLS), vector space formulation of RLS estimation, pseudo-inverse of a matrix, time updating of inner products, development of RLS lattice filters, RLS transversal adaptive filters. Advanced topics: affine projection and subspace based adaptive filters, partial update algorithms, QR decomposition and systolic array.	08
	Total	40

Text/Reference Books:	
1.	S. Haykin, Adaptive filter theory, Prentice Hall, 1986.
2.	C.Widrow and S.D. Stearns, Adaptive signal processing, Prentice Hall, 1984.

Scheme & Syllabus of 4th Year B. Tech. (EIC) for students admitted in Session 2017-18 onwards. Page 16 Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

8EC4-21: IOT Lab

Max. Marks: 100 (IA:60, ETE:40)

Crock			
	Credit: 1 Max. Marks: 100 (IA:60, ETE:40) 0L+0T+2P		
	IST OF PRACTICALS		
1.	Study the fundamental of IOT softwares and components.		
2.	Familiarization with Arduino/Raspberry Pi and perform necessary software		
_	installation.		
3.	To interface LED/Buzzer with Arduino/Raspberry Pi and write a program to		
	turn ON LED for 1 sec after every 2 seconds.		
4.	To interface Push button/Digital sensor (IR/LDR) with Arduino/Raspberry Pi		
	and write a program to turn ON LED when push button is pressed or at		
	sensor detection.		
5.	To interface DHT11 sensor with Arduino/Raspberry Pi and write a program to		
	print temperature and humidity readings.		
6.	To interface motor using relay with Arduino/Raspberry Pi and write a		
	program to turn ON motor when push button is pressed.		
7.	To interface OLED with Arduino/Raspberry Pi and write a program to print		
	temperature and humidity readings on it.		
8.	To interface Bluetooth with Arduino/Raspberry Pi and write a program to		
	send sensor data to smartphone using Bluetooth.		
9.	To interface Bluetooth with Arduino/Raspberry Pi and write a program to		
	turn LED ON/OFF when '1'/'0' is received from smartphone using Bluetooth.		
10	Write a program on Arduino/Raspberry Pi to upload temperature and		
	humidity data to thingspeak cloud.		
11.	Write a program on Arduino/Raspberry Pi to retrieve temperature and		
-	humidity data from thingspeak cloud.		
12.	To install MySQL database on Raspberry Pi and perform basic SQL queries.		
13.	Write a program to create UDP server on Arduino/Raspberry Pi and respond		
	with humidity data to UDP client when requested.		
14.	Write a program to create TCP server on Arduino/Raspberry Pi and respond		
	with humidity data to TCP client when requested.		
	with numberly data to for chefit when requested.		

]	LIST OF SUGGESTED BOOKS:
1.	Vijay Madisetti, Arshdeep Bahga, Ïnternet of Things, "A Hands on Approach",
	University Press.
2.	Dr. SRN Reddy, Rachit Thukral and Manasi Mishra, "Introduction to Internet
	of Things: A practical Approach", ETI Labs.
З.	Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling
	Technologies, Platforms, and Use Cases", CRC Press
4.	Jeeva Jose, "Internet of Things", Khanna Publishing House, Delhi
5	Adrian McEwen, "Designing the Internet of Things", Wiley
6.	Raj Kamal, "Internet of Things: Architecture and Design", McGraw Hill

Scheme & Syllabus of 4th Year B. Tech. (EIC) for students admitted in Session 2017-18 onwards. Page 17 Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Electronics & Communication Engineering)

8EC4- 22 Skill Development Lab

Max. Marks : 100 (IA:60,ETE:40)

Credit: 1 0L+0T+2P

Part A	: Training						
SN	Contents						
1	Introduction: Objective, scope and outcome of the lab.						
	Every student has to learn any two software from the following list, with consultation of their lab in charge. Students may get online certification or is advised to learn these from available freeware. Students may register online training courses from institutes of repute i.e. IITs/NITs/AICTE/MHRD, etc. Industrial experts /professional may be deputed to train the students in department.						
1	Network simulator (NS ₂)						
2	Lab view						
3	Software for Robotics/Artificial intelligence (AI) /machine learning						
4	Java						
5	Python						

PART	B: Implementation
SN	Contents
1	Student has to complete any one assignment with detailed project report
	based on the software/tool learn in part A.
2	Student cab select any Social engineering project: Any problem of the society can
	be taken which can be solved with the help of electronics engineering software
	and gadgets.
3	Student can select Startup for innovation/entrepreneurship.
4	Engineering solution of any Industrial problem. Sufficient number of such
	problem may be identified by the department from nearby industry and may be
	given to the student for innovative solutions under guidance of faculty.
	This lab may be evaluated by an external examiner from industry along
	with internal faculty.

Syllabus and Scheme

B.Tech. in Electrical Engineering

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	H	Iou	rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	H	Iou	rs		Marl	KS	Cr
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
			and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

I & II Semester Common to all branches of UG Engineering & Technology

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

I & II Semester Common to all branches of UG Engineering & Technology

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations – First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.
	1

SEMESTER-III & IV

Teaching & Examination Scheme B.Tech. : Electrical Engineering 2nd Year - III Semester

			THEO	RY							
			Course								
SN	Categ			-	onta			ЪЛ	-		Cr
	ory	Code	Title		s/we		Exm		arks		Cr
				L	Т	Р	Hrs	IA	ETE	Total	
1	BSC	3EE2-01	Advance Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3EE1-02/ 3EE1-03	Technical Communication / Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3EE3-04	Power generation Process	2	0	0	2	30	70	100	2
4		3EE4-05	Electrical Circuit Analysis	3	0	0	3	30	70	100	3
5	PCC	3EE4-06	Analog Electronics	3	0	0	3	30	70	100	3
6		3EE4-07	Electrical Machine - I	3	0	0	3	30	70	100	3
7		3EE4-08	Electromagnetic Field	2	0	0	2	30	70	100	2
			Sub Total	18	0	0					18
8	DOO	3EE4-21	PRACTICAL & Analog Electronics Lab	SESS 0	SION	AL 2	1	60	40	100	1
9	PCC	3EE4-21 3EE4-22	Electrical Machine-I	0	0	4		60	40	100	2
10		3EE4-23	Electrical circuit design Lab	0	0	4		60	40	100	2
13	PSIT	3EE7-30	Industrial Training	0	0	2		60	40	100	1
14	SODE CA	3EE8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		тс	TAL OF III SEMESTER	18	0	12					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE2-01: Advance Mathematics

Credit:	3
3L+0T+	OP

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Numerical Methods: Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Gauss's forward and backward interpolation formulae. Stirling's Formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange'sformulae. Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules. Solution of polynomial and transcendental equations-Bisection method, Newton-Raphson method and Regula-Falsi method.	14
2	Transform Calculus: Laplace Transform: Definition and existence of Laplace transform, Properties of Laplace Transform and formulae, Unit Step function, Dirac Delta function, Heaviside function, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Fourier Transform: Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem. Z-Transform: Definition, properties and formulae, Convolution theorem, inverse Z-transform, application of Z-transform to difference equation.	20
3	Complex Variable: Differentiation, Cauchy-Riemann equations, analytic functions, harmonic functions, finding harmonic conjugate; elementary analytic functions (exponential, trigonometric, logarithm) and their properties; Conformal mappings, Mobius transformations and their properties.	06
	TOTAL	40

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE1-02/4EE1-02: Technical Communication

Credit: 2

Max. Marks: 100 (IA:30, ETE:70)

2L+(2L+0T+0P End Term Exam: 2 H		
SN	CONTENTS	Hours	
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4	
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6	
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8	
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8	
	TOTAL	26	

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE1-03/4EE1-03: Managerial Economics and Financial Accounting

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1.	Basic economic concepts	
	Meaning, nature and scope of economics, deductive vs inductive	
	methods, static and dynamics, Economic problems: scarcity and	4
	choice, circular flow of economic activity, national income-concepts	
	and measurement.	
2.	Demand and Supply analysis	
	Demand-types of demand, determinants of demand, demand	
	function, elasticity of demand, demand forecasting -purpose,	5
	determinants and methods, Supply-determinants of supply, supply	
	function, elasticity of supply.	
3.	Production and Cost analysis	
	Theory of production- production function, law of variable	
	proportions, laws of returns to scale, production optimization, least	
	cost combination of inputs, isoquants. Cost concepts-explicit and	5
	implicit cost, fixed and variable cost, opportunity cost, sunk costs,	
	cost function, cost curves, cost and output decisions, cost estimation.	
4		
4.	Market structure and pricing theory	4
-	Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	
5.	Financial statement analysis	
	Balance sheet and related concepts, profit and loss statement and	
	related concepts, financial ratio analysis, cash-flow analysis, funds-	8
	flow analysis, comparative financial statement, analysis and interpretation of financial statements, conjugation techniques	
	interpretation of financial statements, capital budgeting techniques.	
	TOTAL	26

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE3-04: Power Generation Processes

Cred	lit: 2 Max. Marks: 100 (IA:30, 1	ETE:70)
2L+(OT+OP End Term Exam:	2 Hours
SN	CONTENTS	Hours
1.	Conventional Energy Generation Methods Thermal Power plants: Basic schemes and working principle. (ii) Gas Power Plants: open cycle and closed cycle gas turbine plants, combined gas & steam plants-basic schemes. Hydro Power Plants: Classification of hydroelectric plants. Basic schemes of hydroelectric and pumped storage plants. (iv) Nuclear Power Plants: Nuclear fission and nuclear fusion. Fissile and fertile materials. Basic plant schemes with boiling water reactor, heavy water reactor and fast breeder reactor. Efficiencies of various power plants.	6
3.	New Energy Sources Impact of thermal, gas, hydro and nuclear power stations on environment. Green House Effect (Global Warming).Renewable and nonrenewable energy sources. Conservation of natural resources and sustainable energy systems. Indian energy scene. Introduction to electric energy generation by wind, solar and tidal.	6
4.	Loads and Load Curves Types of load, chronological load curve, load duration curve, energy load curve and mass curve. Maximum demand, demand factor, load factor, diversity factor, capacity factor and utilization.	2
5.	Power Factor Improvement Causes and effects of low power factor and advantages of power factor improvement. Power factor improvement using shunt capacitors and synchronous condensers.	3
6.	Power Plant Economics Capital cost of plants, annual fixed and operating costs of plants, generation cost and depreciation. Effect of load factor on unit energy cost. Role of load diversity in power system economics. Calculation of most economic power factor when (a) kW demand is constant and (b) kVA demand is constant. (iii) Energy cost reduction: off peak energy utilization, co-generation, and energy conservation.	5
7.	Tariff Objectives of tariffs. General tariff form. Flat demand rate, straight meter rate, block meter rate. Two part tariff, power factor dependent tariffs, three part tariff. Spot (time differentiated) pricing. Rajasthan Technical University,	and the second se

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

8.	Selection of Power Plants	
	Comparative study of thermal, hydro, nuclear and gas power	_
	plants. Base load and peak load plants. Size and types of	4
	generating units, types of reserve and size of plant. Selection and	
	location of power plants.	
	Total	28

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-05 Electrical Circuit Analysis

Credit: 3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1.	Network Theorems Superposition theorem, Thevenin theorem, Norton theorem, Maximum power transfer theorem, Reciprocity theorem, Compensation theorem. Analysis with dependent current and voltage sources. Node and Mesh Analysis. Concept of duality and dual networks.	10
2.	Solution of First and Second order networks Solution of first and second order differential equations for Series and parallel R-L, R-C, RL- C circuits, initial and final conditions in network elements, forced and free response, time constants, steady state and transient state response.	8
3.	Sinusoidal steady state analysis Representation of sine function as rotating phasor, phasor diagrams, impedances and admittances, AC circuit analysis, effective or RMS values, average power and complex power. Three-phase circuits. Mutual coupled circuits, Dot Convention in coupled circuits, Ideal Transformer.	8
4.	Electrical Circuit Analysis Using Laplace Transforms Review of Laplace Transform, Analysis of electrical circuits using Laplace Transform for standard inputs, convolution integral, inverse Laplace transform, transformed network with initial conditions. Transfer function representation. Poles and Zeros. Frequency response (magnitude and phase plots), series and parallel resonances	8
5.	Two Port Network and Network Functions Two Port Networks, terminal pairs, relationship of two port variables, impedance parameters, admittance parameters, transmission parameters and hybrid parameters, interconnections of two port networks.	6
	TOTAL	40

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-06: Analog Electronics

SN		Hours
1.	Diode circuits	
	P-N junction diode, I-V characteristics of a diode; review of half-	4
	wave and full-wave rectifiers, Zener diodes, clamping and clipping	_
	circuits.	
2.	BJT circuits	
	Structure and I-V characteristics of a BJT; BJT as a switch. BJT	
	as an amplifier: small-signal model, biasing circuits, current mirror; common-emitter, common-base and common collector	8
	amplifiers; Small signal equivalent circuits, high-frequency	
	equivalent circuits.	
3.	MOSFET circuits	
0.	MOSFET structure and I-V characteristics. MOSFET as a switch.	
	MOSFET as an amplifier: small-signal model and biasing circuits,	
	common-source, common-gate and common-drain amplifiers;	8
	small signal equivalent circuits - gain, input and output	
	impedances, transconductance, high frequency equivalent circuit.	
4.	Differential, multi-stage and operational amplifiers	
	Differential amplifier; power amplifier; direct coupled multi-stage	
	amplifier; internal structure of an operational amplifier, ideal op-	8
	amp, non-idealities in an op-amp (Output offset voltage, input bias	
	current, input offset current, slew rate, gain bandwidth product)	
5.	Linear applications of op-amp	
	Idealized analysis of op-amp circuits. Inverting and non-inverting amplifier, differential amplifier, instrumentation amplifier,	
	amplifier, differential amplifier, instrumentation amplifier, integrator, active filter, P, PI and PID controllers and lead/lag	8
	compensator using an op-amp, voltage regulator, oscillators (Wein	0
	bridge and phase shift).	
	Analog to Digital Conversion.	
6.	Nonlinear applications of op-amp	
	Hysteretic Comparator, Zero Crossing Detector, Square-wave and	c
	triangular-wave generators, Precision rectifier, peak detector.	6
	Monoshot	
	TOTAL	42

Office of Dean Academic Affairs Rajasthan Technical University, Kota

3L+0T+0P

Credit: 3

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-07: Electrical Machine-I

Credit: 3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1.	Magnetic fields and magnetic circuits Review of magnetic circuits - MMF, flux, reluctance, inductance; review of Ampere Law and Biot Savart Law; Visualization of magnetic fields produced by a bar magnet and a current carrying coil - through air and through a combination of iron and air; influence of highly permeable materials on the magnetic flux lines.	6
2.	Electromagnetic force and torque B-H curve of magnetic materials; flux-linkage v/s current characteristic of magnetic circuits; linear and nonlinear magnetic circuits; energy stored in the magnetic circuit; force as a partial derivative of stored energy with respect to position of a moving element; torque as a partial derivative of stored energy with respect to angular position of a rotating element. Examples - galvanometer coil, relay contact, lifting magnet, rotating element with eccentricity or saliency	9
3.	DC machines Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole-faces or shoes, air gap and armature core, visualization of magnetic field produced by the field winding excitation with armature winding open, air gap flux density distribution, flux per pole, induced EMF in an armature coil. Armature winding and commutation – Elementary armature coil and commutator, lap and wave windings, construction of commutator, linear commutation Derivation of back EMF equation, armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.	8
4.	DC machine - motoring and generation Armature circuit equation for motoring and generation, Types of field excitations – separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction, voltage build-up in a shunt generator, critical field resistance and critical speed. V-I characteristics and torque- speed characteristics of separately excited, shunt and series motors. Speed control through armature voltage. Losses, load testing and back-to-back testing of DC machines. Office of Dean Academic Affairs Rajasthan Technical University, Kot	7

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

5. Transformers

Principle, construction and operation of single-phase transformers, equivalent circuit, phasor diagram, voltage regulation, losses and efficiency Testing - open circuit and short circuit tests, polarity test, back-to-back test, separation of hysteresis and eddy current losses Three-phase. transformer - construction, types of connection and their comparative features, Parallel operation of single-phase and 12 transformers. Autotransformers three-phase _ construction. principle, applications and comparison with two winding transformer, Magnetizing current, effect of nonlinear B-H curve of magnetic core material, harmonics in magnetization current, Phase conversion - Scott connection, three-phase to six-phase conversion, Tap-changing transformers - No-load and on-load tap-changing of transformers, Three-winding transformers. Cooling of transformers. TOTAL 42

SYLLABUS

Credit: 2

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-08: Electromagnetic Fields

Max. Marks: 100 (IA:30, ETE:70)

2L+(OT+OP End Term Exam: 2	2 Hours
SN	CONTENTS	Hours
1.	Review of Vector Calculus	mours
	Vector algebra- addition, subtraction, components of vectors, scalar and vector multiplications, triple products, three orthogonal coordinate systems (rectangular, cylindrical and spherical). Vector calculus differentiation, partial differentiation, integration, vector operatordel, gradient, divergence and curl; integral theorems of vectors. Conversion of a vector from one coordinate system to another.	4
2.	Static Electric Field Coulomb's law, Electric field intensity, Electrical field due to point charges. Line, Surface and Volume charge distributions. Gauss law and its applications. Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.	4
3.	Conductors, Dielectrics and Capacitance Current and current density, Ohms Law in Point form, Continuity of current, Boundary conditions of perfect dielectric materials. Permittivity of dielectric materials, Capacitance, Capacitance of a two wire line, Poisson's equation, Laplace's equation, Solution of Laplace and Poisson's equation, Application of Laplace's and Poisson's equations.	4
4.	Static Magnetic Fields Biot-Savart Law, Ampere Law, Magnetic flux and magnetic flux density, Scalar and Vector Magnetic potentials. Steady magnetic fields produced by current carrying conductors.	4
5.	Magnetic Forces, Materials and Inductance Force on a moving charge, Force on a differential current element, Force between differential current elements, Nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions, Magnetic circuits, inductances and mutual inductances.	4
6.	Time Varying Fields and Maxwell's Equations Faraday's law for Electromagnetic induction, Displacement current, Point form of Maxwell's equation, Integral form of Maxwell's equations, Motional Electromotive forces. Boundary Conditions.	4
7.	Electromagnetic Waves Derivation of Wave Equation, Uniform Plane Waves, Maxwell's equation in Phasor form, Wave equation in Phasor form, Plane waves in free space and in a homogenous material. Wave equation for a conducting medium, Plane waves in lossy dielectrics, Propagation in good conductors, Skin effect. Poynting theorem.	4
	Rajasthan Technical University Ket	28

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-21: Analog Electronics Lab

Credit: 1 0L+0T+2P	Max. Marks: 100 (IA:60, ETE:40)

- 1) Plot gain-frequency characteristics of BJT amplifier with and without negative feedback in the emitter circuit and determine bandwidths, gain bandwidth products and gains at 1 kHz with and without negative feedback.
- 2) Study of series and shunt voltage regulators and measurement of line and load regulation and ripple factor.
- 3) Plot and study the characteristics of small signal amplifier using FET.
- 4) Study of push pull amplifier. Measure variation of output power & distortion with load.
- 5) Study Wein bridge oscillator and observe the effect of variation in R & C on oscillator frequency.
- 6) Study transistor phase shift oscillator and observe the effect of variation in R& C on oscillator frequency and compare with theoretical value.
- 7) Study the following oscillators and observe the effect of variation of C on oscillator frequency:
 - (a) Hartley (b) Colpitts.
- 8) To plot the characteristics of UJT and UJT as relaxation.

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-22: Electrical Machines-I Lab

Credit: 2 Max. Marks: 100 (IA:60, ETE:40) 0L+0T+4P
1) To perform O.C. and S.C. test on a 1-phase transformer and to determine
the parameters of its equivalent circuit its voltage regulation and efficiency.
2) To perform sumpner's test on two identical 1-phase transformers and find
their efficiency & parameters of the equivalent circuit.
3) To determine the efficiency and voltage regulation of a single-phase
transformer by direct loading.
4) To perform the heat run test on a delta/delta connected 3-phase
transformer and determine the parameters for its equivalent circuit.
5) To perform the parallel operation of the transformer to obtain data to study
the load sharing.
6) Separation of no load losses in single phase transformer.
7) To study conversion of three-phase supply to two-phase supply using Scott-
Connection.
8) Speed control of D.C. shunt motor by field current control method & plot the
curve for speed verses field current.
9) Speed control of D.C. shunt motor by armature voltage control method &
plot the curve for speed verses armature voltage.
10) To determine the efficiency at full load of a D.C shunt machine considering
it as a motor by performing Swinburne's test.
11) To perform Hopkinson's test on two similar DC shunt machines and hence
obtain their efficiencies at various loads.

SYLLABUS

2nd Year - III Semester: B.Tech. (Electrical Engineering)

3EE4-23: Electrical Circuit Design Lab

Credit: 2 Max. Mark OL+OT+4P

Max. Marks: 100 (IA:60, ETE:40)

- 1) Introduction to Datasheet Reading.
- 2) Introduction to Soldering Desoldering process and tools.
- 3) Simulate characteristic of BJT and UJT. Validate on Bread Board or PCB.
- 4) Simulate Bridge Rectifier Circuit and validate on Bread Board or PCB.
 - a) Half Bridge.
 - b) Full Bridge.
- 5) Simulate Regulated Power Supply and validate on Bread Board or PCB.
 - a) Positive Regulation (03 Volt to 15 Volt).
 - b) Negative Regulation (03 Volt to 15 Volt).
 - c) 25 Volt, 1–10 A Power Supply.
- 6) Simulate Multivibrator circuit using IC 555 and BJT separately. Validate on Bread Board or PCB.
 - a) Astable Mode.
 - b) Bistable Mode.
 - c) Monostable Mode.
- 7) Introduction to Sensors to measure real time quantities and their implementation in different processes.

(Proximity, Accelerometer, Pressure, Photo-detector, Ultrasonic Transducer, Smoke, Temperature, IR, Color, Humidity, etc.).

- 8) Hardware implementation of temperature control circuit using Thermistor.
- 9) Simulate Frequency divider circuit and validate it on Bread Board or PCB.
- 10) Hardware implementation of 6/12 V DC Motor Speed Control (Bidirectional)
- 11) Simulate Buck, Boost, Buck-Boost circuit and validate on Bread Board or PCB.
- 12) Simulate Battery Voltage Level Indicator Circuit and validate on Bread Board or PCB.

Teaching & Examination Scheme B.Tech. : Electrical Engineering 2nd Year - IV Semester

			THEO	RY							
			Course	C	ont	act	Mark	e			Cr
SN	Categ			hr	s/w	eek	Main	2	1	1	
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4EE2-01	Biology	2	0	0	2	30	70	100	2
2	HSMC	4EE1-02/ 4EE1-03	Technical Communication / Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	4EE3-04	Electronic Measurement & Instrumentation	2	0	0	2	30	70	100	2
4		4EE4-05	Electrical Machine - II	3	0	0	3	30	70	100	3
5	PCC	4EE4-06	Power Electronics	3	0	0	3	30	70	100	3
6	PCC	4EE4-07	Signals & Systems	3	0	0	3	30	70	100	3
7		4EE4-08	Digital Electronics	2	0	0	2	30	70	100	2
			Sub Total	17	0	0					17
		1	PRACTICAL &	SES	SION	IAL					
8	PCC	4EE4-21	Electrical Machine - II Lab	0	0	4		60	40	100	2
9		4EE4-22	Power Electronics Lab	0	0	4		60	40	100	2
10		4EE4-23	Digital Electronics Lab	0	0	2		60	40	100	1
11		4EE3-24	Measurement Lab	0	0	2		60	40	100	1
13	SODE CA	4EE8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		TO	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

Credit: 2

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE2-01: Biology

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

2L	2L+OT+OP End Term Exam: 3 H		
SN	CONTENTS	Hours	
1	Introduction: Objective, scope and outcome of the course.	1	
2	Introduction: Purpose: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry. Bring out the fundamental differences between science and engineering by drawing a comparison between eye and camera, Bird flying and aircraft. Mention the most exciting aspect of biology as an independent scientific discipline. Why we need to study biology? Discuss how biological observations of 18th Century that lead to major discoveries. Examples from Brownian motion and the origin of thermodynamics by referring to the original observation of Robert Brown and Julius Mayor. These examples will highlight the fundamental importance of observations in any scientific inquiry.	1	
3	Classification: Purpose: To convey that classification <i>per se</i> is not what biology is all about. The underlying criterion, such as morphological, biochemical or ecological be highlighted. Hierarchy of life forms at phenomenological level. A common thread weaves this hierarchy Classification. Discuss classification based on (a) cellularity- Unicellular or multicellular (b) ultrastructureprokaryotes or eucaryotes. (c) energy and Carbon utilization -Autotrophs, heterotrophs, lithotropes (d) Ammonia excretion- aminotelic, uricotelic, ureotelic (e) Habitata- acquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life. A given organism can come under different category based on classification. Model organisms for the study of biology come from different groups. E.coli, S.cerevisiae, D. Melanogaster, C. elegance, A. Thaliana, M. musculus	3	
4	Genetics: Purpose: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences". Mendel's laws, Concept of segregation and independent assortment. Concept of allele. Gene mapping, Gene interaction, Epistasis. Meiosis and Mitosis be taught as a part of genetics. Emphasis to be give not to the mechanics of cell division nor the phases but how genetic material passes from parent to offspring. Concepts of recessiveness and dominance. Concept of mapping of phenotype to genes. Discuss about the single gene disorders in humans. Discuss the concept of complementation using human genetics.	3	
5	Biomolecules: Purpose: To convey that all forms of life has the same building blocks and yet the manifestations are as diverse as one can imagine. Molecules of life. In this context discuss monomeric units and polymeric structures. Discuss about sugars, starch and cellulose. Amino acids and proteins. Nucleotides and DNA/RNA. Two carbon, units and lipids. Rajasthan Technical University, Kota	3	

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

6	Enzymes: Purpose: To convey that without catalysis life would not have existed on earth. Enzymology: How to monitor enzyme catalysed reactions. How does an enzyme catalyse reactions? Enzyme classification. Mechanism of enzyme action. Discuss at least two examples. Enzyme kinetics and kinetic	3
7	Information Transfer: Purpose: The molecular basis of coding and decoding genetic information is universal. Molecular basis of information transfer. DNA as a genetic material. Hierarchy of DNA structure- from single stranded to double helix to nucleosomes. Concept of genetic code. Universality and degeneracy of genetic code. Define gene in terms of complementation and recombination.	3
8	Macromolecular analysis: Purpose: To analyse biological processes at the reductionistic level. Proteins- structure and function. Hierarch in protein structure. Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements.	4
9	Metabolism: Purpose: The fundamental principles of energy transactions are the same in physical and biological world. Thermodynamics as applied to biological systems. Exothermic and endothermic versus endergonic and exergonic reactions. Concept of Keq and its relation to standard free energy. Spontaneity. ATP as an energy currency. This should include the breakdown of glucose to CO2 + H2O (Glycolysis and Krebs cycle) and synthesis of glucose from CO2 and H2O (Photosynthesis). Energy yielding and energy consuming reactions. Concept of Energy charge.	4
10	Microbiology: Concept of single celled organisms. Concept of species and strains. Identification and classification of microorganisms. Microscopy. Ecological aspects of single celled organisms. Sterilization and media compositions. Growth kinetics.	3
	Total	28

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE1-03/3EE1-03: Managerial Economics and Financial Accounting

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE1-02/3EE1-02: Technical Communication

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 2 Hours

20.0		2 110u15
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication - Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE3-04: Electronic Measurement and Instrumentation Max. Marks: 100(IA:30, ETE:70)

Credit: 2 2L+0T+0P

End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Measuring Instruments: Moving coil, moving iron, electrodynamic and induction instruments-construction, operation, torque equation and errors. Applications of instruments for measurement of current, voltage, single-phase power and single-phase energy. Errors in wattmeter and energy meter and their compensation and adjustment. Testing and calibration of single-phase energy meter by phantom loading.	4
3	Polyphase Metering: Blondel's Theorem for n-phase, p-wire system. Measurement of power and reactive kVA in 3-phase balanced and unbalanced systems: One-wattmeter, two- wattmeter and three-wattmeter methods. 3-phase induction type energy meter. Instrument Transformers: Construction and operation of current and potential transformers. Ratio and phase angle errors and their minimization. Effect of variation of power factor, secondary burden and frequency on errors. Testing of CTs and PTs. Applications of CTs and PTs for the measurement of current, voltage, power and energy.	6
5	Potentiometers: Construction, operation and standardization of DC potentiometers– slide wire and Crompton potentiometers. Use of potentiometer for measurement of resistance and voltmeter and ammeter calibrations. Volt ratio boxes. Construction, operation and standardization of AC potentiometer in-phase and quadrature potentiometers. Applications of AC potentiometers.	5
6	Measurement of Resistances: Classification of resistance. Measurement of medium resistances – ammeter and voltmeter method, substitution method, Wheatstone bridge method. Measurement of low resistances – Potentiometer method and Kelvin's double bridge method. Measurement of high resistance: Price's Guard- wire method. Measurement of earth resistance.	6
7	AC Bridges: Generalized treatment of four-arm AC bridges. Sources and detectors. Maxwell's bridge, Hay's bridge and Anderson bridge for self-inductance measurement. Heaviside's bridge for mutual inductance measurement. De Sauty Bridge for capacitance measurement. Wien's bridge for capacitance and frequency measurements. Sources of error in bridge measurements and precautions. Screening of bridge components. Wagner earth device.	6
	Total	28

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE4-05: Electrical Machines – II

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Fundamentals of AC machine windings Physical arrangement of windings in stator and cylindrical rotor; slots for windings; single turn coil - active portion and overhang; full-pitch coils, concentrated winding, distributed winding, winding axis, 3D visualization of the above winding types, Air-gap MMF distribution with fixed current through winding - concentrated and distributed, Sinusoidally distributed winding, winding distribution factor.	7
3	Pulsating and revolving magnetic fields Constant magnetic field, pulsating magnetic field - alternating current in windings with spatial displacement, Magnetic field produced by a single winding - fixed current and alternating current Pulsating fields produced by spatially displaced windings, Windings spatially shifted by 90 degrees, Addition of pulsating magnetic fields, Three windings spatially shifted by 120 degrees (carrying three-phase balanced currents), revolving magnetic field.	4
4	Induction Machines Construction, Types (squirrel cage and slip-ring), Torque Slip Characteristics, Starting and Maximum Torque. Equivalent circuit. Phasor Diagram, Losses and Efficiency. Effect of parameter variation on torque speed characteristics (variation of rotor and stator resistances, stator voltage, frequency). Methods of starting, braking and speed control for induction motors. Generator operation. Self- excitation. Doubly-Fed Induction Machines.	12
5	Single-phase induction motors Constructional features, double revolving field theory, equivalent circuit, determination of parameters. Split-phase starting methods and applications.	6
6	Synchronous machines Constructional features, cylindrical rotor synchronous machine - generated EMF, equivalent circuit and phasor diagram, armature reaction, synchronous impedance, voltage regulation. Operating characteristics of synchronous machines, V-curves. Salient pole machine – two reaction theory, analysis of phasor diagram, power angle characteristics. Parallel operation of alternators - synchronization and load division.	10
	Office of Dean Academic Affairs	40

Rajasthan Technical University, Kota

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE4-06: Power Electronics

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Power switching devices Diode, Thyristor, MOSFET, IGBT: I-V Characteristics; Firing circuit for thyristor; Voltage and current commutation of a thyristor; Gate drive circuits for MOSFET and IGBT.	5
3	Thyristor rectifiers Single-phase half-wave and full-wave rectifiers, Single-phase full- bridge thyristor rectifier with R-load and highly inductive load; Three-phase full-bridge thyristor rectifier with R-load and highly inductive load; Input current wave shape and power factor.	6
4	DC-DC buck converter Elementary chopper with an active switch and diode, concepts of duty ratio and average voltage, power circuit of a buck converter, analysis and waveforms at steady state, duty ratio control of output voltage.	5
5	DC-DC boost converter Power circuit of a boost converter, analysis and waveforms at steady state, relation between duty ratio and average output voltage.	5
6	Single-phase voltage source inverter Power circuit of single-phase voltage source inverter, switch states and instantaneous output voltage, square wave operation of the inverter, concept of average voltage over a switching cycle, bipolar sinusoidal modulation and unipolar sinusoidal modulation, modulation index and output voltage.	10
7	Three-phase voltage source inverter Power circuit of a three-phase voltage source inverter, switch states, instantaneous output voltages, average output voltages over a sub-cycle, three-phase sinusoidal modulation.	8
	Total	40

SYLLABUS

Credit: 3

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE4-07: Signals and Systems

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	3L+0T+0P End Term Exam: 3 H	
SIN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Signals and Systems: Signals and systems as seen in everyday life, and in various branches of engineering and science. Signal properties: periodicity, absolute integrability, determinism and stochastic character. Some special signals of importance: the unit step, the unit impulse, the sinusoid, the complex exponential, some special time-limited signals; continuous and discrete time signals, continuous and discrete amplitude signals. System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, realizability. Examples.	6
3	Behavior of continuous and discrete-time LTI systems: Impulse response and step response, convolution, input-output behavior with aperiodic convergent inputs, cascade interconnections. Characterization of causality and stability of LTI systems. System representation through differential equations and difference equations. State-space Representation of systems. State-Space Analysis, Multi- input, multi-output representation. State Transition Matrix and its Role. Periodic inputs to an LTI system, the notion of a frequency response and its relation to the impulse response.	14
4	Fourier, Laplace and z- Transforms: Fourier series representation of periodic signals, Waveform Symmetries, Calculation of Fourier Coefficients. Fourier Transform, convolution/multiplication and their effect in the frequency domain, magnitude and phase response, Fourier domain duality. The Discrete- Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT). Parseval's Theorem. Review of the Laplace Transform for continuous time signals and systems, system functions, poles and zeros of system functions and signals, Laplace domain analysis, solution to differential equations and systems, system functions, poles and zeros of systems and sequences, z-domain analysis.	12
5	Sampling and Reconstruction: The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems.	8

Rajasthan Technical University, Kota

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

4EE4-08: Digital Electronics

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 2 Hours

 Fundamentals of Digital Systems and logicfamilies: Digital signals, digital circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic. Combinational DigitalCircuits: Standard representation for logic functions, K-map representation, simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, proirity encoders, decoders/drivers for display devices, Q-M method of function realization. Sequential circuits and systems: A 1-bit memory, the circuit properties of Bistable latch, the clocked SR flip flop, J- K-T and D-types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple (Asynchronous) counters, synchronous sequential curuers, applications of counters. A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, A/D converter lCs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, A/D converter, sexample of A/D converter, flay converter, A/D converter using voltage to frequency and voltage to digital converters: A/D converter locs and Programmable logic devices Semiconductor memories and Programmable logic devices Memory organization and operation, expanding memory size, classification and characteristics of memorie	SN	CONTENTS	Hours
 circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital ICs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS and TTL, Tri-state logic. Combinational DigitalCircuits: Standard representation for logic functions, Kmap representation, simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization. Sequential circuits and systems: A 1-bit memory, the circuit properties of Bistable latch, the clocked SR flip flop, J- K-T and D-types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to aparllel converter, pring counter, sequence generator, ripple (Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC's, asynchronous sequential correct, applications of counters. A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, A/D converter los, sample and hold circuit, analog to digital converters: (A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs Semiconductor memories and Programmable logic devices Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory (RCAM), content addressable memory (CAM), charge de coupled device memory (CCD), co	1	Introduction: Objective, scope and outcome of the course.	1
 Combinational DigitalCircuits: Standard representation for logic functions, K-map representation, simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, De-Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization. Sequential circuits and systems: A 1-bit memory, the circuit properties of Bistable latch, the clocked SR flip flop, J- K-T and D-types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple (Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC's, asynchronous sequential counters, applications of counters. A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converter, successive approximation A/D converter, sexample of A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs Semiconductor memories and Programmable logic devices Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, CAM), charge de coupled device memory (CCD), commonly used memory CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA). 	2	circuits, AND, OR, NOT, NAND, NOR and Exclusive-OR operations, Boolean algebra, examples of IC gates, number systems-binary, signed binary, octal hexadecimal number, binary arithmetic, one's and two's complements arithmetic, codes, error detecting and correcting codes, characteristics of digital lCs, digital logic families, TTL, Schottky TTL and CMOS logic, interfacing CMOS	4
 Bistable latch, the clocked SR flip flop, J- K-T and D-types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple (Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC's, asynchronous sequential counters, applications of counters. A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs 6 Semiconductor memories and Programmable logic devices Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory (RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA). 	3	Combinational DigitalCircuits: Standard representation for logic functions, K- map representation, simplification of logic functions using K-map, minimization of logical functions. Don't care conditions, Multiplexer, De- Multiplexer/Decoders, Adders, Subtractors, BCD arithmetic, carry look ahead adder, serial adder, ALU, elementary ALU design, popular MSI chips, digital comparator, parity checker/generator, code converters, priority encoders, decoders/drivers for display devices, Q-M method of function realization.	6
 A/D and D/A Converters: Digital to analog converters: weighted resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter ICs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter ICs 6 Semiconductor memories and Programmable logic devices Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory (RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA). 	4	Bistable latch, the clocked SR flip flop, J- K-T and D-types flip flops, applications of flip flops, shift registers, applications of shift registers, serial to parallel converter, parallel to serial converter, ring counter, sequence generator, ripple (Asynchronous) counters, synchronous counters, counters design using flip flops, special counter IC's, asynchronous sequential counters, applications	6
Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable logic devices (CPLDS), Field Programmable Gate Array (FPGA).	5	resistor/converter, R-2R Ladder D/A converter, specifications for D/A converters, examples of D/A converter lCs, sample and hold circuit, analog to digital converters: quantization and encoding, parallel comparator A/D converter, successive approximation A/D converter, counting A/D converter, dual slope A/D converter, A/D converter using voltage to frequency and voltage to time conversion, specifications of A/D converters, example of A/D converter	4
	6	Semiconductor memories and Programmable logic devices Memory organization and operation, expanding memory size, classification and characteristics of memories, sequential memory, read only memory (ROM), read and write memory(RAM), content addressable memory (CAM), charge de coupled device memory (CCD), commonly used memory chips, ROM as a PLD, Programmable logic array, Programmable array logic, complex Programmable	7
Office of Dean Academic Affairs Total 23	_	Office of Dean Academic AffairsTotal	28

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

Credit: 2 0L+0T+4P

4EE4-21: Electrical Machines - II Lab Max. Marks: 100(IA:60, ETE:40)

- 1) To study various types of starters used for 3 phase induction motor.
- To connect two 3-phase induction motor in cascade and study their speed control.
- To perform load test on 3-phase induction motor and calculate torque, output power, input power, efficiency, input power factor and slip for various load settings.
- 4) To perform no load and blocked rotor test on a 3-phase induction motor and determine the parameters of its equivalent circuits.
- 5) Draw the circle diagram and compute the following (i) Max. Torque (ii) Current (iii) slips (iv) p. f. (v) Efficiency.
- 6) Speed control of 3- Φ Induction Motor
- 7) To plot the O.C.C. & S.C.C. of an alternator.
- 8) To determine Zs , Xd and Xq by slip test, Zero power factor (ZPF)/ Potier reactance method.
- 9) To determine the voltage regulation of a 3-phase alternator by direct loading.
- 10) To determine the voltage regulation of a 3-phase alternator by synchronous impedance method.
- To study effect of variation of field current upon the stator current and power factor of synchronous motor andPlot V-Curve and inverted V-Curve of synchronous motor for different values of loads.
- 12) To synchronize an alternator across the infinite bus and control load sharing.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

Credit: 2 0L+0T+4P

4EE4-22: Power Electronics Lab Max. Marks: 100(IA:60, ETE:40)

- Study the comparison of following power electronics devices regarding ratings, performance characteristics and applications: Power Diode, Power Transistor, Thyristor, Diac, Triac, GTO, MOSFET, MCT and SIT.
- 2) Determine V-I characteristics of SCR and measure forward breakdown voltage, latching and holding currents.
- 3) Find V-I characteristics of TRIAC and DIAC.
- 4) Find output characteristics of MOSFET and IGBT.
- 5) Find transfer characteristics of MOSFET and IGBT.
- 6) Find UJT static emitter characteristics and study the variation in peak point and valley point.
- 7) Study and test firing circuits for SCR-R, RC and UJT firing circuits.
- 8) Study and test 3-phase diode bridge rectifier with R and RL loads. Study the effect of filters.
- 9) Study and obtain waveforms of single-phase half wave controlled rectifier with and without filters. Study the variation of output voltage with respect to firing angle.
- Study and obtain waveforms of single-phase half controlled bridge rectifier with R and RL loads. Study and show the effect of freewheeling diode.
- 11) Study and obtain waveforms of single-phase full controlled bridge converter with R and RL loads. Study and show rectification and inversion operations with and without freewheeling diode.
- 12) Control the speed of a dc motor using single-phase half controlled bridge rectifier and full controlled bridge rectifier. Plot armature voltage versus speed characteristics. Office of Dean Academic Affairs Rajasthan Technical University, Kota

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

Credit: 1 0L+0T+2P

4EE4-23: Digital Electronics Lab Max. Marks: 100(IA:60, ETE:40)

- 1) To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also to verify the truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gates with 2, 3, & 4 inputs).
- 2) To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized using NAND & NOR gates.
- 3) To realize an SOP and POS expression.
- 4) To realize Half adder/ Subtractor & Full Adder/ Subtractor using NAND& NOR gates and to verify their truth tables.
- 5) To realize a 4-bit ripple adder/ Subtractor using basic half adder/ Subtractor & basic Full Adder/ Subtractor.
- 6) To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize the multiplexer using basic gates only. Also to construct and 8to-1 multiplexer and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4 demultiplexer.
- Design & Realize a combinational circuit that will accept a 2421 BCD code and drive a TIL -312 seven segment display.
- 8) Using basic logic gates, realize the R-S, J-K and D-flip flops with and without clock signal and verify their truth table.
- 9) Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary counter and ring counter for a particular output pattern using D flip flop.
- Perform input/output operations on parallel in/Parallel out and Serial in/Serial out registers using clock. Also exercise loading only one of multiple values into the register using multiplexer.

SYLLABUS

2nd Year - IV Semester: B.Tech. (Electrical Engineering)

Credit: 1 0L+0T+2P

4EE4-24: Measurement Lab

Max. Marks: 100(IA:60, ETE:40)

- Study working and applications of (i) C.R.O. (ii) Digital Storage C.R.O. & (ii) C.R.O. Probes.
- 2) Study working and applications of Meggar, Tong-tester, P.F. Meter and Phase Shifter.
- 3) Measure power and power factor in 3-phase load by (i) Two-wattmeter method and (ii) One-wattmeter method.
- 4) Calibrate an ammeter using DC slide wire potentiometer.
- 5) Calibrate a voltmeter using Crompton potentiometer.
- 6) Measure low resistance by Crompton potentiometer.
- 7) Measure Low resistance by Kelvin's double bridge.
- 8) Measure earth resistance using fall of potential method.
- 9) Calibrate a single-phase energy meter by phantom loading at different power factors.
- 10) Measure self-inductance using Anderson's bridge.

SEMESTER-V & VI

Teaching & Examination Scheme B.Tech. : Electrical Engineering 3rd Year –V Semester

			THEC	RY							
SN	Categ	Course Course		-	Contact hrs/week			Marks			
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	Cr
1	ESC	5EE3-01	Electrical Materials	2	0	0	2	20	80	100	2
2		5EE4-02	Power System - I	3	0	0	3	30	120	150	3
3		5EE4-03	Control System	3	0	0	3	30	120	150	3
4		5EE4-04	Microprocessor	3	0	0	3	30	120	150	3
5	PCC/	5EE4-05	Electrical Machine Design	3	0	0	3	30	120	150	3
6	PEC	Professiona	al Elective I (any one)	2	0	0	2	20	80	100	2
		5EE5-11	Restructured Power System.								
		5EE5-12	Electromagnetic Wave.								
		5EE5-13	Digital Control System.								
			Sub Total	16	0	0		160	640	800	16
			PRACTICAL &	1							
7		5EE4-21	Power System - I Lab	0	0	2	2	30	20	50	1
8		5EE4-22	Control System Lab	0	0	2	2	30	20	50	1
9	PCC	5EE4-23	Microprocessor Lab	0	0	2	2	30	20	50	1
10		5EE4-24	System Programming Lab	0	0	2	2	30	20	50	1
11	PSIT	5EE7-30	Industrial Training	0	0	1		75	50	125	2.5
12	SODE CA	5EE8-00	Social Outreach, Discipline & Extra Curricular Activities						25	25	0.5
			Sub- Total	0	0	9		195	155	350	7
			LOF V SEMESTER	16	0	9		355	795	1150	23

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Teaching & Examination Scheme B. Tech.: Electrical Engineering 3rd Year – VI Semester

			THEO	RY							
	. .		Course		onta s/w			Ma	arks		Cr
SN	Categ ory	Code	Title	L	T	Р	Exm Hrs	IA	ETE	Total	
1	ESC	6EE3-01	Computer Architecture	2	0	0	2	20	80	100	2
2		6EE4-02	Power System - II	3	0	0	3	30	120	150	3
3		6EE4-03	Power System Protection	3	0	0	3	30	120	150	3
4	PCC/ PEC	6EE4-04	Electrical Energy Conversion and Auditing	3	0	0	3	30	120	150	3
5		6EE4-05	Electric Drives	3	0	0	3	30	120	150	3
6		Professiona	al Elective II (any one)	3	0	0	3	30	120	150	3
		6EE5-11	Power System Planning.								
		6EE5-12	Digital Signal Processing.								
		6EE5-13	Electrical and Hybrid Vehicles.								
			Sub Total	17	0	0	17	170	680	850	17
				CEC							
7		6EE4-21	PRACTICAL & Power System - II Lab	SES	0	AL 4	3	60	40	100	2
8		6EE4-22	Electric Drives Lab	0	0	4	3	60	40	100	2
9	PCC	6EE4-23	Power System Protection Lab	0	0	2	2	30	20	50	1
10		6EE4-24	Modelling and simulation lab	0	0	2	2	30	20	50	1
11	SODE CA	6EE8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			25	25	0.5
			Sub- Total	0	0	12		180	145	325	6.5
			L OF VI SEMESTER	17	0	12		350	825	1175	23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

Credit: 2

5EE3-01: ELECTRICAL MATERIALS

Max. Marks: 100(IA:20, ETE:80)

2L+(2L+0T+0P End Term Exam:	
SN	CONTENTS	HOURS
1.	Introduction: Objective, scope and outcome of the course.	01
2.	Elementary Materials Science Concepts	
	Bonding and types of solids, Crystalline state and their defects, Clas-	05
	sical theory of electrical and thermal conduction in solids, tempera-	05
	ture dependence of resistivity, skin effect, Hall effect	
3.	Dielectric Properties of Insulators in Static and Alternating field:	
	Dielectric constant of mono-atomic gases, poly-atomic molecules and	
	solids, Internal field in solids and liquids, Properties of Ferro-Electric	08
	materials, Polarization, Piezoelectricity, Frequency dependence of	08
	Electronic and Ionic Polarizability, Complex dielectric constant of	
	non-dipolar solids, dielectric losses.	
4	Magnetic Properties and Superconductivity	
	Magnetization of matter, Magnetic Material Classification, Ferromag-	
	netic Origin, Curie-Weiss Law, Soft and Hard Magnetic Materials,	05
	Superconductivity and its origin, Zero resistance and Meissner Ef-	
	fect, critical current density.	
5	Conductivity of metals	
	Ohm's law and relaxation time of electrons, collision time and mean	04
	free path, electron scattering and resistivity of metals.	
6.	Semiconductor Materials:	
	Classification of semiconductors, semiconductor conductivity, tem-	04
	perature dependence, Carrier density and energy gap, Trends in ma-	04
	terials used in Electrical Equipment.	
	TOTAL	27

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-02: POWER SYSTEM - I

Credit: 3

Max. Marks: 150(IA:30, ETE:120)

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic Concepts Evolution of Power Systems and Present-Day Scenario. Structure of a power system: Bulk Power Grids and Micro-grids. Generation: Conventional and Renewable Energy Sources. Distributed Energy Resources. Energy Storage. Transmission and Distribution Systems: Line dia- grams, transmission and distribution voltage levels and topologies (meshed and radial systems). Synchronous Grids and Asynchronous (DC) interconnections. Review of Three-phase systems. Analysis of- simple three-phase circuits. Power Transfer in AC circuits and Reac- tive Power.	4
3	Power System Components: Overhead Transmission Lines and Cables: Electrical and Magnetic Fields around conductors, Corona. Parameters of lines and cables. Capacitance and Inductance calculations for simple configurations. Travelling-wave Equations. Sinusoidal Steady state representation of Lines: Short, medium and long lines. Power Transfer, Voltage profile and Reactive Power. Characteristics of transmission lines. Surge Im- pedance Loading. Series and Shunt Compensation of transmission lines. Transformers: Three-phase connections and Phase-shifts. Three- winding transformers, autotransformers, Neutral Grounding trans- formers. Tap-Changing in transformers. Transformer Parameters. Single phase equivalent of three-phase transformers. Synchronous Machines: Steady-state performance characteristics. Operation when connected to infinite bus. Real and Reactive Power Capability Curve of generators. Typical waveform under balanced ter- minal short circuit conditions – steady state, transient and sub- transient equivalent circuits. Loads: Types, Voltage and Frequency Dependence of Loads. Per-unit System and per-unit calculations.	15
4	Over-voltages and Insulation Requirements Generation of Over-voltages: Lightning and Switching Surges. Protec- tion against Overvoltages, Insulation Coordination. Propagation of Surges. Voltages produced by traveling surges. Bewley Diagrams.	04

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5	Fault Analysis and Protection Systems Method of Symmetrical Components (positive, negative and zero se- quences). Balanced and Unbalanced Faults. Representation of genera- tors, lines and transformers in sequence networks. Computation of Fault Currents. Neutral Grounding. Switchgear: Types of Circuit Breakers. Attributes of Protection schemes, Back-up Protection. Protection schemes (Over-current, di- rectional, distance protection, differential protection) and their appli- cation.	09
6	Introduction to DC Transmission & Renewable Energy Systems DC Transmission Systems: Line-Commutated Converters (LCC) and Voltage Source Converters (VSC). LCC and VSC based dc link, Real Power Flow control in a dc link. Comparison of ac and dc transmis- sion. Solar PV systems: I-V and P-V characteristics of PV panels, pow- er electronic interface of PV to the grid. Wind Energy Systems: Power curve of wind turbine. Fixed and variable speed turbines. Permanent Magnetic Synchronous Generators and Induction Generators. Power Electronics interfaces of wind generators to the grid	09
	TOTAL	42

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-03: CONTROL SYSTEM

Credit: 3

Max. Marks: 150(IA:30, ETE:120)

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to control problem Industrial Control examples. Mathematical models of physical sys- tems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra	4
3	Time Response Analysis: Standard test signals. Time response of first and second order sys- tems for standard test inputs. Application of initial and final value theorem. Design specifications for second-order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analy- sis. Root-Locus technique. Construction of Root-loci.	9
4	Frequency-response analysis Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist crite- rion – gain and phase margin. Closed-loop frequency response.	6
5	Introduction to Controller Design Stability, steady-state accuracy, transient accuracy, disturbance re- jection, insensitivity and robustness of control systems. Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain me- thods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs. Analog and Digital implementation of controllers	10
6	State variable Analysis Concepts of state variables. State space model. Diagonalization of State Matrix. Solution of state equations. Eigenvalues and Stability Analysis. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems	06
7	Introduction to Optimal Control and Nonlinear Control Performance Indices. Regulator problem, Tracking Problem. Nonlinear system–Basic concepts and analysis	05
	TOTAL	41

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-04: MICROPROCESSOR

Credit: 3

Max. Marks: 150(IA:30, ETE:150)

End Term Exam: 3 Hours

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Fundamentals of Microprocessors Fundamentals of Microprocessor Architecture. 8-bitMicroprocessor and Microcontroller architecture, Comparison of 8-bit microcontrollers, 16-bit and 32-bit microcontrollers. Definition of embedded system and its characteris- tics, Role of microcontrollers in embedded Systems. Overview of the 8051 family.	07
3	The 8051 Architecture: Internal Block Diagram, CPU, ALU, address, data and control bus, Working registers, SFRs, Clock and RESET circuits, Stack and Stack Pointer, Program Counter, I/O ports, Memory Structures, Data and Program Memory, Timing diagrams and Execution Cycles.	08
4	Instruction Set and Programming Addressing modes: Introduction, Instruction syntax, Data types, Sub- routines Immediate addressing, Register addressing, Direct addressing, Indirect address- ing, Relative addressing, Indexed addressing, Bit inherent addressing, bit direct addressing. 8051 Instruction set, Instruction timings. Data transfer instructions, Arithmetic instruc- tions, Logical instructions, Branch instructions, Subroutine instructions, Bit manipulation in- struction. Assembly language programs, C language programs. Assemblers and compilers. Programming and debugging tools	08
5	Memory and I/O Interfacing Memory and I/O expansion buses, control signals, memory wait states. Interfacing of peripheral devices such as General Purpose I/O, ADC, DAC, timers, counters, memory devices.	06
6	External Communication Interface Synchronous and Asynchronous Communication. RS232, SPI, I2C. Introduction and interfacing to protocols like Blue-tooth and Zig-bee.	06
7	Applications LED, LCD and keyboard interfacing. Stepper motor interfacing, DC Motor interfacing, sensor interfacing	05
	TOTAL	41

Office of Dean Academic Affairs Rajasthan Technical University, Kota

3L+0T+0P

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-05: ELECTRICAL MACHINE DESIGN

Credit: 3

Max. Marks: 150(IA:30, ETE:120)

3L+0T+0P

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Major Consideration for Design Major considerations in electrical machine design, electrical engineer- ing materials, space factor, choice of specific electrical and magnetic loadings, thermal considerations, heat flow, temperature rise, rating of machines.	08
3	Transformers: Sizing of a transformer, main dimensions, kVA output for single- and three-phase transformers, window space factor, overall dimensions, operating characteristics, regulation, no load current, temperature rise in transformers, design of cooling tank, methods for cooling of transformers	08
4	Induction Motors Sizing of an induction motor, main dimensions, length of air gap, rules for selecting rotor slots of squirrel cage machines, design of ro- tor bars & slots, design of end rings, design of wound rotor, magnetic leakage calculations, leakage reactance of polyphase machines, magnetizing current, short circuit current, circle diagram, operating characteristics.	08
5	Synchronous Machines Sizing of a synchronous machine, main dimensions, design of salient pole machines, short circuit ratio, shape of pole face, armature de- sign, armature parameters, estimation of air gap length, design of ro- tor, design of damper winding, determination of full load field mmf, design of field winding, design of turbo alternators, rotor design.	08
6	Computer aided Design (CAD): Limitations (assumptions) of traditional designs, need for CAD analysis, synthesis and hybrid methods, design optimization methods, variables, constraints and objective function, problem formulation. Introduction to FEM based machine design. Introduction to complex structures of modern machines-PMSMs, BLDCs, SRM and claw-pole machines.	08
	TOTAL	41

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE5-11: RESTRUCTURED POWER SYSTEM

Credit: 2

Max. Marks: 100(IA:20, ETE:80)

End Term Exam: 2 Hours

SN	CONTENTS	HOURS
1	Introduction : Objective, scope and outcome of the course.	01
2	Introduction to restructuring of power industry Reasons for restructuring of power industry; Understanding the re- structuring process, Entities involved, The levels of competition, The market place mechanisms, Sector-wise major changes required; Reasons and objectives of deregulation of various power systems across the world	05
3	Fundamentals of Economics Consumer and suppliers behavior, Total utility and marginal utility, Law of diminishing marginal utility, Elasticity of demand and supply curve, Market equilibrium, Consumer and supplier surplus, Global welfare, Deadweight loss	04
4	The Philosophy of Market Models Monopoly model, Single buyer model, Wholesale competition model, Retail competition model, distinguishing features of electricity as a commodity, Four pillars of market design, Cournot, Bertrand and Stackelberg competition model	05
5	Transmission Congestion Management Transfer capability, Importance of congestion management, Effects of congestion, Classification of congestion management methods, ATC, TTC, TRM, CBM, ATC calculation using DC and AC model, Nodal pricing, Locational Marginal Prices (LMPs), Implications of nodal pricing, Price area congestion management Capacity alleviation methods, Re-dispatching, Counter-trade, Curtailment	05
6	Ancillary Service Management Type and start capability service, Provisions of ancillary services, Markets for ancillary services, Co-optimization of energy and reserve services, Loss of opportunity cost, International practices of ancillary services.	03
7	Pricing of transmission network usage and Market power Introduction to transmission pricing, Principles of transmission pricing, Classification of transmission pricing, Rolled-in transmission pricing paradigm. Attributes of a perfectly competitive market, The firm's supply decision under perfect competition, Imperfect competi- tion, Monopoly, Oligopoly. Effect of market power, Identifying market power, HHI Index, Entropy coefficient, Lerner index.	05
		28

2L+0T+0P

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE5-12: ELECTROMAGNETIC WAVE

Credit: 2

Max. Marks: 100(IA:20, ETE:80)

2L+0T+0P

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Transmission Lines Introduction, Concept of distributed elements, Equations of voltage and current, Standing waves and impedance transformation, Lossless and low-loss transmission lines, Power transfer on a transmission line, Analysis of transmission line in terms of admittances, Transmis- sion line calculations with the help of Smith chart, Applications of transmission line, Impedance matching using transmission lines.	05
3	Maxwell's Equations Basic quantities of Electromagnetics, Basic laws of Electromagnetics: Gauss's law, Ampere's Circuital law, Faraday's law of Electromagnetic induction. Maxwell's equations, Surfacecharge and surface current, Boundary conditions at media interface.	04
4	Uniform Plane Wave Homogeneous unbound medium, Wave equation for time harmonic fields, Solution of the wave equation, Uniform plane wave, Wave pola- rization, Wave propagation in conducting medium, Phase velocity of a wave, Power flow and Poynting vector.	04
5	Plane Waves at Media Interface Plane wave in arbitrary direction, Plane wave at dielectric interface, Reflection and refraction of waves at dielectric interface, Total internal reflection, Wave polarization at media interface, Brewster angle, Fields and power flow at media interface, Lossy media interface, Reflection from conducting boundary.	05
6	Waveguides Parallel plane waveguide: Transverse Electric (TE) mode, transverse Magnetic(TM) mode, Cut-off frequency, Phase velocity and dispersion. Transverse Electromagnetic (TEM) mode, Analysis of waveguide- general approach, Rectangular waveguides.	04
7	Antennas Radiation parameters of antenna, Potential functions, Solution for po- tential functions, Radiations from Hertz dipole, Near field, Far field, Total power ra- diated by a dipole, Radiation resistance and radiation pattern of Hertz dipole, Hertz di- pole in receiving mode.	04
	TOTAL	27

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE5-13: DIGITAL CONTROL SYSTEM

Credit: 2

Max. Marks: 100(IA:20, ETE:80)

2L+0T+0P
20.01.01

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	1
2	Discrete Representation of Continuous Systems Basics of Digital Control Systems. Discrete representation of conti- nuous systems. Sample and hold circuit. Mathematical Modelling of sample and hold circuit. Effects of Sampling and Quantization. Choice of sampling frequency. ZOH equivalent.	05
3	Discrete System Analysis Z-Transform and Inverse Z Transform for analyzing discrete time sys- tems. Pulse Transfer function. Pulse transfer function of closed loop systems. Mapping from s-plane to z plane. Solution of Discrete time systems. Time response of discrete time system.	05
4	Stability of Discrete Time System Stability analysis by Jury test. Stability analysis using bilinear trans- formation. Design of digital control system with dead beat response. Practical issues with dead beat response design.	05
5	State Space Approach for discrete time systems State space models of discrete systems, State space analysis. Lyapu- nov Stability. Controllability, reach-ability, Reconstructibility and ob- servability analysis. Effect of pole zero cancellation on the controllabil- ity & observability.	04
6.	Design of Digital Control System Design of Discrete PID Controller, Design of discrete state feedback controller. Design of set point tracker. Design of Discrete Observer for LTI System. Design of Discrete compensator.	04
7	Discrete output feedback control Design of discrete output feedback control. Fast output sampling (FOS) and periodic output feedback controller design for discrete time systems	04
	Total	28

SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-21: POWER SYSTEM - I LAB

Credit: 1

Max. Marks: 50(IA:30, ETE:20)

0L+0T+2P

- 1) Generating station design: Design considerations, basic schemes and single line diagram of hydro, thermal, nuclear and gas power plants. Electrical equipment for power stations.
- 2) Distribution system Design: Design of feeders & distributors. Calculation of voltage drops in distributors. Calculation of conductor size using Kelvin's law.
- 3) Study of short term, medium term and long term load forecasting.
- 4) Sending end and receiving end power circle diagrams.
- 5) Substations: Types of substations, various bus-bar arrangements. Electrical equipment for substations.
- 6) Study high voltage testing of electrical equipment: line insulator, cable, bushing, power capacitor, and power transformer.
- 7) Design an EHV transmission line
- 8) Study filtration and Treatment of transformer oil.
- 9) Determine dielectric strength of transformer oil.
- 10)Determine capacitance and dielectric loss of an insulating material using Schering bridge.
- 11) Flash over voltage testing of insulators.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-22: CONTROL SYSTEM LAB

Credit: 1

Max. Marks: 50(IA:30, ETE:20)

End Term Exam: 2 Hours 1. (a) Plot step response of a given TF and system in state-space. Take different values of damping ratio and w_n natural undamped frequency. (b) Plot ramp response. 2. To design 1st order R-C circuits and observe its response with the following inputs and trace the curve. (a) Step (b) Ramp (c) Impulse 3. To design 2nd order electrical network and study its transient response for step input and following cases. (a) Under damped system (b) Over damped System. (c) Critically damped system. 4. To Study the frequency response of following compensating Networks, plot the graph and final out corner frequencies. (a) Leg Network (b) Lead Network. (c) Leg-lead Network. 5. Draw the bode plot in real time for a Non-Inverting amplifier. 6. Draw the bode plot in real time for an Inverting amplifier. 7. Draw the bode plot for second order transfer function. 8. Draw the bode plot for first order transfer function.

- 9. Design and analyse Tow- Thomas biquad filter.
- 10. Design and calculate Kp, Ki for PI controller.
- 11. Design PID controller and also calculate Kp, Ki, Kd for it.

0L+0T+2P

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS 3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-23: MICROPROCESSOR LAB

Max. Marks: 50(IA:30, ETE:20)

Credit: 1 0L+0T+2P

- 1. Study the hardware, functions, memory structure and operation of 8085-Microprocessor kit.
- 2. Program to perform integer division: (1) 8-bit by 8-bit (2) 16-bit by 8-bit.
- 3. Transfer of a block of data in memory to another place in memory
- 4. Transfer of black to another location in reverse order.
- 5. Searching a number in an array.
- 6. Sorting of array in: (1) Ascending order (2) Descending order.
- 7. Finding party of a 32-bit number.
- 8. Program to perform following conversion (1) BCD to ASCII (2) BCD to hexadecimal.
- 9. Program to multiply two 8-bit numbers
- 10. Program to generate and sum 15 Fibonacci numbers.
- 11. Program for rolling display of message "India", "HELLO".
- 12. To insert a number at correct place in a sorted array.
- 13. Reversing bits of an 8-bit number.
- 14. Fabrication of 8-bit LED interfaces for 8085 kit through 8155 and 8255.
- 15. Data transfer on output port 8155 & 8255 & implementation of disco light, running light, and sequential lights on the above mentioned hardware.
- 16. Parallel data transfer between two DYNA-85 kit using 8253 ports.
- 17. Generation of different waveform on 8253/8254 programmable timer.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

3rd Year - V Semester: B.Tech. (Electrical Engineering)

5EE4-24: SYSTEM PROGRAMMING LAB

Credit: 1 0L+0T+2P

Max. Marks: 50(IA:30, ETE:20)

- 1. Basics of MATLAB matrices and vectors, matrix and array operations, Saving and loading data, plotting simple graphs, scripts and functions, Script files, Function files, Global Variables, Loops, Branches, Control flow, Advanced data objects, Multidimensional matrices, Structures, Applications in linear algebra curve fitting and interpolation. Numerical integration, Ordinary differential equation. (All contents is to be covered with tutorial sheets)
- 2. Write a MATLAB program for designing Rheostat.
- 3. Idea about simulink, problems based on simulink. (All contents is to be covered with tutorial sheets)
- 4. Write a program to generate Machine Op- code table using two pass Assembler.
- 5. Single Phase Full Wave Diode Bridge Rectifier With LC Filter
- 6. Simulate Three phase Half wave diode rectifier with RL load.
- 7. Starting Of A 5 HP 240V DC Motor With A Three-Step Resistance Starter.
- 8. Simulate OC/SC test of 1-phase transformer.
- 9. Simulate Torque- speed characteristics of induction motor.

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE3-01: COMPUTER ARCHITECTURE

Credit: 2

Max. Marks: 100IA:20, ETE:80

2L+0T+0P

End Term Exam: 2 Hours

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to computer organization Architecture and function of general computer system, CISC Vs RISC, Data types, Integer Arithmetic - Multiplication, Division, Fixed and Floating point representation and arithmetic, Control unit operation, Hardware implementation of CPU with Micro instruction, microprogramming, System buses, Multi-bus organisation	05
3	Memory organization System memory, Cache memory - types and organization, Virtual memory and its implementation, Memory management unit, Magnetic Hard disks, Optical Disks	04
4	Input – output Organization Accessing I/O devices, Direct Memory Access and DMA controller, Interrupts and Interrupt Controllers, Arbitration, Multilevel Bus Architecture, Interface circuits - Parallel and serial port. Features of PCI and PCI Express bus.	05
5	16 and 32 microprocessors 80x86 Architecture, IA – 32 and IA – 64, Programming model, Concurrent operation of EU and BIU, Real mode addressing, Segmentation, Addressing modes of 80x86, Instruction set of 80x86, I/O addressing in 80x86	05
6	Pipelining Introduction to pipelining, Instruction level pipelining ILP, compiler techniques for ILP, Data hazards, Dynamic scheduling, Dependability, Branch cost, Branch Prediction, Influence on instruction set	04
7	Different Architectures VLIW Architecture, DSP Architecture, SoC architecture, MIPS Processor and programming	04
	TOTAL	28

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-02: POWER SYSTEM -II

	Credit: 3 Max. Marks: 150IA:30, ET 3L+0T+0P End Term Exam: 3	
SN CONTENTS		HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Power Flow Analysis	01
	Review of the structure of a Power System and its components. Analysis of Power Flows: Formation of Bus Admittance Matrix. Real and reactive power balance equations at a node. Load and Generator Specifications. Application of numerical methods for solution of nonlinear algebraic equations – Gauss Seidel and Newton-Raphson methods for the solution of the power flow equations. Computational Issues in Large-scale Power Systems.	08
3	Stability Constraints in synchronous grids	
	Swing Equations of a synchronous machine connected to an infinite bus. Power angle curve. Description of the phenomena of loss of synchronism in a single-machine infinite bus system following a disturbance like a threephase fault. Analysis using numerical integration of swing equations using methods like Forward Euler, Runge-Kutta 4th order methods, as well as the Equal Area Criterion. Impact of stability constraints on Power System Operation. Effect of generation rescheduling and series compensation of transmission lines on stability.	10
4	Control of Frequency and Voltage Turbines and Speed-Governors, Frequency dependence of loads, Droop Control and Power Sharing. Automatic Generation Control. Generation and absorption of reactive power by various components of a Power System. Excitation System Control in synchronous generators, Automatic Voltage Regulators. Shunt Compensators, Static VAR compensators and STATCOMs. Tap Changing Transformers. Power flow control using embedded dc links, phase shifters	08
5	Monitoring and Control	
	Overview of Energy Control Centre Functions: SCADA systems. Phasor Measurement Units and Wide-Area Measurement Systems. State-estimation. System Security Assessment. Normal, Alert, Emergency, Extremis states of a Power System. Contingency Analysis. Preventive Control and Emergency Control	08
6	Power System Economics and Management	
	Basic Pricing Principles: Generator Cost Curves, Utility Functions, Power Exchanges, Spot Pricing. Electricity Market Models Vertically Integrated, Purchasing Agency, Whole-sale competition, Retail Competition, Demand Side-management, Transmission andDistributions charges, Ancillary Services. Regulatory framework	06
	TOTAL	41

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-03: POWER SYSTEM PROTECTION

Credit: 3 Max. Marks: 150IA:30, ET 3L+0T+0P End Term Exam: 3		
SN		
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction and Components of a Protection System	
	Principles of Power System Protection, Relays, Instrument	04
	transformers, Circuit Breakers.	
3	Faults and Over-Current Protection	
	Review of Fault Analysis, Sequence Networks. Introduction to	08
	Overcurrent Protection and overcurrent relay co-ordination.	
4	Equipment Protection Schemes	
	Directional, Distance, Differential protection. Transformer and	00
	Generator protection. Bus bar Protection, Bus Bar arrangement	08
	schemes.	
5	Digital Protection	
	Computer-aided protection, Fourier analysis and estimation of	07
	Phasors from DFT. Sampling, aliasing issues.	
6	Modeling and Simulation of Protection Schemes	
	CT/PT modeling and standards, Simulation of transients using	00
	Electro-Magnetic	08
	Transients EMT programs. Relay Testing.	
7	System Protection	
	Effect of Power Swings on Distance Relaying. System Protection	
	Schemes. Under-frequency, under-voltage and df/dt relays, Out-of-	06
	step protection, Synchro-phasors, Phasor Measurement Units and	00
	Wide-Area Measurement Systems WAMS. Application of WAMS for	
	improving protection systems.	
	TOTAL	42

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-04: ELECTRICAL ENERGY CONSERVATION And AUDITING

SD+U	OT+OP End Term Exam: CONTENTS	HOURS
<u>э</u> м 1		01
2	Introduction: Objective, scope and outcome of the course.	01
2	Energy Scenario Commercial and Non-commercial energy, primary energy resources, commercial energy production, final energy consumption, energy needs of growing economy, long term energy scenario, energy pricing, energy sector reforms, energy and environment, energy security, energy conservation and its importance, restructuring of the energy supply sector, energy strategy for the future, air pollution, climate change. Energy Conservation Act-2001 and its features.	04
3	Basics of Energy and its Various Forms	
	Electricity tariff, load management and maximum demand control, power factor improvement, selection & location of capacitors, Thermal Basics-fuels, thermal energy contents of fuel, temperature & pressure, heat capacity, sensible and latent heat, evaporation, condensation, steam, moist air and humidity & heat transfer, units and conversion.	08
4	Energy Management & Audit	
	Definition, energy audit, need, types of energy audit. Energy management audit) approachunderstanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments. Material and Energy balance: Facility as an energy system, methods for preparing process flow, material and energy balance diagrams.	08
5	Energy Efficiency in Electrical Systems	
	Electrical system: Electricity billing, electrical load management and maximum demand control, power factor improvement and its benefit, selection and location of capacitors, performance assessment of PF capacitors, distribution and transformer losses. Electric motors: Types, losses in induction motors, motor efficiency, factors affecting motor performance, rewinding and motor replacement issues, energy saving opportunities with energy efficient motors.	07
6	Energy Efficiency in Industrial Systems	
	Overview of grid code technical requirements. Fault ride-through for wind farms - real and reactive power regulation, voltage and frequency operating limits, solar PV and wind farm behavior during grid disturbances. Power quality issues. Power system interconnection experiences in the world. Hybrid and isolated operations of solar PV and wind systems.	08
7	Energy Efficient Technologies in Electrical Systems	
	Maximum demand controllers, automatic power factor controllers, energy efficient motors, soft starters with energy saver, variable speed drives, energy efficient transformers, electronic ballast, occupancy sensors, energy efficient lighting controls, energy saving potential of each technology	06
	each technology.	

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-05: ELECTRICAL DRIVES

Credit: 3 Max. Marks: 150IA:30, E7 3L+0T+0P End Term Exam: 3		
SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	DC motor characteristics Review of emf and torque equations of DC machine, review of torque- speed characteristics of separately excited dc motor, change in torque- speed curve with armature voltage, example load torque-speed characteristics, operating point, armature voltage control for varying motor speed, flux weakening for high speed operation	05
3	Chopper fed DC drive Review of dc chopper and duty ratio control, chopper fed dc motor for speed control, steady state operation of a chopper fed drive, armature current waveform and ripple, calculation of losses in dc motor and chopper, efficiency of dc drive, smooth starting	05
4	Multi-quadrant DC drive Review of motoring and generating modes operation of a separately excited dc machine, four quadrant operation of dc machine; single- quadrant, two-quadrant and four-quadrant choppers; steady-state operation of multi-quadrant chopper fed dc drive, regenerative braking	06
5	Closed-loop control of DC Drive Control structure of DC drive, inner current loop and outer speed loop, dynamic model of dc motor – dynamic equations and transfer functions, modeling of chopper as gain with switching delay, plant transfer function, for controller design, current controller specification and design, speed controller specification and design	05
6	Induction motor characteristics Review of induction motor equivalent circuit and torque-speed characteristic, variation of torque-speed curve with i applied voltage, ii applied frequency and iii applied voltage and frequency, typical torque-speed curves of fan and pump loads, operating point, constant flux operation, flux weakening operation, vector control of IM, Direct torque control of IM.	06
7	Scalar control or constant V/f control of induction motor Review of three-phase voltage source inverter, generation of three- phase PWM signals, sinusoidal modulation, space vector theory, conventional space vector modulation; constant V/f control of induction motor, steady-state performance analysis based on equivalent circuit, speed drop with loading, slip regulation	06
8	Control of slip ring induction motor Impact of rotor resistance of the induction motor torque-speed curve, operation of slip-ring induction motor with external rotor resistance, starting torque, power electronic based rotor side control of slip ring motor, slip power recovery	06
	TOTAL	40

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE5-11: POWER SYSTEM PLANNING

Credit: 3 Max. Marks: 150IA:30, ETE		
3L+0T+0P End Term Exam: 3		: 3 Hours
SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction of power planning: National and Regional Planning, structure of Power System, planning tools. Electricity Regulation, Electrical Forecasting, forecasting techniques modeling.	08
3	Power system Reliability : System Reliability, Reliability Planning Criteria for Generation, Transmission and Distribution, Grid Reliability, Reliability Target, Security Requirement, Disaster Management, Roadmap for Reliability and Quality.	08
4	Generation Planning : Objectives & Factors affecting Generation Planning, Generation Sources, Integrated Resource Planning, Generation System Model, Loss of Load Calculation and Approaches, Outage Rate, Capacity Expansion, Scheduled Outage, Loss of Energy, Evaluation Methods. Interconnected System, Factors affecting interconnection under Emergency Assistance.	08
5	Transmission & Distribution Planning : Introduction, Objectives of Transmission Planning, Network Reconfiguration, System and Load Point Indices, Data required for Composite System Reliability. Radial Networks – Introduction, Network Reconfiguration, Evaluation Techniques, Interruption Indices, Effects of Lateral Distribution Protection, Effects of Disconnects, Effects of Protection Failure, Effects of Transferring Loads, Distribution Reliability Indices	08
6	Demand Side Planning : Computer aided planning, wheeling. Environmental effects, the greenhouse effect. Technological impacts. Insulation coordination. Reactive compensation.	08
	TOTAL	41

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE5-12: DIGITAL SIGNAL PROCESSING

Credit: 3 Max. Marks: 150IA:30, E7 3L+0T+0P End Term Exam: 3		
SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Discrete-time signals and systems	
	Discrete time signals and systems: Sequences; representation of	00
	signals on orthogonal basis; Representation of discrete systems using	06
	difference equations, Sampling and reconstruction of signals -	
•	aliasing; Sampling theorem and Nyquist rate	
3	Z-transform	
	z-Transform, Region of Convergence, Analysis of Linear Shift Invariant	06
	systems using ztransform, Properties of z-transform for causal signals,	
4	Interpretation of stability in z-domain, Inverse z-transforms. Discrete Fourier Transform	
4	Frequency Domain Analysis, Discrete Fourier Transform DFT,	
	Properties of DFT,	
	Connvolution of signals, Fast Fourier Transform Algorithm, Parseval's	10
	Identity,	
	Implementation of Discrete Time Systems	
5	Design of Digital filters	
-	Design of FIR Digital filters: Windowmethod, Park-McClellan's method.	
	Design of IIR Digital Filters: Butterworth, Chebyshev and Elliptic	
	Approximations; Low-pass, Band-pass, Bandstop and High-pass	
	filters.	11
	Effect of finite register length in FIR filter design. Parametric and non-	
	parametric spectral estimation. Introduction to multi-rate signal	
	processing	
6	Applications of Digital Signal Processing	
	Correlation Functions and Power Spectra, Stationary Processes,	06
	Optimal filtering using	
	ARMA Model, Linear Mean-Square Estimation, Wiener Filter.	
	TOTAL	40

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE5-13: ELECTRICAL AND HYBRID VEHICLES

Credit: 3Max. Marks: 150IA:30, E'3L+0T+0PEnd Term Exam: 3		
SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	01
2	Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, and mathematical models to describe vehicle performance.	05
3	 Hybrid Electric Vehicles History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. 	07
4	Electric Trains Electric Drive-trains: Basic concept of electric traction, introduction to various electric drivetrain topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.	10
5	Energy Storage Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine ICE, Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems	10
6	Energy Management Strategies Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies. Case Studies: Design of a Hybrid Electric Vehicle HEV, Design of a Battery Electric Vehicle BEV.	08
	TOTAL	41

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-21: POWER SYSTEM - II LAB

Credit: 2 0L+0T+4P Max. Marks: 100IA:60, ETE:40 End Term Exam: 3 Hours

- 1. Fault analysis for 3 to 6 bus and verify the results using MATLAB or any available software for the cases: i LG Fault ii LLG Fault iii LL Fault and iv 3-Phase Fault.
- 2. Load flow analysis for a given system for 3 to 6 bus using i Gauss Seidal ii Newton Raphson iii Fast Decoupled Method and verify results using MATLAB or any available software.
- 3. Three phase short circuit analysis in a synchronous machinesymmetrical fault analysis
- 4. Study of voltage security analysis.
- 5. Study of overload security analysis and obtain results for the given problem using MATLAB or any software.
- 6. Study of economic load dispatch problem with different methods.
- 7. Study of transient stability analysis using MATLAB/ETAP Software.
- 8. Power flow analysis of a slack bus connected to different loads.

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-22: ELECTRIC DRIVE LAB

Credit: 2Max. Marks: 100IA:60, ETH0L+0T+4PEnd Term Exam: 3 H	
1.	Study and test the firing circuit of three phase half controlled bridge converter.
2.	Power quality analysis of 3 phase half controlled bridge converter with R and RL loads.
3.	Power Quality analysis of 3-phase full controlled bridge converter feeding R and RL load.
4.	Study and obtain waveforms of 3-phase full controlled bridge converter with R and RL loads.
5.	Experimental analysis of 3-phase AC voltage regulator with delta connected, star connected with floating load, R& RL load
6.	Control speed of dc motor using 3-phase half controlled bridge converter. Plot armature voltage versus speed characteristic.
7.	Control speed of dc motor using 3-phase full controlled bridge converter. Plot armature voltage versus speed characteristic.
8.	Control speed of a 3-phase induction motor in variable stator voltage mode using 3-phase AC voltage regulator.
9.	Control speed of a 3-phase BLDC motor.
10.	Control speed of a 3-phase PMSM motor using frequency and voltage control
11.	Control speed of universal motor using AC voltage regulator.
12.	Study 3-phase dual converter.
13.	Study speed control of dc motor using 3-phase dual converter.
14.	Study three-phase cyclo-converter and speed control of synchronous motor using cyclo-converter.
15.	Control of 3-Phase Induction Motor in variable frequency V/f constant mode using 3-phase inverter.

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-23: POWER SYSTEM PROTECTION LAB

	determine fault type, fault impedance and fault location during single line to und fault.
	determine fault type, fault impedance and fault location during single line-to- fault.
	determine fault type, fault impedance and fault location during double line to und fault.
	study the operation of micro-controller based over current relay in DMT type I IDMT type.
	analyse the operation of micro-controller based directional over current relay in T type and IDMT type.
6. To s	study the micro-controller based under voltage relay.
7. To s	study the micro-controller based over voltage relay.
	study the operation of micro-controller based un-biased single-phase erential relay.
9. To s rela	study the operation of micro-controller based biased single-phase differential y.
10. To s rela	study the operation of micro-controller un-based biased three phase differential y.
11. To s rela	study the operation of micro-controller based biased three phase differential y.

Syllabus

III Year - VI Semester: B.Tech. (Electrical Engineering)

6EE4-24: MODELLING AND SIMULATION LAB

Credit: 1 0L+0T+2P

Max. Marks: 50IA:30, ETE:20 End Term Exam: 2 Hours

- 1. Simulate Swing Equation in Simulink MATLAB)
- 2. Modeling of Synchronous Machine.
- 3. Modeling of Induction Machine.
- 4. Modeling of DC Machine.
- 5. Simulate simple circuits.
- 6. a Modeling of Synchronous Machine with PSS b Simulation of Synchronous Machine with FACTS device.
- 7. a Modeling of Synchronous Machine with FACTS device b Simulation of Synchronous Machine with FACTS devices.

8. FACTS Controller designs with FACT devices for SMIB system.

SEMESTER-VII & VIII

Teaching & Examination Scheme B. Tech.: Electrical Engineering 4th Year - VII Semester

SN	Course Type	Course		Hours per Week				Cr			
		Code	Name	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PEC	7EE5-11	Wind and Solar Energy Sys- tems.	3	0	0	3	30	120	150	
2		7EE5-12	Power Quality and FACTS								3
3		7EE5-13	Control System Design.								
4	OE		Open Elective-I	3	0	0	3	30	120	150	3
			6	0	0		60	240	300	6	
			PRACTICAL & SES	SIO	NAL						
5	PCC	7EE4-21	Embedded Systems Lab	0	0	4	2	60	40	100	2
6	PCC	7EE4-22	Advance control system lab	0	0	4	2	60	40	100	2
7	DOIT	7EE7-30	Industrial Training	1	0	0		75	50	125	2.5
8	PSIT	7EE7-40	Seminar	2	0	0		60	40	100	2
9	SODE- CA	7EE8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0		0	25	25	0.5
			SUB TOTAL	3	0	8		255	195	450	6
			TOTAL OF VII SEMESTER	9	0	8		315	435	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

> Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. EE for students admitted in Session 2017-18 onwards Page 2

Teaching & Examination Scheme B. Tech. : Electrical Engineering 4th Year - VIII Semester

			THEORY								
SN	Course Type	Course		Hours per Week				Cr			
		Course Code	Course Name	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PEC	8EE4-11	HVDC Transmission Sys- tem.	3	0	0	3	30	120	150	
2		8EE4-12	Line Commutated and ac- tive rectifiers.								3
3		8EE4-13	Advanced Electric Drives.								
4	OE		Open Elective-II	3	0	0	3	30	120	150	3
				6	0	0		60	240	300	6
			PRACTICAL & SES	SSIC	NAI						
			SUB TOTAL	6	0	0		60	240	300	6
5	PCC	8EE4-21	Energy Systems Lab	0	0	4	3	60	40	100	2
6	PSIT	8EE7-50	Project	3	0	0		210	140	350	7
7	SODE- CA	8EE8-00	SODECA	0	0	0			25	25	0.5
			SUB TOTAL	3	0	4		270	205	475	9.5
			TOTAL OF VIII SEMESTER	9	0	4		330	445	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

> Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. EE for students admitted in Session 2017-18 onwards Page 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

	List of Open Electives	for	Electric	al Engineering
Subject Code	Title		Subject Code	Title
	Open Elective - I			Open Elective - II
7AG6-60.1	Human Engineering and Safety	84	AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management	84	AG6-60.2	Waste and By-product Utiliza- tion
7AN6-60.1	Aircraft Avionic System	8	AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing	8	AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques	8	CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering	80	CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology	80	CR6-60.1	Electrical and Electronic Ce- ramics
7CR6-60.2	Plant, Equipment and Fur- nace Design	80	CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis	8	CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management	8	CE6-60.2	Fire and Safety Engineering
7CS6-60.1	Quality Management/ISO 9000	8	CS6-60.1	Big Data Analytics
7CS6-60.2	Cyber Security	8	CS6-60.2	IPR, Copyright and Cyber Law of India
7EC6-60.1	Principle of Electronic communication	8	EC6-60.1	Industrial and Biomedical ap- plications of RF Energy
7EC6-60.2	Micro and Smart System Technology	8	EC6-60.2	Robotics and control
7ME6-60.1	Finite Element Analysis	8	ME6-60.1	Operations Research
7ME6-60.2	Quality Management	8	ME6-60.2	Simulation Modeling and Analysis
7MI6-60.1	Rock Engineering	8	MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing	8	MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering	8	PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control En- gineering	8	PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles	8	ТТ6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology	8	TT6-60.2	Disaster Management

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

7EE5-11: WIND AND SOLAR ENERGY SYSTEM

	lit: 3 Max. Marks: 150(IA:30, E7 DT+0P End Term Exam: 3	
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Physics of Wind Power History of wind power, Indian and Global statistics, Wind physics, Betz limit, Tip speed ratio, stall and pitch control, Wind speed statistics- probability distributions, Wind speed and power-cumulative distribution functions.	5
3	Wind Generator Topologies Review of modern wind turbine technologies, Fixed and Variable speed wind turbines, Induction Generators, Doubly-Fed Induction Generators and their characteristics, Permanent Magnet Synchronous Generators, Power electronics converters. Generator-Converter configurations, Con- verter Control.	11
4	The Solar Resource Introduction, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day length, Estimation of solar energy availability.	4
5	Solar Photovoltaic Technologies-Amorphous, monocrystalline, polycrystalline; V-I characte- ristics of a PV cell, PV module, array, Power Electronic Converters for Solar Systems, Maximum Power Point Tracking MPPT algorithms. Con- verter Control.	8
6	Network Integration Issues Overview of grid code technical requirements. Fault ride-through for wind farms - real and reactive power regulation, voltage and frequency operating limits, solar PV and wind farm behavior during grid distur- bances. Power quality issues. Power system interconnection experiences in the world. Hybrid and isolated operations of solar PV and wind sys- tems.	8
7	Solar Thermal Power Generation Technologies, Parabolic trough, central receivers, parabolic dish, Fres- nel, solar pond, elementary analysis.	4
	TOTAL	

Office of Dean Academic Affairs Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

Tex	t/Reference Books
1	T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd.,
	2005.
2	G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley
	and Sons, 2004.
3	S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage",
	McGraw Hill, 1984.
4	H. Siegfried and R. Waddington, "Grid integration of wind energy conversion
	systems" John Wiley and Sons Ltd., 2006.
5	G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publi-
	cations, 2004.
6	J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley
	& Sons, 1991

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

7EE4-12: POWER QUALITY AND FACTS

	edit: 3 Max. Marks: 150(IA:30, ET +0T+0P End Term Exam: 3	
SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Transmission Lines and Series/Shunt Reactive Power Compensa-	04
	tion	
	Basics of AC Transmission. Analysis of uncompensated AC transmis-	
	sion lines. Passive	
	Reactive Power Compensation. Shunt and series compensation at the	
	mid-point of an AC	
-	line. Comparison of Series and Shunt Compensation	
3	Thyristor-based Flexible AC Transmission Controllers (FACTS)	06
	Description and Characteristics of Thyristor-based FACTS devices:	
	Static VAR Compensator SVC), Thyristor Controlled Series Capacitor	
	TCSC), Thyristor Controlled Braking Resis tor and Single Pole Single	
	Throw SPST Switch. Configurations/Modes of Operation, Harmonics	
4	and control of SVC and TCSC. Fault Current Limiter.	00
4	Voltage Source Converter based (FACTS) controllers	08
	Voltage Source Converters VSC): Six Pulse VSC, Multi -pulse and Mul-	
	ti-level Converters, Pulse-Width Modulation for VSCs. Selective Har-	
	monic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and	
	Type II controllers, Static Synchronous Series Compensator SSSC)	
	and Unified Power Flow Controller UPFC): Principle of Operation and	
	Control. Working principle of Interphase Power Flow Controller. Other	
	Devices: GTO Controlled Series Compensator. Fault Current Limiter	
5	Application of FACTS	04
•	Application of FACTS devices for power-flow control and stability im-	• •
	provement. Simulation example of power swing damping in a single-	
	machine infinite bus system using a TCSC.	
	Simulation example of voltage regulation of transmission mid-point	
	voltage using a	
	STATCOM.	
6	Power Quality Problems in Distribution Systems	04
	Power Quality problems in distribution systems: Transient and Steady	
	state variations in	
	voltage and frequency. Unbalance, Sags, Swells, Interruptions, Wave-	
	form Distortions: harmonics, noise, notching, dc-offsets, fluctuations.	
	Flicker and its measurement. Tolerance of Equipment: CBEMA curve	
7	DSTATCOM	07
	Reactive Power Compensation, Harmonics and Unbalance mitigation	

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. EE for students admitted in Session 2017-18 onwards Page 7

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

	in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Cur- rent Control Techniques in for DSTATCOM.	
8	Dynamic Voltage Restorer and Unified Power Quality Conditioner Voltage Sag/Swell mitigation: Dynamic Voltage Restorer – Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner UPQC): Working Principle. Capabilities and Con- trol Strategies.	06
	TOTAL	

Тех	t/Reference Books
1	N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technol-
	ogy of FACTS Systems", Wiley-IEEE Press, 1999.
2	K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution",
	New Age International (P) Ltd. 2007.
3	T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and
	Sons, New York, 1983.
4	R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education,
	2012.
5	G. T. Heydt, "Electric Power Quality", Stars in a Circle Publications, 1991

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

7EE5-13: CONTROL SYSTEM DESIGN

Credit: 3 Max. Marks: 150IA:30, ETE:120 3L+0T+0P End Term Exam: 3 Hours CONTENTS Hours SN Introduction : Objective, scope and outcome of the course. 1 1 2 **Design Specifications** 08 Introduction to design problem and philosophy. Introduction to time domain and frequency domain design specification and its physical relevance. Effect of gain on transient and steady state response. Effect of addition of pole on system performance. Effect of addition of zero on system response.. 3 Design of Classical Control System in the time domain 07 Introduction to compensator. Design of Lag, lead lag-lead compensator in time domain. Feedback and Feed forward compensator design. Feedback compensation. Realization of compensators. 4 Design of Classical Control System in frequency domain 08 Compensator design in frequency domain to improve steady state and transient response. Feedback and Feed forward compensator design using bode diagram. 5 **Design of PID controllers** 06 Design of P, PI, PD and PID controllers in time domain and frequency domain for first, second and third order systems. Control loop with auxiliary feedback -Feed forward control Control System Design in state space 08 6 Review of state space representation. Concept of controllability & observability, effect of pole zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Reduced order observer. Separation Principle. 7 Nonlinearities and its effect on system performance 03 Various types of non-linearities. Effect of various non-linearities on system performance. Singular points. Phase plot analysis

Office of Dean Academic Affairs Rajasthan Technical University, Kota

TOTAL

Тех	t/Reference Books
1	N. Nise, "Control system Engineering", John Wiley, 2000.
2	I. J. Nagrath and M. Gopal, "Control system engineering", Wiley, 2000.
3	M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
4	K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.
5	B. C. Kuo, "Automatic Control system", Prentice Hall, 1995.
6	J. J. D'Azzo and C. H. Houpis, "Linear control system analysis and design
	conventional and modern)", McGraw Hill, 1995.
7	R. T. Stefani and G. H. Hostetter, "Design of feedback Control Systems",
	Saunders College Pub, 1994

Credit: 2

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

7EE4-21: EMBEDDED SYSTEM LAB Max. Marks: 100IA: 60, ETE:40)

0L+	OT+4P
SN	Contents
1	Introduction to Embedded Systems and their working.
2	Data transfer instructions using different addressing modes and block trans- fer.
3	Write a program for Arithmetic operations in binary and BCD-addition, sub- traction, multiplication and division and display.
4	Interfacing D/A converter & Write a program for generation of simple wave- forms such as triangular, ramp, Square etc.
5	Write a program to interfacing IR sensor to realize obstacle detector.
6	Write a program to implement temperature measurement and displaying the same on an LCD display.
7	Write a program for interfacing GAS sensor and perform GAS leakage detec- tion.
8	Write a program to design the Traffic Light System and implement the same using suitable hardware.
9	Write a program for interfacing finger print sensor.
10	Write a program for Master Slave Communication between using suitable hardware and using SPI
11	Write a program for variable frequency square wave generation using with suitable hardware.
12	Write a program to implement a PWM based speed controller for 12 V/24V DC Motor incorporating a suitable potentiometer to provide the set point.

7EE4-22: Advanced Control System Lab

	lit: 2 Max. Marks: 100IA: 60, ETE:40) DT+4P
SN	Contents
1	Determination of transfer functions of DC servomotor and AC servomotor.
2	Time domain response of rotary servo and Linear servo first order and second order) systems using MATLAB/Simulink.
3	Simulate Speed and position control of DC Motor
4	Frequency response of small-motion, linearized model of industrial robot first and second order) system using MATLAB.
5	Characteristics of PID controllers using MATLAB. Design and implementation of P, PI and PID Controllers for temperature and level control systems;
6	Design and implement closed loop control of DC Motor using MAT-LAB/Simulink and suitable hardware platform.
7	Implementation of digital controller using microcontroller;
8	Design and implementation of controller for practical systems - inverted pen- dulum system.
9	To design and implement control action for maintaining a pendulum in the upright position even when subjected to external disturbances through LQR technique in an Arduino Mega.
10	The fourth order, nonlinear and unstable real-time control system Pendulum & Cart Control System
11	Mini project on real life motion control system
	The fourth order, nonlinear and unstable real-time control system Penduk & Cart Control System

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

8EE4-11: HVDC TRANSMISSION SYSTEM

Max. Marks: 150IA:30, ETE:120 End Term Exam: 3 Hours

SN	OT+OP End Term Exam: CONTENTS	Hour
1	Introduction: Objective, scope and outcome of the course.	01
2	dc Transmission Technology: Comparison of AC and dc Transmission Economics, Technical Performance and Reliability. Application of DC Transmission. Types of HVdc Systems. Components of a HVdc system. Line Commutated Converter and Voltage Source Converter based sys- tems.	04
3	Analysis of Line Commutated and Voltage Source Converters: Line Commutated Converters LCCs: Six pulse converter, Analysis neglec t- ing commutation overlap, harmonics, Twelve Pulse Converters. Inverter Operation. Effect of Commutation Overlap. Expressions for average dc voltage, AC current and reactive power absorbed by the converters. Ef- fect of Commutation Failure, Misfire and Current Extinction in LCC links. Voltage Source Converters VSCs: Two and Three -level VSCs. PWM schemes: Selective Harmonic Elimination, Sinusoidal Pulse Width Modulation. Analysis of a six pulse converter. Equations in the rotating frame. Real and Reactive power control using a VSC.	10
4	Control of HVdc Converters: Principles of Link Control in a LCCHVdc system. Control Hierarchy, Firing Angle Controls – Phase-Locked Loop, Current and Extinction Angle Control, Starting and Stopping of a Link. Higher level Controllers Power control, Frequency Control, Stability Controllers. Reactive Power Control. Principles of Link Control in a VSC HVdc system: Power flow and dc Voltage Control. Reactive Power Control trol/AC voltage regulation	10
5	Components of HVdc systems: Smoothing Reactors, Reactive Power Sources and Filters in LCC HVdc systems DC line: Corona Effects. In- sulators, Transient Over-voltages. dc line faults in LCC systems. dc line faults in VSC systems. dc breakers. Monopolar Operation. Ground Electrodes	08
6	Stability Enhancement using HVdc Control: Basic Concepts: Power System Angular, Voltage and Frequency Stability. Power Modulation: basic principles – synchronous and asynchronous links. Voltage Stability Problem in AC/dc systems.	04
7	MTdc Links: Multi-Terminal and Multi-Infeed Systems. Series and Parallel MTdc systems using LCCs. MTdc systems using VSCs. Modern Trends in HVdcTechnology. Introduction to Modular Multi-level Converters	04
	TOTAL	

Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. EE for students admitted in Session 2017-18 onwards Page 13

Тех	t/Reference Books
1	K. R. Padiyar, "HVDC Power Transmission Systems", New Age International
	Publishers, 2011.
2	J. Arrillaga, "High Voltage Direct Current Transmission", Peter Peregrinus Ltd.,
	1983.
3	E. W. Kimbark, "Direct Current Transmission", Vol.1, Wiley-Interscience, 1971.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

8EE4-12: Line-Commutated and Active PWM Rectifiers

	dit: 3 Max. Marks: 150(IA:30, E' OT+OP End Term Exam: 3	
Hour	CONTENTS	N
01	Introduction: Objective, scope and outcome of the course.	1
06	Diode rectifiers with passive filtering Half-wave diode rectifier with RL and RC loads; 1-phase full-wave di- ode rectifier with L, C and LC filter; 3-phase diode rectifier with L, C and LC filter; continuous and discontinuous conduction, input cur- rent waveshape, effect of source inductance; commutation overlap.	2
06	Thyristor rectifiers with passive filtering Half-wave thyristor rectifier with RL and RC loads; 1-phase thyristor rectifier with L and LC filter; 3-phase thyristor rectifier with L and LC filter; continuous and discontinuous conduction, input current wave- shape.	3
06	Multi-Pulse converter Review of transformer phase shifting, generation of 6-phase ac voltage from 3-phase ac, 6- pulse converter and 12-pulse converters with in- ductive loads, steady state analysis, commutation overlap, notches during commutation.	4
06	Single-phase ac-dc single-switch boost converter Review of dc-dc boost converter, power circuit of single-switch ac-dc converter, steady state analysis, unity power factor operation, closed-loop control structure.	5
06	Ac-dc bidirectional boost converter Review of 1-phase inverter and 3-phase inverter, power circuits of 1- phase and 3-phase ac-dc boost converter, steady state analysis, oper- ation at leading, lagging and unity power factors. Rectification and regenerating modes. Phasor diagrams, closed-loop control structure.	6
10	Isolated single-phase ac-dc flyback converter Dc-dc flyback converter, output voltage as a function of duty ratio and transformer turns ratio. Power circuit of ac-dc flyback converter, steady state analysis, unity power factor operation, closed loop con- trol structure.	7
	TOTAL	

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. EE for students admitted in Session 2017-18 onwards Page 15

Tex	t/Reference Books
1	G. De, "Principles of Thyristorised Converters", Oxford & IBH Publishing Co,
	1988.
2	J.G. Kassakian, M. F. Schlecht and G. C. Verghese, "Principles of Power Elec-
	tronics", AddisonWesley, 1991.
3	L. Umanand, "Power Electronics: Essentials and Applications", Wiley India,
	2009.
4	N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications
	and Design", John Wiley & Sons, 2007.
5	R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics",
	Springer Science & Business Media, 2001.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

8EE4-13: ADVANCED ELECTRIC DRIVES

SEE4-13: ADVANCED ELECTRIC DRIVES				
Cree	dit: 2 Max. Marks: 100(IA:20, E	TE:80)		
2L+(0T+0P End Term Exam: 2	Hours		
SN	CONTENTS	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	Power Converters for AC drives: PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three level inverter, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge as a 4-Q drive.	06		
3	Induction motor drives: Different transformations and reference frame theory, modeling of induction machines, voltage fed inverter control-v/f control, vector control, direct torque and flux control(DTC).	06		
4	Synchronous motor drives: Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fed synchronous motor drives.	04		
5	Permanent magnet motor drives: Introduction to various PM mo- tors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM	04		
6	Switched reluctance motor drives: Evolution of switched reluctance motors, various topologies for SRM drives, comparison. Closed loop speed and torque control of SRM.	03		
7	DSP based motion control: Use of DSPs in motion control, various DSPs available, realization of some basic blocks in DSP for implementation of DSP based motion control	04		
	TOTAL			

Tex	t/Reference Books
1	B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education,
	Asia, 2003.
2	P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery
	and Drive Systems", John Wiley & Sons, 2013.
3	H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Con-
	trol", CRC press, 2003.
4	R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor
	Drives", CRC Press, 2009.

8EE4-21 Energy Systems Lab

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Scheme & Syllabus of 4th Year B. Tech. EE for students admitted in Session 2017-18 onwards Page 17

RAJASTHAN TECHNICAL UNIVERSITY, KOTA Scheme & Syllabus IV Year- VII & VIII Semester: B. Tech. Electrical Engineering

	dit: 2 Max. Marks: 100(IA:60, ETE:40) 0T+3P End Term Exam: 3 Hours
SN	Contents
1	V-I characteristics of solar panels at various levels of insolation.
2	Experiment of solar Charge controller, PWM, MPPT with boost converter and algorithms.
3	Experiment on Shadowing effect and diode based solution in1kWpSolar PV System.
4	Study of wind turbine generators with DC generators, DFIG, PMSG etc.
5	Performance Study of Solar Flat Plate Thermal Collector Operation with Varia- tion in Mass Flow Rate and Level of Radiation.
6	Characterization of Various PV Modules Using large area Sun Simulator.
7	Study of micro-hydel pumped storage system.
8	Experiment on Fuel Cell and its operation.
9	Study of 100 kW or higher solar PV plant.
10	Study different components of Micro Grid.
11	To design and simulate hybrid wind-solar power generation system using si- mulation software.
12	Experiment on Performance Assessment of Hybrid Solar -Wind- Battery Po w- er System.
13	Simulation study on Intelligent Controllers for on-grid and off-grid Hybrid Power Systems.

Syllabus and Scheme

B.Tech. in Information Technology

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	H	Iou	rs		Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Catego Course Course Title	H	Iou	rs	Marks			Cr		
	ry	ry	ry Code		L	T	Ρ	IA	ETE	Total	1
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4	
			Mathematics-II								
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4	
		2FY2-02	Engineering Physics								
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2	
		2FY1-04	Communication Skills								
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2	
			Engineering/								
		2FY3-06	Programming for								
			Problem Solving								
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2	
		2FY3-08	Basic Electrical								
			Engineering								
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1	
		_	Lab/								
		2FY2-20	Engineering Physics Lab								
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1	
		_	and Sports/								
		2FY1-22	Language Lab								
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5	
		_	Workshop/								
		2FY3-24	Computer Programming								
			Lab								
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1	
		_	Lab/								
		2FY3-26	Basic Electrical								
			Engineering Lab								
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5	
		,	Drawing/								
		2FY3-28	Computer Aided								
			Engineering Graphics								
11	SODE	2FY8-00		•	•				100	0.5	
	CA										
									Total	20.5	

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS					
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.					
2	equences and Series: Convergence of sequence and series, tests for convergence; Power series, aylor's series, series for exponential, trigonometric and logarithm functions.					
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.					
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.					
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.					

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

I & II Semester

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations – First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.
	1

SEMESTER-III & IV

Teaching & Examination Scheme B.Tech. : Information Technology 2nd Year - III Semester

			THEO	RY							
			Course	С	onta	ıct					
SN	Categ			hrs	s/we	ek		Ma	arks		Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3IT2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3IT1-02/ 3IT1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3IT3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3IT4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3IT4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3IT4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
			PRACTICAL &	SES	SION	IAL					
8		3IT4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
9	PCC	3IT4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
10		3IT4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
11		3IT4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
13	PSIT	3IT7-30	Industrial Training	0	0	1		60	40	100	1
14	SODE CA	3IT8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0				100	0.5
			Sub- Total	0	0	13					7.5
		т	DTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT2-01: Advanced Engineering Mathematics

Credit- 3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 03 Hours

SN	CONTENTS	Hours
1	Random Variables: Discrete and Continuous random variables, Joint distribution, Probability distribution function, conditional distribution. Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis.	7
2	Binomial distribution , Normal Distribution, Poisson Distribution and their relations, Uniform Distribution, Exponential Distribution. Correlation: Karl Pearson's coefficient, Rank correlation. Curve fitting. Line of Regression.	5
3	Historical development , Engineering Applications of Optimization, Formulation of Design Problems as a Mathematical Programming Problems, Classification of Optimization Problems	8
4	Classical Optimization using Differential Calculus: Single Variable and Multivariable Optimization with & without Constraints, Langrangian theory, Kuhn Tucker conditions	6
5	Linear Programming: Simplex method, Two Phase Method and Duality in Linear Programming. Application of Linear Programming: Transportation and Assignment Problems.	14
	TOTAL	40

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT1-02/4IT1-02: Technical Communication

Credit- 2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT1-03/ 4IT1-03: Managerial Economics and Financial Accounting

Credit- 2	
2L+0T+0P	

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT3-04: Digital Electronics

Credit- 3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Fundamental concepts: Number systems and codes, Basic logic Gates and Boolean algebra: Sign & magnitude representation, Fixed point representation, complement notation, various codes & arithmetic in different codes & their inter conversion. Features of logic algebra, postulates of Boolean algebra.Theorems of Boolean algebra.	8
2	Minimization Techniques and Logic Gates: Principle of Duality - Boolean expression -Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization.	8
3	Digital Logic Gate Characteristics: TTL logic gate characteristics. Theory & operation of TTL NAND gate circuitry. Open collector TTL. Three state output logic. TTL subfamilies.MOS& CMOS logic families. Realization of logic gates in RTL, DTL, ECL, C-MOS & MOSFET.	8
4	Combinational Circuits: Combinational logic circuit design, adder, subtractor, BCD adder, encoder, decoder, BCD to 7-segment decoder, multiplexer, demultiplexer.	8
5	Sequential Circuits: Latches, Flip-flops - SR, JK, D, T, and Master-Slave Characteristic table and equation,counters and their design, Synchronous counters – Synchronous Up/Down counters – Programmable counters – State table and state transition diagram ,sequential circuits design methodology. Registers –shift registers.	8
	TOTAL	40

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-05: Data Structures and Algorithms

Credit- 3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.	8
2	 Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues. Linked Lists: Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list. 	10
3	Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.	7
4	Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.	7
5	Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms.Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.	8
	TOTAL	40

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-06: Object Oriented Programming

Credit- 3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction to different programming paradigm, characteristics of OOP, Class, Object, data member, member function, structures in C++, different access specifiers, defining member function inside and outside class, array of objects.	8
2	Concept of reference, dynamic memory allocation using new and delete operators, inline functions, function overloading, function with default arguments, constructors and destructors, friend function and classes, using this pointer.	8
3	Inheritance, types of inheritance, multiple inheritance, virtual base class, function overriding, abstract class and pure virtual function	9
4	Constant data member and member function, static data member and member function, polymorphism, operator overloading, dynamic binding and virtual function	9
5	Exception handling, Template, Stream class, File handling.	6
	TOTAL	40

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-07: Software Engineering

Credit- 3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction, software life-cycle models, software requirements specification, formal requirements specification, verification and validation.	8
2	Software Project Management: Objectives, Resources and their estimation, LOC and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project scheduling.	8
3	Requirement Analysis: Requirement analysis tasks, Analysis principles. Software prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured Analysis: Data and control flow diagrams, control and process specification behavioural modeling	8
4	Software Design: Design fundamentals, Effective modular design: Data architectural and procedural design, design documentation.	8
5	Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling. Object Oriented Design: OOD concepts, Class and object relationships, object modularization, Introduction to Unified ModelingLanguage.	8
	TOTAL	40

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-21: Data Structures and Algorithms Lab

Max. Marks: 100 (IA:60,ETE:40)

Credit- 1.5 0L+0T+3P

CONTENTS
Write a simple C program on a 32 bit compiler to understand the concept of
array storage, size of a word. The program shall be written illustrating the
concept of row major and column major storage. Find the address of element
and verify it with the theoretical value. Program may be written for arrays up to
4-dimensions.
Simulate a stack, queue, circular queue and dequeue using a one dimensional
array as storage element. The program should implement the basic addition,
deletion and traversal operations.
Represent a 2-variable polynomial using array. Use this representation to
implement addition of polynomials
Represent a sparse matrix using array. Implement addition and transposition
operations using the representation.
Implement singly, doubly and circularly connected linked lists illustrating
operations like addition at different locations, deletion from specified locations
and traversal.
Repeat exercises 2, 3 & 4 with linked structure.
Implementation of binary tree with operations like addition, deletion, traversal.
Depth first and breadth first traversal of graphs represented using adjacency
matrix and list.
Implementation of binary search in arrays and on linked Binary Search Tree.
Implementation of different sorting algorithm like insertion, quick, heap, bubble
and many more sorting algorithms.

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-22 : Object Oriented Programming Lab

Credit-1.5 0L+0T+3P Max. Marks: 100 (IA:60, ETE:40)

SN	CONTENTS
1	Understand the basics of C++ library, variables, data input-output.
2	C++ program using with the concept of structures.
3	Implement class and object concepts and function overloading.
4	Write programs to understand dynamic memory allocation and array of objects.
5	Program to understand different types of constructors and destructor.
6	Implement friend function to access private data of a class and usage of this pointer.
7	Write programs to understand the usage of constant data member and member function, static data member and member function in a class.
8	Implement different types of inheritance, function overriding and virtual function
9	Implement Operator overloading concepts.
10	Write programs to understand function template and class template.
11	Write programs to understand exception handling techniques.
12	Write programs to understand file handling techniques.

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-23: Software Engineering Lab

Credit- 1.5 0L+0T+3P Max. Marks: 100 (IA:60, ETE:40)

SN	CONTENTS
1	Development of requirements specification, function oriented design using
	SA/SD, object-oriented design using UML, test case design, implementation
	using Java and testing. Use of appropriate CASE tools and other tools such as
	configuration management tools, program analysis tools in the software life
	cycle.
2	Develop Software Requirements Specification (SRS) for a given problem in IEEE
	template.
3	Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.
4	Develop structured design for the DFD model developed.
-	Developed all Strature UNL disgram of the given project
5	Developed all Structure UML diagram of the given project.
6	Develop Behavior UML diagram of the given project.
7	Manage file, using ProjectLibre project management software tool.

SYLLABUS

II Year- III Semester: B.Tech. (Information Technology)

3IT4-24: Digital Electronics Lab

Credit- 1.5 0L+0T+3P Max. Marks: 100 (IA:60, ETE:40)

SN	CONTENTS
1	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also
	to verify truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gates with 2,
	3, & 4 inputs).
2	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized
	usingNAND& NOR gates.
3	To realize an SOP and POS expression.
4	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR
	gatesand to verify their truth tables.
5	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor&
	basic Full Adder/ Subtractor.
6	To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize
	the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer
	and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4
	demultiplexer.
7	Design & Realize a combinational circuit that will accept a 2421 BCD code and
	drive a TIL -312 seven-segment display.
8	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without
	clock signal and verify their truth table.
9	Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary
	counter and ring counter for a particular output pattern using D flip flop.
10	Perform input/output operations on parallel in/Parallel out and Serial in/Serial
	out registers using clock. Also exercise loading only one of multiple values into
	the register using multiplexer. Note: As far as possible, the experiments shall be
	performed on bread board. However, experiment Nos. 1-4 are to be performed
	on bread board only.

Teaching & Examination Scheme B.Tech. : Information Technology 2nd Year - IV Semester

			THEO	RY							
SN	Categ		Course		Contact hrs/week		Mark	s			Cr
		Code	Title	L	т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4IT2-01	Discrete Mathematics Structure	3	0	0	3	30	70	100	3
2	HSMC	4IT1-03/ 4IT1-02	Managerial Economics and Financial Accounting / Technical Communication	2	0	0	2	30	70	100	2
3	ESC	4IT3-04	Principle of Communication	3	0	0	3	30	70	100	3
4		4IT4-05	Database Management System	3	0	0	3	30	70	100	3
5	PCC	4IT4-06	Theory of Computation	3	0	0	3	30	70	100	3
6		4IT4-07	Data Communication and Computer Networks	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
			PRACTICAL &	<u>ere</u>		TAT					
8		4IT4-21	Linux Shell Programming Lab	0	0	2		60	40	100	1
9		4IT4-22	Database Management System Lab	0	0	3		60	40	100	1.5
10	PCC	4IT4-23	Network Programming Lab	0	0	3		60	40	100	1.5
11		4IT4-24	Java Lab	0	0	2		60	40	100	1
12	1	4IT4-25	Web Technology Lab	0	0	2		60	40	100	1
13	SODE CA	4IT8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		ТО	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT2-01: Discrete Mathematics Structure

Max. Marks: 100(IA:30, ETE:70)

3L+(OT+OP End Term Exam: 3	B Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality (Inclusion-Exclusion & Addition Principles) Venn Diagrams, proofs of some general identities on sets. Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job- Scheduling problem. Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction. Composition of Functions. The Pigeonhole and Generalized Pigeonhole Principles.	
3	Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2 way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.	8
4	Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions.	8
5	Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.	8
6	Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching, vertex/edge covering.	8
	Rajasthan Technical Universet at	ta 40

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT1-03/3IT1-03: Managerial Economics and Financial Accounting

Credit- 2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT1-02/3IT1-02: Technical Communication

Credit- 2 2L+0T+0P Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT3-04: Principles of Communication

Credit: 3 3L+0T+0P Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	ANALOG MODULATION: Concept of frequency translation. Amplitude Modulation: Description of full AM, DSBSC, SSB and VSB in time and frequency domains, methods of generation & demodulation, frequency division multiplexing (FDM). Angle Modulation: Phase and frequency modulation. Descriptions of FM signal in time and frequency domains, methods of generation & demodulation, pre- emphasis & de-emphasis, PLL.	7
3	PULSE ANALOG MODULATION: Ideal sampling, Sampling theorem, aliasing, interpolation, natural and flat top sampling in time and frequency domains. Introduction to PAM, PWM, PPM modulation schemes. Time division multiplexing (TDM)	8
4	PCM & DELTA MODULATION SYSTEMS: Uniform and Non-uniform quantization. PCM and delta modulation, Signal to quantization noise ratio in PCM and delta modulation. DPCM, ADM, T1 Carrier System, Matched filter detection. Error probability in PCM system.	8
5	DIGITAL MODULATION: Baseband transmission: Line coding (RZ, NRZ), inter symbol interference (ISI), pulse shaping, Nyquist criterion for distortion free base band transmission, raised cosine spectrum. Pass band transmission: Geometric interpretation of signals, orthogonalization. ASK PSK, FSK, QPSK and MSK modulation techniques, coherent detection and calculation of error probabilities.	8
6	SPREAD-SPECTRUM MODULATION: Introduction, Pseudo-Noise sequences, direct sequence spread spectrum (DSSS) with coherent BPSK, processing gain, probability of error, frequency-hop spread spectrum (FHSS). Application of spread spectrum: CDMA.	8
	Total	40

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-05: Database Management System

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	 Introduction to database systems: Overview and History of DBMS. File System v/s DBMS. Advantage of DBMS Describing and Storing Data in a DBMS. Queries in DBMS. Structure of a DBMS. Entity Relationship model: Overview of Data Design Entities, Attributes and Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key Constraints, Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation v/s ternary Relationship Conceptual Design for a Large Enterprise. 	7
3	Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus. SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL, ODBC and JDBC, Triggers and Active Databases.	8
4	Schema refinement and Normal forms: Introductions to Schema Refinement, Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-Decomposition into BCNF Decomposition into 3-NF.	8
5	Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent Executions. Need of Serializability, Conflict vs. View Serializability, Testing for Serializability, Recoverable Schedules, Cascadeless Schedules.	8
6	Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-based protocols, Validation-based protocols, Deadlock handling, Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow Paging and Log-based Recovery, Recovery with Concurrent transactions.	8
-	Office of Dean Academic A	ffair40

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-06: Theory of Computation

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Finite Automata & Regular Expression: Basic machine, Finite state machine, Transition graph, Transition matrix, Deterministic and non- deterministic finite automation, Equivalence of DFA and NDFA, Decision properties, minimization of finite automata, Mealy & Moore machines.	7
	Alphabet, words, Operations, Regular sets, relationship and conversion between Finite automata and regular expression and vice versa, designing regular expressions, closure properties of regular sets, Pumping lemma and regular sets, Myhill- Nerode theorem, Application of pumping lemma, Power of the languages.	•
3	Context Free Grammars (CFG), Derivations and Languages, Relationship between derivation and derivation trees, leftmost and rightmost derivation, sentential forms, parsing and ambiguity, simplification of CFG, normal forms, Greibach and Chomsky Normal form , Problems related to CNF and GNF including membership problem.	8
4	Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA, Deterministic PDA, and Deterministic PDA and Deterministic CFL, The pumping lemma for CFL's, Closure Properties and Decision properties for CFL, Deciding properties of CFL.	8
5	Turing Machines: Introduction, Definition of Turing Machine, TM language Acceptors and Transducers, Computable Languages and functi Universal TM & Other modification, multiple tracks Turing Machine. Hierarchy of Formal languages: Recursive & recursively enumerable languages, Properties of RL and REL, Introduction of Context sensitive grammers and languages, The Chomsky Hierarchy.	
6	Tractable and Untractable Problems: P, NP, NP complete and NP hard problems, Un-decidability, examples of these problems like vertex cover problem, Hamiltonian path problem, traveling sales man problem.	8
	Total	40

Rajasthan Technical University, Kota

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-07: Data Communication and Computer Networks

Credit: 3 3L+0T+0P Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introductory Concepts: Network hardware, Network software, topologies, Protocols and standards, OSI model, TCP model, TCP/IP model, Physical Layer:Digital and Analog Signals, Periodic Analog Signals, Signal Transmission, Limitations of Data Rate, Digital Data Transmission, Performance Measures, Line Coding, Digital Modulation, Media and Digital Transmission System.	7
3	Data Link Layer:Error Detection and Correction,Types of Errors, Two dimensional parity check, Detection verses correction, Block Coding, Linear Block Coding, Cyclic Codes, Checksum, Standardized Polynomial Code, Error Correction Methods, Forward Error Correction, Protocols: Stop and wait, Go-back-N ARQ, Selective Repeat ARQ, Sliding window, Piggy backing, Pure ALOHA, Slotted ALOHA, CSMA/CD, CSMA/CA	8
4	Network Layer:Design issues, Routing algorithms: IPV4, IPV6, Address mapping: ARQ, RARQ, Congestion control, Unicast, Multicast, Broadcast routing protocols, Quality of Service, Internetworking.	8
5	Transport Layer: Transport service, Elements of transport protocols, User Datagram Protocol, Transmission Control Protocol, Quality of service, Leaky Bucket and Token Bucket algorithm.	8
6	Application Layer: WWW, DNS, Multimedia, Electronic mail, FTP, HTTP, SMTP, Introduction to network security	8
	Total	40

II Year- IV Semester: B.Tech. (Information Technology)

Max. Marks: 100(IA:60, ETE:40)

Credit: 1 0L+0T+2P

List of Experiments:

- 1. Use of Basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch, file, wc, sort, cut, grep, dd, dfspace, du, ulimit.
- 2. Commands related to inode, I/O redirection and piping, process control commands, mails.
- 3. Shell Programming: Shell script based on control structure- **If-then-if, if-then-else-if, nested if-else to find**

3.1 Greatest among three numbers.

3.2 To find a year is leap year or not.

3.3 To input angles of a triangle and find out whether it is valid triangle or not.

3.4 To check whether a character is alphabet, digit or special character.

3.5 To calculate profit or loss.

- 4. Shell Programming Looping- while, until, for loops
 - 4.1 Write a shell script to print all even and odd number from 1 to 10.
 - 4.2 Write a shell script to print table of a given number
 - 4.3 Write a shell script to calculate factorial of a given number.
 - 4.4 Write a shell script to print sum of all even numbers from 1 to 10.
 - 4.5 Write a shell script to print sum of digit of any number.
- 5. Shell Programming case structure, use of break

5.1 Write a shell script to make a basic calculator which performs addition, subtraction,

Multiplication, division

- 5.2 Write a shell script to print days of a week.
- 5.3 Write a shell script to print starting 4 months having 31 days.
- 6. Shell Programming Functions
 - 6.1 Write a shell script to find a number is Armstrong or not.
 - 6.2 Write a shell script to find a number is palindrome or not.
 - 6.3 Write a shell script to print Fibonacci series.
 - 6.4 Write a shell script to find prime number.
 - 6.5 Write a shell script to convert binary to decimal and decimal to binary
- 7. Write a shell script to print different shapes- Diamond, triangle, square, rectangle, hollow square etc.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

8. Shell Programming – Arrays

8.1 Write a C program to read and print elements of array.

8.2 Write a C program to find sum of all array elements.

- 8.3 Write a C program to find reverse of an array.
- 8.4 Write a C program to search an element in an array.

8.5 Write a C program to sort array elements in ascending or descending order.

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-22: Database Management System Lab

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- 3. Write a SQL statement for implementing ALTER, UPDATE and DELETE.
- 4. Write the queries to implement the joins.
- 5. Write the query for implementing the following functions: MAX (), MIN (), AVG () and COUNT ().
- 6. Write the query to implement the concept of Integrity constrains.
- 7. Write the query to create the views.
- 8. Perform the queries for triggers.
- 9. Perform the following operation for demonstrating the insertion , updation and deletion
- 10. Using the referential integrity constraints.
- 11. Write the query for creating the users and their role.

Data Base Designing Project:

For better understanding students (group of 3-4 students) should design data base for any data base project, understand the requirement and design methodology of project by its own.

Some example of data base design project like:

College management system, Inventory management system and Hospital management system.

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-23: Network Programming Lab

Max. Marks: 100(IA:60, ETE:40)

Credit: 1.5 0L+0T+3P

List of Experiments:

- 1. Study of Different Type of LAN& Network Equipments.
- 2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- 3. LAN installations and Configurations.
- 4. Write a program to implement various types of error correcting techniques.
- 5. Write a program to implement various types of framing methods.
- 6. Write two programs in C: hello_client and hello_server
 - a. The server listens for, and accepts, a single TCP connection; it reads all the data it can from that connection, and prints it to the screen; then it closes the connection
 - b. The client connects to the server, sends the string "Hello, world!", then closes the connection
- 7. Write an Echo_Client and Echo_server using TCP to estimate the round trip time from client to the server. The server should be such that it can accept multiple connections at any given time.
- 8. Repeat Exercises 6 & 7 for UDP.
- 9. Repeat Exercise 7 with multiplexed I/O operations.
- 10. Simulate Bellman-Ford Routing algorithm in NS2.

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-24: Java Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

List of Experiment:

- 1. Develop an in depth understanding of programming in Java: data types, variables, operators, operator precedence, Decision and control statements, arrays, switch statement, Iteration Statements, Jump Statements, Using break, Using continue, return.
- 2. Write Object Oriented programs in Java: Objects, Classes constructors, returning and passing objects as parameter, Inheritance, Access Control, Using super, final with inheritance Overloading and overriding methods, Abstract classes, Extended classes.
- 3. Develop understanding to developing packages & Interfaces in Java: Package, concept of CLASSPATH, access modifiers, importing package, Defining and implementing interfaces.
- 4. Develop understanding to developing Strings and exception handling: String constructors, special string operations, character extraction, searching and comparing strings, string Buffer class. Exception handling fundamentals, Exception types, uncaught exceptions, try, catch and multiple catch statements.

Usage of throw, throws and finally.

- 5. Develop applications involving file handling: I/O streams, File I/O.
- 6. Develop applications involving concurrency: Processes and Threads, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Joins, and Synchronization.

Indicative List of exercises:

7. Programs to demonstrate basic concepts e.g. operators, classes, constructors, control & iteration statements, recursion etc. such as complex arithmetic, matrix

arithmetic, tower of Hanoi problem etc.

8. Development of programs/projects to demonstrate concepts like inheritance, exception handling, packages, interfaces etc. such as application for electricity department, library management, ticket reservation system, payroll system etc.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS II Year- IV Semester: B.Tech. (Information Technology)

- 9. Development of a project to demonstrate various file handling concepts.
- 10. Develop applications involving Applet: Applet Fundamentals, using paint method and drawing polygons. It is expected that each laboratory assignments to given to the students with an aim to In order to achieve the above objectives.

SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

4IT4-25: Web Technology Lab

Credit: 1 0L+0T+2P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Develop static pages (using only HTML) of an online Book store. The pages should resemble: www.amazon.com. The website should consist of the following pages: Home page, Registration and user Login, User profile page, Books catalog, Shopping cart, Payment By credit card, order confirmation.
- 2. Validate the registration, user login, user profile and payment by credit card pages using JavaScript.
- 3. Write an XML file which will display the Book information which includes the following:
 - 1) Title of the book
 - 2) Author Name
 - 3) ISBN number
 - 4) Publisher name
 - 5) Edition
 - 6) Price

Write a Document Type Definition (DTD) to validate the above XML file. Display the XML file as follows. The contents should be displayed in a table. The header of the table should be in color GREY. And the author name column should be displayed in one color and should be capitalized and bold. Use your own colors for remaining columns. Use XML schemas XSL and CSS for the above purpose.

4. 1) Install TOMCAT web server. While installation assign port number 8080. Make sure that these ports are available i.e., no other process is using this port.

2) Access the above developed static web pages for books web site, using these servers by putting the web pages developed in practical 1 and 2 in the document root. Access the pages by using the urls : <u>http://localhost:8080/rama/books.html</u>

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

II Year- IV Semester: B.Tech. (Information Technology)

5. User Authentication: Assume four users user1, user2, user3 and user4 having the passwords pwd1, pwd2, pwd3 and, pwd4 respectively. Write a servlet for doing the following.

1.) Create a Cookie and add these four user ids and passwords to this Cookie. 2.) Read the user id and passwords entered in the Login form (Practical 1) and authenticate with the values (user id and passwords) available in the cookies. If he is a valid user (i.e., user-name and password match) you should welcome him by name (user-name) else you should display "You are not an authenticated user ".

- 6. Install a database (MySQL or Oracle). Create a table which should contain at least the following fields: name, password, email-id, phone number (these should hold the data from the registration form). Practice 'JDBC' connectivity. Write a java program/servlet/JSP to connect to that database and extract data from the tables and display them. Experiment with various SQL queries. Insert the details of the users who register with the web site, whenever a new user clicks the submit button in the registration page.
- 7. Write a JSP which does the following job: Insert the details of the 3 or 4 users who register with the web site by using registration form. Authenticate the user when he submits the login form using the user name and password from the database.
- 8. Create on ODBC link, Compile & execute JAVA JDBC Socket.
- 9. Design and implement a simple shopping cart example with session tracking API.
- 10. Mini Project.

SEMESTER-V & VI

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Teaching & Examination Scheme B.Tech. : Information Technology 3rd Year – V Semester

			THEO	RY							
SN	Categ		Course	-	onta s/we			Marks			
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	ESC	5IT3-01	Microprocessor And Interfaces	2	0	0	2	20	80	100	2
2		5IT4-02	Compiler Design	3	0	0	3	30	120	150	3
3		5IT4-03	Operating System	3	0	0	3	30	120	150	3
4		5IT4-04	Computer Graphics & Multimedia	3	0	0	3	30	120	150	3
6	PCC/	5IT4-05	Analysis of Algorithms	3	0	0	3	30	120	150	3
7	PEC	Professiona	al Elective 1 any one	2	0	0	2	20	80	100	2
		5IT5-11	Wireless Communication								
		5IT5-12	Software Testing and Project Management								
		5IT5-13	Bioinformatics								
			Sub-Total	16	0	0		160	640	800	16
			PRACTICAL &	SES	NOIS	AT.					
8	PCC	5IT4-21	Computer Graphics & Multimedia Lab	0	0	2	2	30	20	50	1
9	PCC	5IT4-22	Compiler Design Lab	0	0	2	2	30	20	50	1
10	PCC	5IT4-23	Analysis of Algorithms Lab	0	0	2	2	30	20	50	1
11	PCC	5IT4-24	Advanced Java Lab	0	0	2	2	30	20	50	1
12	PSIT	5IT7-30	Industrial Training	0	0	1		75	50	125	2.5
13	SODE CA	5IT8-00	Social Outreach, Discipline & Extra Curricular Activities						25	25	0.5
			Sub- Total	0	0	9		195	155	350	7
		1	OTAL OF V SEMESTER	16	0	9		355	795	1150	23

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment*

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

III Year- V Semester: B.Tech. (Information Technology) 5IT3-01: Microprocessor And Interfaces

Credit: 2

Max. Marks: 100(IA:20, ETE:80) End Term Exam: 2 Hours

2L+(r+OT+OP End Term Exam:		
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction to Microprocessor, Components of a Microprocessor: Registers, ALU and control & timing, System bus data, address and control bus), Microprocessor systems with bus organization. Microprocessor Architecture and Operations, Memory, I/O devices, Memory and I/O operations.	03	
3	8085 Microprocessor Architecture : Address, Data And Control Buses, 8085 Pin Functions, Demultiplexing of Buses, Generation Of Control Signals, Instruction Cycle, Machine Cycles, T-States, Memory Interfacing. Assembly Language Programming Basics, Classification of Instructions, Addressing Modes, 8085 Instruction Set, Instruction And Data Formats, Writing, Assembling & Executing A Program, Debugging The Programs.	07	
4	Assembly language: Writing 8085 assembly language programs with decision, making and looping using data transfer, arithmetic, logical and branch instructions.	05	
5	Stack & Subroutines: Developing Counters and Time Delay Routines, Code Conversion, BCD Arithmetic and 16-Bit Data operations.	07	
6	Interfacing Concepts: Ports, Interfacing Of I/O Devices, Interrupts In 8085, Programmable Interrupt Controller 8259A, Programmable Peripheral Interface 8255A.	05	
	Total	28	

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- V Semester: B.Tech. (Information Technology)

5IT4-02: Compiler Design

Hours	Contents	SN
01	Introduction: Objective, scope and outcome of the course.	1
06	Introduction: Objective, scope and outcome of the course. Compiler, Translator, Interpreter definition, Phase of compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling.	2
10	Review of CFG Ambiguity of grammars: Introduction to parsing. Top down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, Bottom up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of automatic parser generator: YACC error handling in LR parsers.	3
10	Syntax directed definitions; Construction of syntax trees, S- Attributed Definition, L-attributed definitions, Top down translation. Intermediate code forms using postfix notation, DAG, Three address code, TAC for various control structures, Representing TAC using triples and quadruples, Boolean expression and control structures.	4
08	Storage organization; Storage allocation, Strategies, Activation records, Accessing local and non-local names in a block structured language, Parameters passing, Symbol table organization, Data structures used in symbol tables.	5
07	Definition of basic block control flow graphs; DAG representation of basic block, Advantages of DAG, Sources of optimization, Loop optimization, Idea about global data flow analysis, Loop invariant computation, Peephole optimization, Issues in design of code generator, A simple code generator, Code generation from DAG.	6
42	Total	

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- V Semester: B.Tech. (Information Technology)

5IT4-03: Operating System

	Credit: 3Max. Marks: 150(IA:30, ETE3L+0T+0PEnd Term Exam: 3 E			
SN	Contents	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	Introduction and history of Operating systems: Structure and operations; processes and files			
	Processor management: inter process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling and algorithms, critical sections, threads, multithreading	04		
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study	05		
4	Deadlock: Shared resources, resource allocation and scheduling, resource graph models, deadlock detection, deadlock avoidance, deadlock prevention algorithms	15		
	Device management: devices and their characteristics, device drivers, device handling, disk scheduling algorithms and policies			
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication	07		
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS	08		
	Total	40		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA syllabus

III Year- V Semester: B.Tech. (Information Technology)

5IT4-04: Computer Graphics & Multimedia

	Credit: 3 Max. Marks: 150(IA:30, ETE 3L+0T+0P End Term Exam: 3 H			
Hours	Contents	SN		
01	Introduction: Objective, scope and outcome of the course.	1		
06	Basic of Computer Graphics: Basic of Computer Graphics, Applications of computer graphics, Display devices, Random and Raster scan systems, Graphics input devices, Graphics software and standards	2		
07	Graphics Primitives: Points, lines, circles and ellipses as primitives, scan conversion algorithms for primitives, Fill area primitives including scan-line polygon filling, inside-outside test, boundary and flood-fill, character generation, line attributes, area-fill attributes, character attributers. Aliasing, and introduction to Anti Aliasing No anti aliasing algorithm.	3		
08	Two Dimensional Graphics: Transformations translation, rotation, scaling, matrix representation, homogeneous coordinates, composite transformations, reflection and shearing, viewing pipeline and coordinates system, window-to-viewport transformation, clipping including point clipping, line clipping cohen -sutherland, liang- bersky, NLN), polygon clipping	4		
08	Three Dimensional Graphics: 3D display methods, polygon surfaces, tables, equations, meshes, curved lies and surfaces, quadric surfaces, spline representation, cubic spline interpolation methods, Bazier curves and surfaces, B-spline curves and surfaces.3D scaling, rotation and translation, composite transformation, viewing pipeline and coordinates, parallel and perspective transformation, view volume and general parallel and perspective projection transformations.	5		
06	Illumination and Colour Models: Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection.	6		
06	Animations & Realism: Design of Animation sequences – animation function – raster animation – key frame systems – motion specification – morphing – tweening. COMPUTER Graphics Realism: Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing.	7		
42	Total			

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- V Semester: B.Tech. (Information Technology)

5IT4-05: Analysis of Algorithms

	Credit: 3Max. Marks: 150(IA:30,3L+0T+0PEnd Term Exam	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	 Background: Review of Algorithm, Complexity Order Notations: definitions and calculating complexity. Divide And Conquer Method: Binary Search, Merge Sort, Quick sort and Strassen's matrix multiplication algorithms. 	06
3	 Greedy Method: Knapsack Problem, Job Sequencing, Optimal Merge Patterns and Minimal Spanning Trees. Dynamic Programming: Matrix Chain Multiplication. Longest CommonSubsequence and 0/1 Knapsack Problem. 	10
4	 Branch And Bound: Traveling Salesman Problem and Lower Bound Theory. Backtracking Algorithms and queens problem. Pattern Matching Algorithms: Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms. 	08
5	 Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem. Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multicommodity flow, Flow shop scheduling and Network capacity assignment problems. 	08
6	Problem Classes Np, Np-Hard And Np-Complete: Definitions of P, NP-Hard and NP-Complete Problems. Decision Problems.Cook's Theorem. Proving NP-Complete Problems - Satisfiability problem and Vertex Cover Problem. Approximation Algorithms for Vertex Cover andSet Cover Problem.	08
	Total	41

Office of Dean Academic Affairs Rajasthan Technical University, Kota

- - - - .

Credit: 2

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- V Semester: B.Tech. (Information Technology)

5IT5-11: Wireless Communication

2L+0T+0P End Term Exam: 2		
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Wireless Channels: Large scale path loss – Path loss models: Free Space and Two-Ray models -Link Budget design – Small scale fading- Parameters of mobile multipath channels – Time dispersion parameters-Coherence bandwidth – Doppler spread & Coherence time, Fading due to Multipath time delay spread – flat fading – frequency selective fading – Fading due to Doppler spread – fast fading – slow fading.	06
3	Cellular Architecture: Multiple Access techniques - FDMA, TDMA, CDMA – Capacity calculations–Cellular concept- Frequency reuse - channel assignment- hand off- interference & system capacity- trunking & grade of service – Coverage and capacity improvement.	05
4	Digital Signaling For Fading Channels: Structure of a wireless communication link, Principles of Offset-QPSK, p/4-DQPSK, Minimum Shift Keying, Gaussian Minimum Shift Keying, Error performance in fading channels, OFDM principle – Cyclic prefix, Windowing, PAPR.	05
5	Multipath Mitigation Techniques: Equalisation – Adaptive equalization, Linear and Non-Linear equalization, Zero forcing and LMS Algorithms. Diversity – Micro and Macrodiversity, Diversity combining techniques, Error probability in fading channels with diversity reception, Rake receiver,	06
6	Multiple Antenna Techniques: MIMO systems – spatial multiplexing -System model -Pre-coding - Beam forming - transmitter diversity, receiver diversity- Channel state information-capacity in fading and non-fading channels.	05
	Total	28

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Max. Marks: 100(IA:20, ETE:80)

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

III Year- V Semester: B.Tech. (Information Technology)

5IT5-12: Software Testing and Project Management

•	Credit: 2Max. Marks: 100(IA:202L+0T+0PEnd Term Exam			
Hours	Contents	SN		
01	Introduction: Objective, scope and outcome of the course.	1		
04	Introduction, Basic concepts, Introduction to S/W project management, S/W project management competencies, responsibilities of a software project manager, Software process, S/W process models, project planning, organization of project team, S/W size estimation, estimation of effort & duration,	2		
05	Black box testing: Boundary value testing, Equivalence class testing, White box testing: statement coverage, Branch coverage, condition coverage, path coverage, McCabe'scyclomatic complexity; Decision Table based testing, Data flow based testing,	3		
05	White box testing: Integration testing, System testing, Interaction testing, Performance testing, Mutation testing, Regression testing, error seeding ,	4		
07	Object oriented testing: issues in object oriented testing, Test case design by object oriented software, Fault based testing, test cases and class hierarchy, Scenario based Test design, Testing surface structure and deep structure,	5		
06	Tests case derived from behaviour models : Test case generation using UML diagrams, GUI testing, object oriented system testing.	6		
28	Total			

....

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- V Semester: B.Tech. (Information Technology)

5IT5-13: Bioinformatics

_ _

Cree	Credit: 2Max. Marks: 100(IA:202L+0T+0PEnd Term Exam	
2L+(
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction: Basics of biology	02
3	Sequences: Problem Statement, Edit distance and substitution matrices, HMMs and pairwise HMMs, Global and local alignments, Spliced alignment, Space-efficient sequence alignment, Multiple alignment, Database searching tools, Sequence by hybridization, Profile HMMs	07
4	Structures: Protein structure alignment, Protein structure prediction	06
5	Phylogenetic trees: Large parsimony and small parsimony problems, Probabilistic approaches, Grammar-based approaches	07
6	Miscellaneous topics: Pathways and networks, Microarrays, Biomedical images	05
	Total	28

RAJASTHAN TECHNICAL UNIVERSITY, KOTA **SYLLABUS**

III Year- V Semester: B.Tech. (Information Technology)

5IT4-21: Computer Graphics & Multimedia Lab

Cre	Credit: 1 Max. Marks:50 (IA:30, ETE:20		
0L+	0L+0T+2P End Term Exam: 2 Hot		
SN	List of Experiments		
1	Implementation of Line, Circle and ellipse attributes		
2	To plot a point (pixel on the screen		
3	To draw a straight line using DDA Algorithm		
4	Implementation of mid-point circle generating Algorithm		
5	Implementation of ellipse generating Algorithm		
6	Two Dimensional transformations - Translation, Rotation, Scaling, Reflection, Shear		
7	Composite 2D Transformations		
8	Cohen Sutherland 2D line clipping and Windowing		
9	Sutherland – Hodgeman Polygon clipping Algorithm		
10	Three dimensional transformations - Translation, Rotation, Scaling		
11	Composite 3D transformations		
12	Drawing three dimensional objects and Scenes		
13	Generating Fractal images		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA **SYLLABUS**

III Year- V Semester: B.Tech. (Information Technology)

5IT4-22: Compiler Design Lab

	Credit: 1 Max. Marks:50 (IA:30, ETE:20) 0L+0T+2P End Term Exam: 2 Hours		
SN	List of Experiments		
1	Introduction: Objective, scope and outcome of the course.		
2	To identify whether given string is keyword or not.		
3	Count total no. of keywords in a file. [Taking file from user]		
4	Count total no of operators in a file. [Taking file from user]		
5	Count total occurrence of each character in a given file. [Taking file from user]		
6	Write a C program to insert, delete and display the entries in Symbol Table.		
7	Write a LEX program to identify following:		
	 Valid mobile number Valid url Valid identifier Valid date (dd/mm/yyyy) Valid time (hh:mm:ss) 		
8	Write a lex program to count blank spaces,words,lines in a given file.		
9	Write a lex program to count the no. of vowels and consonants in a C file.		
10	Write a YACC program to recognize strings aaab,abbb using a^nb^n, where b>=0.		
11	Write a YACC program to evaluate an arithmetic expression involving operators +,-,* and /.		
12	Write a YACC program to check validity of a strings abcd, aabbcd using grammar $a^nb^nc^md^m$, where n , m>0		
13	Write a C program to find first of any grammar.		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- V Semester: B.Tech. (Information Technology)

	5IT4-23: Analysis of Algorithms Lab Credit: 1 Max. Marks:50 IA:30, ETE:20)		
r	0T+2P End Term Exam: 2 Hours		
SN	List of Experiments		
1	Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.		
2	Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.		
3	a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.		
4	Implement 0/1 Knapsack problem using Dynamic Programming.		
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.		
6	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.		
7	a. Print all the nodes reachable from a given starting node in a digraph using BFS method.		
	b. Check whether a given graph is connected or not using DFS method.		
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.		
9.	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.		
10	Implement N Queen's problem using Back Tracking.		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- V Semester: B.Tech. (Information Technology)

5IT4-24: Advanced Java Lab

	Credit: 1Max. Marks:50 (IA:30, ETE:2L+0T+2PEnd Term Exam: 2 Hou			
SN	List of Experiments			
1	Introduction To Swing, MVC Architecture, Applets, Applications and Pluggable Look and Feel, Basic swing components : Text Fields, Buttons, Toggle Buttons, Checkboxes, and Radio Buttons			
2	Java database Programming, java.sql Package, JDBC driver, Network Programming With java.net Package, Client and Server Programs, Content And Protocol Handlers			
3	RMI architecture, RMI registry, Writing distributed application with RMI, Naming services, Naming And Directory Services, Overview of JNDI, Object serialization and Internationalization			
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform, HTTP protocol, web application, Web containers and Application servers			
5	Server side programming with Java Servlet, HTTP and Servlet, Servlet API, life cycle, configuration and context, Request and Response objects, Session handling and event handling, Introduction to filters with writing simple filter application			
6	JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag Extension API, Tag handlers, JSP Fragments, Tag Files, JSTL, Core Tag library, overview of XML Tag library, SQL Tag library and Functions Tag library			

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Teaching & Examination Scheme B.Tech. : Information Technology 3rd Year – VI Semester

			THEC	RY							
			Course	-	onta		Mark	arks			Cr
SN	Categ			hrs	s/we	ek					
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	ESC	6IT3-01	Digital Image Processing	2	0	0	2	20	80	100	2
2		6IT4-02	Machine Learning	3	0	0	3	30	120	150	3
3		6IT4-03	Information Security System	2	0	0	2	20	80	100	2
4	PCC	6IT4-04	Computer Architecture and Organization	3	0	0	3	30	120	150	3
5	/PEC	6IT4-05	Artificial Intelligence	2	0	0	2	20	80	100	2
6		6IT4-06	Distributed System	3	0	0	3	30	120	150	3
7		Profession	al Elective1 Any one	2	0	0	2	20	80	100	2
		6IT5-11	Information Theory & Coding								
		6IT5-12	Cloud Computing								
		6IT5-13	Ecommerce & ERP								
			Sub Total	17	0	0		170	680	850	17
			PRACTICAL &	SESS	SION	AL					
8		6IT4-21	Digital Image Processing Lab	0	0	3	2	45	30	75	1.5
9		6IT4-22	Machine Learning Lab	0	0	3	2	45	30	75	1.5
10		6IT4-23	Python Lab	0	0	3	2	45	30	75	1.5
11	PCC	6IT4-24	Mobile Application Development Lab	0	0	3	2	45	30	75	1.5
12	SODE CA	6IT8-00	Social Outreach, Discipline & Extra Curricular Activities						25	25	0.5
			Sub- Total	0	0	12		180	145	325	6.5
		T	OTAL OF VI SEMESTER	17	0	12		350	825	1175	23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

RAJASTHAN TECHNICAL UNIVERSITY, KOTA **SYLLABUS** III Year- VI Semester: B.Tech. (Information Technology)

6IT3-01: Digital Image Processing

	Credit: 2Max. Marks: 100(IA:20, E2L+0T+0PEnd Term Exam: 2			
Hours	Contents	SN		
01	Introduction: Objective, scope and outcome of the course.	1		
04	Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation.	2		
06	Image Transformation & Filtering: Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, frequency domain filters, colour models, Pseudo colouring, colour transforms, Basics of Wavelet Transforms.	3		
07	Image Restoration: Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering.	4		
05	Image Compression: Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression.	5		
05	Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors.	6		
28	Total			

...

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

III Year- VI Semester: B.Tech. (Information Technology)

6IT4-02:Machine Learning

Crea	Credit: 3 Max. Marks: 150(IA:30, E7			
3L+0T+0P End Term Exam: 3				
SN	Contents	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	Supervised learning algorithm: Introduction, types of learning, application, Supervised learning: Linear Regression Model, Naive Bayes classifier Decision Tree, K nearest neighbor, Logistic Regression, Support Vector Machine, Random forest algorithm	09		
3	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model.	08		
4	Introduction to Statistical Learning Theory , Feature extraction - Principal component analysis, Singular value decomposition. Feature selection – feature ranking and subset selection, filter, wrapper and embedded methods, Evaluating Machine Learning algorithms and Model Selection.	08		
5	Semi supervised learning, Reinforcement learning: Markov decision process MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action SARSA), Model -based Reinforcement Learning.	08		
6	Recommended system, Collaborative filtering, Content-based filtering Artificial neural network, Perceptron, Multilayer network, Backpropagation, Introduction to Deep learning.	08		
	Total	42		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT4-03: Information Security System

Credit:2 Max. Marks: 100(IA:20) 2L+0T+0P End Term Exam	• •
SN Contents	Hours
1 Introduction: Objective, scope and outcome of the course.	01
2 Introduction to security attacks: services and mechanism, classical encryption techniques- substitution ciphers and transposition ciphers, cryptanalysis, stream and block ciphers.	06
 Modern block ciphers: Block Cipher structure, Data Encryption standard DES) with example, strength of DES, Design principles of block cipher, AES with structure, its transformation functions, key expansion, example and implementation. Multiple encryption and triple DES, Electronic Code Book, Cipher Block Chaining Mode, Cipher Feedback mode, Output Feedback mode, Counter mode. 	06
4 Public Key Cryptosystems with Applications: Requirements and Cryptanalysis, RSA cryptosystem, Rabin cryptosystem, Elgamal cryptosystem, Elliptic curve cryptosystem.	06
 51 Cryptographic Hash Functions, their applications: Simple hash functions, its requirements and security, Hash functions based on Cipher Block Chaining, Secure Hash Algorithm (SHA). Message Authentication Codes, its requirements and security, MACs based on Hash Functions, Macs based on Block Ciphers.Digital Signature, its properties, requirements and security, various digital signature schemes Elgamal and Schnorr), NIST digital Signature algorithm. 	05
 6 Key management and distribution: symmetric key distribution using symmetric and asymmetric encryptions, distribution of public keys, X.509 certificates, Public key infrastructure. Remote user authentication with symmetric and asymmetric encryption, Kerberos Web Security threats and approaches, SSL architecture and protocol, Transport layer security, HTTPS and SSH. 	04
Total	28

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT4-04: Computer Architecture and Organization

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

	OT+OP End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Computer Data Representation: Basic computer data types, Complements, Fixed point representation, Register Transfer and Micro- operations: Floating point representation, Register Transfer language, Register Transfer, Bus and Memory Transfers Tree -State Bus Buffers, Memory Transfer, Arithmetic Micro -Operations, Logic Micro-Operations, Shift Micro-Operations, Arithmetic logical shift unit. Basic Computer Organization and Design Instruction codes, Computer registers, computer instructions, Timing and Control, Instruction cycle, Memory-Reference Instructions, Input-output and interrupt, Complete computer description, Design of Basic computer, design of Accumulator Unit.	10
3	Programming The Basic Computer: Introduction, Machine Language, Assembly Language, assembler, Program loops, Programming Arithmetic and logic operations, subroutines, I-O Programming. Micro programmed Control:Control Memory, Address sequencing, Micro program Example,design of control Unit	7
4	Central Processing Unit: Introduction, General Register Organization, Stack Organization, Instruction format, Addressing Modes, data transfer and manipulation,Program Control, Reduced Instruction Set Computer RISCPipeline And Vector Processing, Flynn's taxonomy, Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction, Pipeline, RISC Pipeline, Vector Processing, Array Processors	8
5	Computer Arithmetic: Introduction, Addition and subtraction, Multiplication Algorithms Booth Multiplication Algorithm, Division Algorithms, Floating Point Arithmetic operations, Decimal Arithmetic Unit.Input-Output Organization, Input-Output Interface, Asynchronous Data Transfer, Modes Of Transfer, Priority Interrupt, DMA, Input-Output Processor IOP, CPUIOP Communication, Serial communication.	8
6	Memory Organization: Memory Hierarchy, Main Memory, Auxiliary Memory, Associative Memory, Cache Memory, Virtual Memory. Multipreocessors: Characteristics of Multiprocessors, Interconnection Structures, Inter-processor Arbitration, Inter-processor Communication andSynchronization, Cache Coherence, Shared Memory Multiprocessors.	8
		42

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- VI Semester: B.Tech. (Information Technology)

6IT4-05: Artificial Intelligence

Credit: 2 Max. Marks: 100(IA:20, I				
2L+0T+0P End Term Exam: 2				
SN	Contents	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	Introduction to AI and Intelligent agent: Different Approach of AI, Problem Solving : Solving Problems by Searching, Uninformed search, BFS, DFS, Iterative deepening, Bi directional search, Hill climbing, Informed search techniques: heuristic, Greedy search, A* search, AO* search, constraint satisfaction problems.	01		
3	Game Playing: Minimax, alpha-beta pruning, jug problem, chess problem, tiles problem	07		
4	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order logic, situation calculus. Theorem Proving in First Order Logic. Planning, partial order planning. Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.	07		
5	Learning: Overview of different forms of learning, Supervised base learning: Learning Decision Trees, SVM, Unsupervised based learning, Market Basket Analysis, Neural Networks.	07		
6	Introduction to Natural Language Processing: Different issue involved in NLP, Expert System, Robotics.	05		
	Total	28		

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT4-06: Distributed System

Max. Marks: 150(IA:30, ETE:120)

+OT+OP End Term Exam: 3	Hours
Contents	Hours
Introduction: Objective, scope and outcome of the course.	01
Distributed Systems: Features of distributed systems, nodes of a distributed system, Distributed computation paradigms, Model of distributed systems, Types of Operating systems: Centralized Operating System, Network Operating Systems, Distributed Operating Systems and Cooperative Autonomous Systems, design issues in distributed operating systems. Systems Concepts and Architectures: Goals, Transparency, Services, Architecture Models, Distributed Computing Environment DCE. Theoretical issues in distributed systems: Notions of time and state, states and events in a distributed system, time, clocks and event precedence, recording the state of distributed systems.	09
Concurrent Processes and Programming: Processes and Threads, Graph Models for Process Representation, Client/Server Model, Time Services, Language Mechanisms for Synchronization, Object Model Resource Servers, Characteristics of Concurrent Programming Languages Language not included.Inter -process Communication and Coordination: Message Passing, Request/Reply and Transaction Communication, Name and Directory services, RPC and RMI case studies	08
Distributed Process Scheduling: A System Performance Model, Static Process Scheduling with Communication, Dynamic Load Sharing and Balancing, Distributed Process Implementation. Distributed File Systems: Transparencies and Characteristics of DFS, DFS Design and implementation, Transaction Service and Concurrency Control, Data and File Replication. Case studies: Sun network file systems, General Parallel file System and Window's file systems. Andrew and Coda File Systems	08
Distributed Shared Memory: Non-Uniform Memory Access Architectures, Memory Consistency Models, Multiprocessor Cache Systems, Distributed Shared Memory, Implementation of DSM systems. Models of Distributed Computation: Preliminaries, Causality, Distributed Snapshots, Modelling a Distributed Computation, Failures in a Distributed System, Distributed Mutual Exclusion, Election, Distributed Deadlock handling, Distributed termination detection.	08
Distributed Agreement: Concept of Faults, failure and recovery, Byzantine Faults, Adversaries, Byzantine Agreement, Impossibility of Consensus and Randomized Distributed Agreement. Replicated Data Management: concepts and issues, Database Techniques, Atomic Multicast, and Update Propagation. CORBA case study: Introduction, Architecture, CORBA RMI, CORBA Services.	08
Total	42

Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT5-11: Information Theory & Coding

Credit: 2 Max. Marks: 100(IA:20, 2L+0T+0P End Term Exam:			
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction to information theory: Uncertainty, Information and Entropy, Information measures for continuous random variables, source coding theorem. Discrete Memory less channels, Mutual information, Conditional entropy.	04	
3	Source coding schemes for data compaction: Prefix code, Huffman code, Shanon-Fane code & Hempel-Ziv coding channel capacity. Channel coding theorem. Shannon limit.	05	
4	Linear Block Code: Introduction to error connecting codes, coding & decoding of linear block code, minimum distance consideration, conversion of non-systematic form of matrices into systematic form.	06	
5	Cyclic Code: Code Algebra, Basic properties of Galois fields GF) polynomial operations over Galois fields, generating cyclic code by generating polynomial, parity check polynomial. Encoder & decoder for cyclic codes.	06	
6	Convolutional Code: Convolutional encoders of different rates. Code Tree, Trllis and state diagram. Maximum likelihood decoding of convolutional code: The viterbi Algorithm fee distance of a convolutional code.	06	
	Total	28	

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT5-12: Cloud Computing

Credit: 2Max. Marks: 100(IA:20, I2L+0T+0PEnd Term Exam: 2				
SN	Contents	Hours		
1	Introduction: Objective, scope and outcome of the course.	01		
2	Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell of cloud computing, Enabling Technology, Historical development, Vision, feature Characteristics and components of Cloud Computing. Challenges, Risks and Approaches of Migration into Cloud. Ethical Issue in Cloud Computing, Evaluating the Cloud's Business Impact and economics, Future of the cloud. Networking Support for Cloud Computing. Ubiquitous Cloud and the Internet of Things	03		
3	Cloud Computing Architecture: Cloud Reference Model, Layer and Types of Clouds, Services models, Data centre Design and interconnection Network, Architectural design of Compute and Storage Clouds. Cloud Programming and Software: Fractures of cloud programming, Parallel and distributed programming paradigms-Map Reduce, Hadoop, High level Language for Cloud. Programming of Google App engine.	05		
4	Virtualization Technology: Definition, Understanding and Benefits of Virtualization. Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor VMware, KVM, Xen. Virtualization: of CPU, Memory, I/O Devices, Virtual Cluster and Resources Management, Virtualization of Server, Desktop, Network, and Virtualization of data-centre.	07		
5	Securing the Cloud: Cloud Information security fundamentals, Cloud security services, Design principles, Policy Implementation, Cloud Computing Security Challenges, Cloud Computing Security Architecture . Legal issues in cloud Computing. Data Security in Cloud: Business Continuity and Disaster Recovery , Risk Mitigation , Understanding and Identification of Threats in Cloud, SLA-Service Level Agreements, Trust Management	07		
6	Cloud Platforms in Industry: Amazon web services , Google AppEngine, Microsoft Azure Design, Aneka: Cloud Application Platform -Integration of Private and Public Clouds Cloud applications: Protein structure prediction, Data Analysis, Satellite Image Processing, CRM	05		
	Total	28		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT5-13: Ecommerce & ERP

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to E-Commerce: Defining Commerce; Main Activities of Electronic Commerce; Benefits of E-Commerce; Broad Goals of Electronic Commerce; Main Components of E-Commerce; Functions of Electronic Commerce – Communication, Process Management, Service Management, Transaction Capabilities; Process of E-Commerce; Types of E-Commerce; Role of Internet and Web in E-Commerce; Technologies Used; E-Commerce Systems; Pre-requisites of E-Commerce; Scope of E-Commerce; E-Business Models.	03
3	E-Commerce Activities: Various Activities of E-Commerce; Various Modes of Operation Associated with E-Commerce; Matrix of E-Commerce Types; Elements and Resources Impacting E-Commerce and Changes; Types of E-Commerce Providers and Vendors; Man Power Associated with E-Commerce Activities; Opportunity Development for E-Commerce Stages; Development of E-Commerce Business Case; Components and Factors for the Development of the Business Case; Steps to Design and Develop an E-Commerce Website.	05
4	Internet – The Backbone for E-Commerce: Early Ages of Internet; Networking Categories; Characteristics of Internet; Components of Internet – Internet Services, Elements of Internet, Uniform Resource Locators, Internet Protocol; Shopping Cart, Cookies and E-Commerce; Web Site Communication; Strategic Capabilities of Internet.	07
5	ISP, WWW and Portals: Internet Service Provider ISP); World Wide Web WWW; Portals – Steps to build homepage, Metadata; Advantages of Portal; Enterprise Information Portal EIP). E-Commerce & Online Publishing: This unit explains the concept of online publishing, strategies and approaches of online publishing, and online advertising.	07
6	 XML and Data Warehousing: Definition of eXtensible Markup Language XML; XML Development Goals; Comparison between HTML and XML; Business importance in using XML Based Technology; Advantages, Disadvantages and Applications of XML; Structure of an XML Document; XHTML and X/Secure; Data Warehousing; Data Marts and Operational Data Stores. E-Marketing: Traditional Marketing; E-Marketing; Identifying Web Presence Goals – Achieving web presence goals, Uniqueness of the web, Meeting the needs of website visitors, Site Adhesion: Content, format and access; Maintaining a Website; Metrics Defining Internet Units of Measurement; Online Marketing; Advantages of Online Marketing. 	05

Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- VI Semester: B.Tech. (Information Technology)

6IT4-21: Digital Image Processing Lab

Credit: 1.5 Max. Marks: 75(IA:45, ET			
0L +	0T+3P End Term Exam: 2 Hours		
SN	List of Experiments		
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.		
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform		
3	Linear filtering using convolution. Highly selective filters.		
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.		
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.		

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- VI Semester: B.Tech. (Information Technology)

6IT4-22: Machine Learning Lab

	lit: 1.5Max. Marks: 75IA:45, ETE:3 0DT+3PEnd Term Exam: 2 Hours
SN	List of Experiments
1	Implement and demonstrate the FIND-Salgorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm output a description of the set of all hypotheses consistent with the training examples.
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample
4	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets
5	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
7	Write a program to construct aBayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
9	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
10	Implement the non-parametric Locally Weighted Regressionalgorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS

III Year- VI Semester: B.Tech. (Information Technology)

6IT4-23: Python Lab

	lit: 1.5 Max. Marks: 75IA:45, ETE:3 0 DT+3P End Term Exam: 2 Hours
SN	List of Experiments
1	Write a program to demonstrate basic data type in python.
2	Write a program to compute distance between two points taking input from the user
	Write a program add.py that takes 2 numbers as command line arguments and prints its sum.
3	Write a Program for checking whether the given number is an even number or not.
	Using a for loop, write a program that prints out the decimal equivalents of $1/2$, $1/3$, $1/4$,, $1/10$
4	Write a Program to demonstrate list and tuple in python.
	Write a program using a for loop that loops over a sequence.
	Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero.
5	Find the sum of all the primes below two million.
	By considering the terms in the Fibonacci sequence whose values do not exceed four million, WAP to find the sum of the even-valued terms.
6	Write a program to count the numbers of characters in the string and store them in a dictionary data structure
	Write a program to use split and join methods in the string and trace a birthday of a person with a dictionary data structure
7	Write a program to count frequency of characters in a given file. Can you use character frequency to tell whether the given file is a Python program file, C program file or a text file?
	Write a program to count frequency of characters in a given file. Can you use character frequency to tell whether the given file is a Python program file, C program file or a text file?
8	Write a program to print each line of a file in reverse order.
	Write a program to compute the number of characters, words and lines in a file.
9	Write a function nearly equal to test whether two strings are nearly equal. Two strings a and b are nearly equal when a can be generated by a single mutation on.
	Write function to compute gcd, lcm of two numbers. Each function shouldn't exceed one line.
10	Write a program to implement Merge sort.
	Write a program to implement Selection sort, Insertion sort.
	Office of Dean Academic Affairs

RAJASTHAN TECHNICAL UNIVERSITY, KOTA SYLLABUS III Year- VI Semester: B.Tech. (Information Technology)

6IT4-24: Mobile Application Development Lab

Cree	iit: 1.5 Max. Marks: 75(IA:45, ETE:30)
0L +	0T+3P End Term Exam: 2 Hours
SN	List of Experiments
1	To study Android Studio and android studio installation. Create "Hello World" application.
2	To understand Activity, Intent, Create sample application with login module.(Check username and password).
3	Design simple GUI application with activity and intents e.g. calculator.
4	Develop an application that makes use of RSS Feed.
5	Write an application that draws basic graphical primitives on the screen
6	Create an android app for database creation using SQLite Database.
7	Develop a native application that uses GPS location information
8	Implement an application that writes data to the SD card.
9	Design a gaming application
10	Create an application to handle images and videos according to size.

SEMESTER-VII & VIII

Teaching & Examination Scheme B.Tech.: Information Technology

4th Year – VII Semester

			THEO	RY							
SN	Categ	Categ		Contact hrs/week			Marks				Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PCC	7IT4-01	Big Data Analytics	3	0	0	3	30	120	150	3
2	OE		Open Elective - I	3	0	0	3	30	120	150	3
			Sub-Total	6	0	0	6	60	240	300	6
								-			
			PRACTICAL &	SES	SION	IAL					
3	PCC	7IT4-21	Big Data Analytics Lab	0	0	4	2	60	40	100	2
4	PCC	7IT4-22	Cyber Security Lab	0	0	4	2	60	40	100	2
5	PSIT	7IT7-30	Industrial Training	1	0	0				125	2.5
6	PSIT	7IT7-40	Seminar	2	0	0				100	2
7	SODE CA	7IT8-00	Social Outreach, Discipline & Extra Curricular Activities			1				25	0.5
			Sub- Total	0	0	10	4	120	80	450	9
		TC	DTAL OF VII SEMESTER	6	0	10	10	180	320	750	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

Teaching & Examination Scheme B.Tech.: Information Technology 4th Year – VIII Semester

			THEC	RY							
SN	Categ	Course Course		Contact hrs/week			Marks				Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PCC	8IT4-01	Internet of Things	3	0	0	3	30	120	150	3
2	OE		Open Elective - II	3	0	0	3	30	120	150	3
			Sub Total	6	0	0	6	60	240	300	6
3		8IT4-21	PRACTICAL & Internet of Things Lab	SES 0	SIO	NAL 2	2	30	20	50	1
4	PCC	8IT4-22	Software Testing and Validation Lab	0	0	2	2	30	20	50	1
5	PSIT	8IT7-50	Project	3	0	0		210	140	350	7
6	SODE CA	8IT8-00	Social Outreach, Discipline & Extra Curricular Activities							25	0.5
			Sub- Total	0	0	4	4	120	80	475	9.5
		TOT	TAL OF VIII SEMESTER	6	0	4	10	180	320	775	15.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

	List of Open Electives	fo	r Informat	ion Technology
Subject Code	Title		Subject Code	Title
	Open Elective - I			Open Elective - II
7AG6-60.1	Human Engineering and Safety		8AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management		8AG6-60.2	Waste and By-product Utilization
7AN6-60.1	Aircraft Avionic System		8AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing		8AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques		8CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering		8CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology		8CR6-60.1	Electrical and Electronic Ceramics
7CR6-60.2	Plant, Equipment and Furnace Design		8CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis		8CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management		8CE6-60.2	Fire and Safety Engineering
7EE6-60.1	Electrical Machines and Drives		8EE6-60.1	Energy Audit and Demand side Management
7EE6-60.2	Power Generation Sources.		8EE6-60.2	Soft Computing
7EC6-60.1	Principle of Electronic communication		8EC6-60.1	Industrial and Biomedical applications of RF Energy
7EC6-60.2	Micro and Smart System Technology		8EC6-60.2	Robotics and control
7ME6-60.1	Finite Element Analysis		8ME6-60.1	Operations Research
7ME6-60.2	Quality Management		8ME6-60.2	Simulation Modeling and Analysis
7MI6-60.1	Rock Engineering		8MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing		8MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering		8PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control Engineering		8PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles		8TT6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology		8TT6-60.2	Disaster Management

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

7IT4-01: Big Data Analytics

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120)

3L+(0T+0P End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	 Introduction to Big Data: Big data features and challenges, Problems with Traditional Large-Scale System , Sources of Big Data, 3 V's of Big Data, Types of Data. Working with Big Data: Google File System. Hadoop Distributed File System (HDFS) - Building blocks of Hadoop (Namenode. Data node. Secondary Namenode. Job Tracker. Task Tracker), Introducing and Configuring Hadoop cluster (Local. Pseudo- distributed mode, Fully Distributed mode). Configuring XML files. 	10
3	Writing Map Reduce Programs: A Weather Dataset. Understanding Hadoop API for MapReduce Framework (Old and New). Basic programs of Hadoop MapReduce: Driver code. Mapper code, Reducer code. Record Reader, Combiner, Partitioner.	08
4	Hadoop I/O: The Writable Interface. Writable Comparable and comparators. Writable Classes: Writable wrappers for Java primitives. Text. Bytes Writable. Null Writable, Object Writable and Generic Writable. Writable collections. Implementing a Custom Writable: Implementing a Raw Comparator for speed, Custom comparators.	08
5	Pig: Hadoop Programming Made Easier Admiring the Pig Architecture, Going with the Pig Latin Application Flow. Working through the ABCs of Pig Latin. Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces, Scripting with Pig Latin.	07
6	Applying Structure to Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive. Examining the Hive Clients. Working with Hive Data Types. Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data.	06
	Total	40

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

7IT4-21: Big Data Analytics Lab

Credit: 2 0L+0T+4P

Max. Marks: 100(IA:60, ETE:40)

End Term Exam: 2 Hours SN List of Experiments Implement the following Data structures in Java 1 i) Linked Lists ii) Stacks iii) Queues iv) Set v) Map Perform setting up and Installing Hadoop in its three operating modes: 2 Standalone, Pseudodistributed, Fully distributed. Implement the following file management tasks in Hadoop: Adding files and directories • Retrieving files • Deleting files 3 Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities. Run a basic Word Count Map Reduce program to understand Map Reduce 4 Paradigm. Write a Map Reduce program that mines weather data. Weather sensors collecting data everyhour at many locations across the globe gather a large 5 volume of log data, which is a goodcandidate for analysis with MapReduce, since it is semi structured and record-oriented. Implement Matrix Multiplication with Hadoop Map Reduce 6 Install and Run Pig then write Pig Latin scripts to sort, group, join, project, 7 and filter your data. Install and Run Hive then use Hive to create, alter, and drop databases, 8 tables, views, functions, and indexes. 9 Solve some real life big data problems.

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

7IT4-22: Security Lab

Credit: 2 0L+0T+4P

Max. Marks: 100(IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
1	Implement the following Substitution & Transposition Techniques concepts:
	a) Caesar Cipherb) Rail fence row & Column Transformation
-	Implement the Diffie-Hellman Key Exchange mechanism using HTML and
2	JavaScript. Consider the end user as one of the parties (Alice) and the
	JavaScript application as other party (bob).
3	Implement the following Attack:
	a) Dictionary Attack b) Brute Force Attack
	Installation of Wire shark, tcpdump, etc and observe data transferred in
4	client server communication using UDP/TCP and identify the UDP/TCP
	datagram.
5	Installation of rootkits and study about the variety of options.
6	Perform an Experiment to Sniff Traffic using ARP Poisoning.
	Demonstrate intrusion detection system using any test (aport or any other
7	Demonstrate intrusion detection system using any tool (snort or any other
	s/w). Demonstrate how to provide secure data storage, secure data transmission
8	and for creating digital signatures.
	PROJECT: In a small area location such as a house, office or in a classroom,
	there is a small network called a Local Area Network (LAN). The project aims
	to transfer a file peer-to-peer from one computer to another computer in the
	same LAN. It provides the necessary authentication for file transferring in
	the network transmission. By implementing the Server-Client technology,
	use a File Transfer Protocol mechanism and through socket programming,
	the end user is able to send and receive the encrypted and decrypted file in
	the LAN. An additional aim of the project is to transfer a file between
	computers securely in LANs. Elements of security are needed in the project
	because securing the files is an important task, which ensures files are not
	captured or altered by anyone on the same network. Whenever you transmit
	files over a network, there is a good chance your data will be encrypted by
	encryption technique.
	Any algorithm like AES is used to encrypt the file that needs to transfer to
	another computer. The encrypted file is then sent to a receiver computer and
	will need to be decrypted before the user can open the file.

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

8IT4-01: Internet of Things

Credit: 3

Max. Marks: 150(IA:30, ETE:120)

3 Hou	0T+0P End Term Exam:
Hours	Contents
01	Introduction: Objective, scope and outcome of the course.
08	Introduction to IoT: Definition and characteristics of IoT, Design of IOT: Physical design of IOT, Logical Design of IOT- Functional Blocks, communication models, communication APIs, IOT enabling Technologies- Wireless Sensor Networks, Cloud computing, big data analytics, embedded systems. IOT Levels and deployment templates.
07	IoT Hardware and Software: Sensor and actuator, Humidity sensors, Ultrasonic sensor, Temperature Sensor, Arduino, Raspberry Pi, LiteOS, RIoTOS, Contiki OS, Tiny OS.
08	Architecture and Reference Model: Introduction, Reference Model and architecture, Representational State Transfer (REST) architectural style, Uniform Resource Identifiers (URIs). Challenges in IoT- Design challenges, Development challenges, Security challenges, Other challenges.
08	IOT and M2M: M2M, Difference and similarities between IOT and M2M, Software defined networks, network function virtualization, difference between SDN and NFV for IoT.
08	Case study of IoT Applications: Domain specific IOTs- Home automation, Cities, environment, Energy, Retail, Logistics, Agriculture, Industry, Health and Lifestyles.
40	Total

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

8IT4-21: Internet of Things Lab

	dit: 1 Max. Marks: 50(IA:30, ETE:20) OT+2P End Term Exam: 2 Hours
SN	List of Experiments
1	Start Raspberry Pi and try various Linix commands in command terminal window: ls, cd, touch, mv, rm, man, mkdir, rmdir, tar, gzip, cat, more, less, ps, sudo, cron, chown, chgrp, ping etc.
2	 Run some python programs on Pi like: a) Read your name and print Hello message with name b) Read two numbers and print their sum, difference, product and division. c) Word and character count of a given string. d) Area of a given shape (rectangle, triangle and circle) reading shape and appropriate values from standard input.
3	 Run some python programs on Pi like: a) Print a name 'n' times, where name and n are read from standard input, using for and while loops. b) Handle Divided by Zero Exception. c) Print current time for 10 times with an interval of 10 seconds. d) Read a file line by line and print the word count of each line.
4	 a) Light an LED through Python program b) Get input from two switches and switch on corresponding LEDs c) Flash an LED at a given on time and off time cycle, where the two times are taken from a file.
5	 a) Flash an LED based on cron output (acts as an alarm) b) Switch on a relay at a given time using cron, where the relay's contact terminals are connected to a load. c) Get the status of a bulb at a remote place (on the LAN) through web.
	The student should have hands on experience in using various sensors like temperature, humidity, smoke, light, etc. and should be able to use control web camera, network, and relays connected to the Pi.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

8IT4-22: Software Testing and Validation Lab

Credit: 1				Marks:50 (IA:30, ETE:20)				
	T+2P	End Term Exam: 2 Hours						
SN			List of Experiments					
1	a)		alculates the area and p st Cases of that program	perimeter of the circle. And a using JaButi Tool.				
	b)	1 0	n read the first name an pected result by using Ja	id last name from console BuTi.				
	c)			pers from the java console is a,b, and c of a quadratic				
	d)	.you should expect the retrieve the name of	at the URL starts with with the site and output it. n, you should output yah	e URL from a url from file www and ends with .com. For instance, if the user noo. After that find the test				
	e)	Write a program for a o Def-use-graph.	calculator and find the t	est case and coverage and				
	f)	java console and output two. For example, if t	uts the number of chara he words are open and	enting passwords from the acter in the smaller of the sesame, then the output ben. And test this program				
2	Analy	vse the performance of fo	ollowing website using J	Meter.				
		Site Amazon Flip kart	Website Amazon.com Flipkart.com	Type shopping shopping				
		Railway reservation	Irctc.co.in	Ticket booking site				
		Train searching	Erail.in	Train searching				
3	Calcu Tool.	9		1(a) to 1 (f) using jumble				
4		late the overage and	sis of programs given in	1 (a) to 1 (f) using				
4		nma Free open source T	1 0 0	I (a) to I (I) using				
	Leien							

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Information Technology)

elow:		
Site	Website	Туре
Amazon	Amazon.com	shopping
Flip kart	Flipkart.com	shopping
Railway reservation	Irctc.co.in	Ticket booking site
Train searching	Erail.in	Train searching

Syllabus and Scheme

B.Tech. in Mechanical Engineering

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	H	Hours			Mark	s	Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
Total 20.								20.5		

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	Hours			Marl	KS	Cr	
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
			and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output							
	statement.							
2.	Programs to learn data type, variables, If-else statement							
3.	Programs to understand nested if-else statement and switch statement							
4.	Programs to learn iterative statements like while and do-while loops							
5.	Programs to understand for loops for iterative statements							
6.	Programs to learn about array and string operations							
7.	Programs to understand sorting and searching using array							
8.	Programs to learn functions and recursive functions							
9.	Programs to understand Structure and Union operation							
10.	Programs to learn Pointer operations							
11.	Programs to understand File handling operations							
12.	Programs to input data through Command line argument							

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations - First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.

SEMESTER-III & IV

Teaching & Examination Scheme

B.Tech. : Mechanical Engineering 2nd Year - III Semester

			THEO	RY							
		Course									
SN	Categ				onta			ЪЛ	arks		Cr
	ory	Code	Title		s/we		Exm	1115	arks		Cr
				L	Т	Р	Hrs	IA	ETE	Total	
1	BSC	3ME2-01	Advance Engineering Mathematics-I	3	0	0	3	30	70	100	3
2	HSMC	3ME1-02/ 3ME1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3ME3-04	Engineering Mechanics	2	0	0	2	30	70	100	2
4		3ME4-05	Engineering Thermodynamics	3	0	0	3	30	70	100	3
5	PCC	3ME4-06	Materials Science and Engineering	3	0	0	3	30	70	100	3
6		3ME4-07	Mechanics of Solids	3	1	0	3	30	70	100	4
			Sub Total	16	1	0					17
			PRACTICAL &	SESS	SION	AL	1	1	1		
7		3ME4-21	Machine drawing practice	0	0	3		60	40	100	1.5
8		3ME4-22	Materials Testing Lab	0	0	3		60	40	100	1.5
9	PCC	3ME4-23	Basic Mechanical Engineering Lab	0	0	3		60	40	100	1.5
10		3ME4-24	Programming using MATLAB	0	0	3		60	40	100	1.5
11	PSIT	3ME7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3ME8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0				100	0.5
			Sub- Total	0	0	13					7.5
		тс	TAL OF III SEMESTER	16	1	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME2-01: ADVANCE ENGINEERING MATHEMATICS-I

	Credit: 3 Max. Marks: 100 (IA:30, E 3L+0T+0P End Term Exam: 3	
	Contents	Hours
1	Numerical Methods – 1: Finite differences, Relation between operators, Interpolation using Newton's forward and backward difference formulae. Gauss's forward and backward interpolation formulae. Stirling's Formulae. Interpolation with unequal intervals: Newton's divided difference and Lagrange's formulae. Numerical Differentiation, Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.	10
2	Numerical Methods – 2: Numerical solution of ordinary differential equations: Taylor's series, Euler and modified Euler's methods. Runge- Kutta method of fourth order for solving first and second order equations. Milne's and Adam's predicator-corrector methods. Solution of polynomial and transcendental equations-Bisection method, Newton-Raphson method and Regula-Falsi method.	8
3	Laplace Transform: Definition and existence of Laplace transform, Properties of Laplace Transform and formulae, Unit Step function, Dirac Delta function, Heaviside function, Laplace transform of periodic functions. Finding inverse Laplace transform by different methods, convolution theorem. Evaluation of integrals by Laplace transform, solving ODEs by Laplace transforms method.	10
4	Fourier Transform: Fourier Complex, Sine and Cosine transform, properties and formulae, inverse Fourier transforms, Convolution theorem, application of Fourier transforms to partial ordinary differential equation (One dimensional heat and wave equations only).	7
5	Z-Transform: Definition, properties and formulae, Convolution theorem, inverse Z-transform, application of Z-transform to difference equation.	5
	Total	40

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME1-02/4ME1-02: TECHNICAL COMMUNICATION

Credit: 2 Max. Marks: 100 (IA:30, E' 2L+0T+0P End Term Exam: 2		•
	Contents	2 Hours Hours
1	Introduction to Technical Communication - Definition of technical	mound
_	communication, Aspects of technical communication, forms of	
	technical communication, importance of technical communication,	4
	technical communication skills (Listening, speaking, writing, reading	
	writing), linguistic ability, style in technical communication.	
2	Comprehension of Technical Materials/Texts and Information	
	Design & development- Reading of technical texts, Reading and	
	comprehending instructions and technical manuals, Interpreting and	
	summarizing technical texts, Note-making. Introduction of different	6
	kinds of technical documents, Information collection, factors affecting	
	information and document design, Strategies for organization,	
	Information design and writing for print and online media.	
3	Technical Writing, Grammar and Editing- Technical writing	
	process, forms of technical discourse, Writing, drafts and revising,	
	Basics of grammar, common error in writing and speaking, Study of	
	advanced grammar, Editing strategies to achieve appropriate technical	8
	style, Introduction to advanced technical communication. Planning,	
	drafting and writing Official Notes, Letters, E-mail, Resume, Job	
	Application, Minutes of Meetings.	
4	Advanced Technical Writing- Technical Reports, types of technical	
	reports, Characteristics and formats and structure of technical	
	reports. Technical Project Proposals, types of technical proposals,	8
	Characteristics and formats and structure of technical proposals.	_
	Technical Articles, types of technical articles, Writing strategies,	
	structure and formats of technical articles.	06
	Total	26

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME1-03/4ME1-03 : MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTING

	Credit: 2 Max. Marks: 100 (IA:30, E7 2L+0T+0P End Term Exam: 2	
SN		Hours
Me met cho	sic economic concepts- caning, nature and scope of economics, deductive vs inductive thods, static and dynamics, Economic problems: scarcity and pice, circular flow of economic activity, national income-concepts I measurement.	4
Den elas met	mand and Supply analysis- mand-types of demand, determinants of demand, demand function, sticity of demand, demand forecasting –purpose, determinants and thods, Supply-determinants of supply, supply function, elasticity of oply.	5
The proj cost imp	duction and Cost analysis- eory of production- production function, law of variable portions, laws of returns to scale, production optimization, least t combination of inputs, isoquants. Cost concepts-explicit and plicit cost, fixed and variable cost, opportunity cost, sunk costs, t function, cost curves, cost and output decisions, cost estimation.	5
4 Mar	rket structure and pricing theory - fect competition, Monopoly, Monopolistic competition, Oligopoly.	4
Bala rela flow	erpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME3-04: ENGINEERING MECHANICS

Credit: 2Max. Marks: 100 (IA:30, E'2L+0T+0PEnd Term Exam: 2				
	Applicable to the students admitted from 2018-19 onwards	5		
SN	Contents	Hours		
1	Statics of particles and rigid bodies: Fundamental laws of mechanics, Principle of transmissibility, System of forces, Resultant force, Resolution of force, Moment and Couples, Varignon's theorem, Resolution of a force into a force and a couple, Free body diagram, Equilibrium, Conditions for equilibrium, Lami's theorem. Plane trusses: Types of structures, Trusses, Support Conditions, Types of Loadings, Classification of trusses, Determinacy of trusses, Basic assumptions of truss analysis, Method of joints, Method of sections. Virtual work: Principle of Virtual Work, Active forces and active force diagram, Stability of equilibrium.	5		
2	 Centroid & Moment of inertia: Location of centroid and center of gravity, Moment of inertia, Parallel axis and perpendicular axis theorem, Radius of gyration, M.I of composite section, Polar moment of inertia, M.I of solid bodies. Lifting machines: Mechanical advantage, Velocity Ratio, Efficiency of machine, Ideal machine, Ideal effort and ideal load, Reversibility of machine, Law of machine, Lifting machines; System of pulleys, Simple wheel and axle, Wheel and differential axle, Weston's differential pulley block, Worm and worm wheel, Single purchase winch crab, Double purchase winch crab, Screw jack, Differential screw jack. 	5		
3	 Friction: Types of Friction, Laws of friction, Angle of friction, Angle of repose, Ladder, Wedge, Belt Friction. Belt and Rope drive: Types of belts, Types of belt drives, Velocity ratio, Effect of slip on Velocity ratio, Crowing of pulleys, Length of belt, Ratio of tensions in flat belt drive, Power transmission by belt drives, Advantage and disadvantages of V-Belt over Flat Belt. 	5		
4	Kinematics of particles and rigid bodies : Velocity, Acceleration, Types of Motion, Equations of Motion, Rectangular components of velocity and acceleration, Angular velocity and Angular acceleration, Radial and transverse velocities and accelerations, Projectiles motion on plane and Inclined Plane, Relative Motion. Kinetics of particles and rigid bodies : Newton's second law, Equation of motion in rectangular coordinate, Equation of motion in radial and transverse components, Equation of motion in plane for a rigid body, D'Alembert principle.	5		
5	Work, Energy and power: Work of a force, weight, spring force and couple, Power, Efficiency, Energy, Kinetic energy of rigid body, Principle of work and energy, Conservative and Non-conservative Force, Conservation of energy. Office of Dean Academic Affairs Rajasthan Technical University, Ko	6 ta		

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

Impulse and momentum: Linear and angular momentum, Linear and	
angular impulse, Principle of momentum for a particle and rigid body,	
Principle of linear impulse and momentum for a particle and rigid body,	
Principle of angular momentum and Impulse, Conservation of angular	
momentum, Angular momentum of rigid body, Principle of impulse and	
momentum for a rigid body, Central impact, Oblique impact, System of	
variable mass, Rocket.	
ΤΟΤΑΙ	26

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME3-04: ENGINEERING MECHANICS

	Credit: 2 Max. Marks: 100 (IA:30, E' 2L+0T+0P End Term Exam: 2	
	Applicable to the students admitted in 2017-18 only	
SN	Contents	Hours
1	 Statics of particles and rigid bodies: Fundamental laws of mechanics, Principle of transmissibility, System of forces, Resultant force, Resolution of force, Moment and Couples, Varignon's theorem, Resolution of a force into a force and a couple, Free body diagram, Equilibrium, Conditions for equilibrium, Lami's theorem. Plane trusses: Types of structures, Trusses, Support Conditions, Types of Loadings, Classification of trusses, Determinacy of trusses, Basic assumptions of truss analysis, Method of joints, Method of sections. Virtual work: Principle of Virtual Work, Active forces and active force diagram, Stability of equilibrium. 	5
2	Centroid & Moment of inertia : Location of centroid and center of gravity, Moment of inertia, Parallel axis and perpendicular axis theorem, Radius of gyration, M.I of composite section, Polar moment of inertia, M.I of solid bodies. Lifting machines : Mechanical advantage, Velocity Ratio, Efficiency of machine, Ideal machine, Ideal effort and ideal load, Reversibility of machine, Law of machine, Lifting machines; System of pulleys, Simple wheel and axle, Wheel and differential axle, Weston's differential pulley block, Worm and worm wheel, Single purchase winch crab, Double purchase winch crab, Screw jack, Differential screw jack.	5
3	 Friction: Types of Friction, Laws of friction, Angle of friction, Angle of repose, Ladder, Wedge, Belt Friction. Belt and Rope drive: Types of belts, Types of belt drives, Velocity ratio, Effect of slip on Velocity ratio, Crowing of pulleys, Length of belt, Ratio of tensions in flat belt drive, Power transmission by belt drives, Advantage and disadvantages of V-Belt over Flat Belt. 	5
4	 Kinematics: Fundamentals of rectilinear motion and curvilinear motion, applications of general equations, Projectiles motion on plane and on inclined plane, Concept of Relative motion. Dynamics: Principles of dynamics, D'Alembert's principle, conservation of momentum and energy, Work and Energy and impulse momentum methods, central impact, oblique impact, system of variable mass. 	6
5	Vibrations: Introduction to vibrations, Free vibrations of particles, Simple, compound and torsional pendulum, Energy Method.	5
	TOTAL	26

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-05 : ENGINEERING THERMODYNAMICS

	dit: 3 Max. Marks: 100 (IA:30, 1 0T+0P End Term Exam: 3	•
SN	Contents	Hours
1	Basic Concepts and definitions of Thermodynamics : System, Surroundings, Property, Energy, Thermodynamic Equilibrium, Process, work and modes of work.	2
	Zeroth and First Law of Thermodynamics: Zeroth of Thermodynamics, Temperature scale, First law of thermodynamics, First law analysis of some elementary processes. Steady and unsteady flow energy equations.	5
2	Second Law of Thermodynamics: Heat engine, Heat pump and refrigerator, Second law of thermodynamics, Equivalence of the Kelvin-Plank and Clausius statements. Reversible and Irreversible Processes, Carnot engine, Efficiency of a Carnot engine, Carnot principle, thermodynamic temperature scale, Clausis Inequality.	4
	Entropy : Entropy, Calculation of Entropy change, Principle of entropy increase. Temperature-Entropy diagram, Second law analysis of a control volume.	3
	Availability: Available energy, Loss in available energy, Availability Function, Irreversibility.	3
3	Thermodynamic Properties of Fluids: Pure substance, Concept of Phase, Graphical representation of p-v-T data, Properties of steam. Steam tables, Mollier chart	4
	Ideal Gas and Real Gas : Ideal gas, Real gas, Internal energy, enthalpy and specific heats of an ideal gas, equations of state, Dalton's law of partial pressures, Gibbs Dalton law, Thermodynamic properties of gas mixtures.	4
4	Thermodynamic Relations: Thermodynamic variables, Independent and dependent variables, Maxwell's thermodynamic relations, Thermodynamic relations involving entropy, Thermodynamic relations involving enthalpy and internal energy, Joule-Thomson coefficient, Clapeyron equation.	4
	Power Cycles: Otto cycle, Diesel cycle, Dual cycle, Brayton cycle and Ericsson cycle.	4
5	Vapour power cycle: Rankine cycle, effect of operating conditions on its efficiency, properties of ideal working fluid in vapour power cycle	3
	Reheat cycle, regenerative cycle, bleeding extraction cycle, feed water heating co-generation cycle.	3
	TOTAL	39

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-06 : MATERIAL SCIENCE AND ENGINEERING

Credit: 3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1		
L	Crystal structure – BCC, FCC and HCP, unit cell, crystallographic planes and directions, miller indices. Crystal imperfections, point,	4
	line, surface and volume defects.	Ŧ
	Frank Reed source of dislocation, Elastic & plastic modes of	
	deformation, Bauschinger's effect, slip & twinning, strain hardening,	4
	cold/hot working recovery, re-crystallization and grain growth.	-
2	Classification of Engineering Materials: Solidification of metals and of	
	some typical alloys, mechanism of crystallization (I) nuclear formation	
	(ii) crystal growth, general principles of phase transformation in alloys,	
	phase rule and equilibrium diagrams, equilibrium diagram of binary	
	system having complete mutual solubility in liquid state and limited	5
	solubility in solid state, binary isomorphous alloy system, Hume-	
	Rothery rule, binary system with limited solid solubility of terminal	
	phase and in which solubility decreases with temperature and also	
	alloy with a peritectic transformation, equilibrium diagram of a system	
	whose components are subject to allotropic change.	
	Iron carbon equilibrium diagram, phase transformation in the iron	•
	carbon diagram, eutectic, peritectic, eutectoid and peritectoid	3
3	reactions and microstructures.	
3	Isothermal transformation diagrams –cooling curves superimposed on Isothermal Transformation diagram, critical cooling rate. (i) Formation	4
	of Austenite from Pearlite (ii) Transformation of Austenite into Pearlite.	т
	Full annealing, stress relief, spheroidizing – normalizing, hardening	
	and tempering of steel. Hardenability, Jominey end quench test –	-
	Austempering, martempering. Case hardening, carburising, nitriding,	4
	cyaniding, carbonitriding. Flame and Induction hardening.	
4	Non-Metallic Materials- Polymers – types of polymer, commodity and	
	engineering polymers – Properties and applications of PE, PP, PS, PVC,	4
	PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE Polymers.	т
	Urea and Phenol formaldehydes.	
	Constitution of alloys: Solid solutions - substitutional and interstitial.	r.
	Ferrous and Non Ferrous Metals- Effect of alloying additions on steel	4
⊢_	(Mn, Si, Cr, Mo, V, Ti & W) - stainless and tool steels – HSLA steel.	
5	Mechanical Properties and Testing: Types of fracture, testing of	
	materials under tension, compression and shear loads – hardness	4
	tests (Brinell, Vickers and Rockwell) Impact test Izod and charpy,	
	fatigue and creep test.	

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

TOTAL	39
clusters & Nano crystals.	
plastics. Introduction to Nano materials- Nano structured materials. Nano	
Si3N4, PSZ etc. Fiber and particulate reinforced composites and resin	3
Engineering Ceramics - Properties and applications of Al2O3, SiC,	
standards.	
Classification of steels and cast iron constitution and properties. BIS	

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-07 : MECHANICS OF SOLIDS

Credit: 4 3L+1T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

S.No	CONTENTS	Hours
1	Stress and Strain: Elementary definition of stress and strain, stress- strain relationship, elastic, plastic and visco-elastic behavior of common materials in tension and compression test, stress-strain curves, Hooke's law, Poisson's ratio, elastic constants and their relations for an isotropic hookean material, anisotropic and orthotropic materials.	3
	Tension, compression, shearing stress and strain, thermal stresses, composite bars, equations of static equilibrium, concept of free body diagram. Strain energy due to axial loading.	5
2	Members Subjected to Flexural Loads: Theory of simple bending, bending moment and shear force diagrams for different types of static loading and support conditions on beams.	4
	bending stresses, section modulus and transverse shear stress distribution in circular, hollow circular, I, Box, T, angle sections etc. Strain energy due to bending.	5
3	Principal Planes, Stresses and Strains: Members subjected to combined axial, bending and torsional loads, maximum normal and shear stresses, concept of equivalent bending and equivalent twisting moments, Mohr's circle of stress and strain.	5
	Theories of Elastic Failures: The necessity for a theory, different theories, significance and comparison, applications.	2
4	Torsion: Torsional shear stress in solid, hollow and stepped circular shafts, angular deflection and power transmission capacity. Strain energy due to torsional loads.	4
	Stability of Equilibrium: Instability and elastic stability, long and short columns, ideal strut, Euler's formula for crippling load for columns of different ends, concept of equivalent length, eccentric loading, Rankine formulae and other empirical relations.	3
5	Transverse Deflection of Beams: Relation between deflection, bending moment, shear force and load, transverse deflection of beams and shaft under static loading, area moment method, direct integration method.	6
	Thin-walled Pressure Vessels: Stresses in cylindrical and spherical vessels	2
	TOTAL	39

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-21 : MACHINE DRAWING PRACTICE

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

SN							
N 11	CONTENTS						
1.	Assembly drawing with sectioning and bill of materials of the following: Lathe						
	tail stock, shaper tool head, swivel machine vice etc (1 drawing sheet of any assembly)						
2.	Detailed part drawings from assembly drawing indicating fits, tolerances and						
	surface finish symbols by referring BIS codes: Check-valve, Junction Valve etc						
	(1 drawing sheet)						
3.	Computer Aided Drafting: Introduction to different features of the CAD						
	Software (AutoCAD/ProE/ Creo/Solidworks). At least one drawing problem						
	related to						
	a. 2-D Drafting.						
	b. 3-D Modeling.						
	c. 3-D Advanced Modeling.						
	d. Assembly modeling.						
	e. Feature Modification and Manipulation						
	f. Detailing.						
	g. Surface Modeling						

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-22 : MATERIALS TESTING LAB

Cred	it: 1.5 Max. Marks: 100 (IA:60, ETE:40)
0L+()T+3P
SN	
1	(a) Study of various crystals structures through models BCC, FCC, HCP,
	tetrahedral and octahedral voids.
	Material identification of, say, 50 common items kept in a box.
2	Specimen preparation for metallographic examination /micro structural
	examination-cutting, grinding, polishing, etching.
3	Comparative study of microstructures of different given specimens (mild steel,
	gray C.I., brass, copper etc.)
4	Heat treatment experiments such as annealing, normalizing, quenching, case
	hardening and comparison of hardness before and after.
5	Study of Microstructure and hardness of steel at different rates of cooling.
	Microstructure examination of white cast iron.
6	To perform Tensile/Compressive/Shear/torsion test on a given material and to
	determine its various mechanical properties under
	tensile/compression/Shear/torsional loading
7	To determine Rockwell/ Vickers/Brinell hardness of a given material
8	To perform Impact test on a given material and to determine its resilience.
9	To study and perform Fatigue test on a given material and to determine fatigue
	strength of the material
10	To perform Bending test and to determine the Young's Modulus of Elasticity via
	deflection of beam.
11	Creep testing on creep testing machine

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-23 : BASIC MECHANICAL ENGINEERING LAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

SN	
1	Exposure to a wide range of applications of mechanical engineering through a variety of activities, including hands-on assembly and disassembly of machines, such as, bicycle, sewing machine, pumps, engines, air-conditioners, machine-tools, amongst others; observational study of complex systems via cut sections, visits, videos and computer simulations; design of simple machines/systems including specifications formulation; visits to industries.
2	Note: Student will be required to submit written report indicating the learning achieved by Hands on assembly/Disassembly.

SYLLABUS

2nd Year - III Semester: B.Tech. (Mechanical Engineering)

3ME4-24: PROGRAMMING USING MATLAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

0L+(DT+3P
SN	
1	1. Basics of MATLAB computer programming
	2. Use of formulae and inbuilt functions
	3. MATLAB scripts and functions (m-files)
	4. Loops and nested loops
	5. Array, vector and matrices
	6. Plotting functions and vector plots
	7. Solving differential equations using MATLAB
	8. Reading and writing data, file handling
	9. Using MATLAB toolboxes
	10. MATLAB graphic functions

Teaching & Examination Scheme

B.Tech. : Mechanical Engineering 2nd Year - IV Semester

			THEO	RY							
SN	Categ		Course	-	onta s/w		Mark	s			Cr
	ory	Code	Title	L	T	P	Exm Hrs	IA	ETE	Total	
1	BSC	4ME2-01	Data analytics	2	0	0	2	30	70	100	2
2	HSMC	4ME1-03/ 4ME1-02	Managerial Economics and Financial Accounting/ Technical Communications	2	0	0	2	30	70	100	2
3	ESC	4ME3-04	Digital Electronics	2	0	0	2	30	70	100	2
4	PCC	4ME4-05	Fluid Mechanics and Fluid Machines	3	1	0	3	30	70	100	4
5	PCC	4ME4-06	Manufacturing Processes	3	0	0	3	30	70	100	3
6		4ME4-07	Theory of machines	3	1	0	3	30	70	100	4
			Sub Total	15	2	0					17
				0.000							
- 1			PRACTICAL &					6.0			
7	-	4ME3-21	Digital Electronics lab	0	0	3		60	40	100	1.5
8	DOO	4ME4-22	Fluid Mechanics lab	0	0	3		60	40	100	1.5
9	PCC	4ME4-23	Production practice lab	0	0	3		60	40	100	1.5
10		4ME4-24	Theory of machines Lab	0	0	3		60	40	100	1.5
11	SODE CA	4ME8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0 15	0	12					6.5
	TOTAL OF IV SEMESTER				2	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME2-01: DATA ANALYTICS

Credit: 2 Max. Marks: 100 (IA:30, ET		•
	OT+OP End Term Exam: 3 Contents	Hours Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Multivariate Statistics-Degree of Relationship among Variables-Review of Univariate and Bivariate Statistics-Screening Data Prior to Analysis-Missing Data, Outliers, Normality, Linearity, and Homoscedasticity.	4
3	Multiple Regression- Linear and Nonlinear techniques- Backward Forward-Stepwise- Hierarchical regression-Testing interactions (2way interaction) - Analysis of Variance and Covariance (ANOVA & ANCOVA) - Multivariate Analysis of Variance and Covariance (MANOVA & MANCOVA).	6
4	Logistic regression: Regression with binary dependent variable - Simple Discriminant Analysis- Multiple Discriminant analysis Assessing classification accuracy- Conjoint analysis (Full profile method).	5
5	Principal Component Analysis -Factor Analysis- Orthogonal and Oblique Rotation-Factor Score Estimation-Multidimensional Scaling- Perceptual Map-Cluster Analysis (Hierarchical Vs Nonhierarchical Clustering).	5
6	Latent Variable Models an Introduction to Factor, Path, and Structural Equation Analysis- Time series data analysis (ARIMA model) – Decision tree analysis (CHAID, CART) - Introduction to Big Data Management.	5
	TOTAL	26

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME1-03/3ME1-03 : MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTING

Credit: 2 2L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 2 Hours

ZL+01+0P End Term Exam: 2 f		4 110u15
SN		Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory - Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME1-02/3ME1-02: TECHNICAL COMMUNICATION

	Credit: 2 Max. Marks: 100 (IA:30, ET	
	2L+OT+OP End Term Exam: 2 SN Contents	
1	Introduction: Objective, scope and outcome of the course.	Hours 1
2	Introduction to Technical Communication- Definition of technical	
	communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	Total	26

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME3-04: DIGITAL ELECTRONICS

	dit: 2 Max. Marks: 100 (IA:30, 1 0T+0P End Term Exam: 2	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Semiconductor Devices and Applications: Introduction to P-N junction Diode and V-I characteristics, Half wave and Full-wave rectifiers, capacitor filter. Zener diode and its characteristics, Zener diode as voltage regulator. Regulated power supply IC based on 78XX and 79XX series, Introduction to BJT, its input-output and transfer characteristics, BJT as a single stage CE amplifier, frequency response and bandwidth.	4
3	Operational amplifier and its applications : Introduction to operational amplifiers, Op-amp input modes and parameters, Op-amp in open loop configuration, op-amp with negative feedback, study of practical op-amp IC 741, inverting and non-inverting amplifier applications: summing and difference amplifier, unity gain buffer, comparator, integrator and differentiator.	5
4	Timing Circuits and Oscillators: RC-timing circuits, IC 555 and its applications as astable and mono-stable multi-vibrators, positive feedback, Barkhausen's criteria for oscillation, R-C phase shift and Wein bridge oscillator.	5
5	Digital Electronics Fundamentals : Difference between analog and digital signals, Boolean algebra, Basic and Universal Gates, Symbols, Truth tables, logic expressions, Logic simplification using K- map, Logic ICs, half and full adder/subtractor, multiplexers, demultiplexers, flip-flops, shift registers, counters, Block diagram of microprocessor/microcontroller and their applications.	6
6	Electronic Communication Systems : The elements of communication system, IEEE frequency spectrum, Transmission media: wired and wireless, need of modulation, AM and FM modulation schemes, Mobile communication systems: cellular concept and block diagram of GSM system.	5
	TOTAL	26

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME4-05: FLUID MECHANICS AND FLUID MACHINES

Credit: 4 Max. Marks: 100 (IA:30, E7 3L+1T+0P End Term Exam: 3 1		•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Fluid Properties: Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity.	2
	Fluid Statics and Flow Characteristics: Basic equation of fluid statics, Manometers, Force on plane areas and curved surfaces, center of pressure, Buoyant force, Stability of floating and submerged bodies. Flow characteristics – concept of control volume - application of continuity equation, energy equation and momentum equation.	5
3	Flow Through Circular Conduits: Hydraulic and energy gradient - Laminar flow through circular conduits and circular annuli-Boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation –friction factor- Moody diagram-minor losses – Flow through pipes in series and parallel.	8
4	Dimensional Analysis: Need for dimensional analysis – methods of dimensional analysis – Similitude –types of similitude - Dimensionless parameters- application of dimensionless parameters – Model analysis.	8
5	Pumps: Impact of jets - Euler's equation - Theory of roto-dynamic machines – various efficiencies– velocity components at entry and exit of the rotor- velocity triangles - Centrifugal pumps– working principle - work done by the impeller - performance curves - Reciprocating pump- working principle – Rotary pumps –classification.	8
6	Turbines: Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines- working principles - work done by water on the runner – draft tube. Specific speed - unit quantities – performance curves for turbines – governing of turbines.	7
	TOTAL	39

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME4-06: MANUFACTURING PROCESSES

	lit: 3 Max. Marks: 100 (IA:30, 2 DT+0P End Term Exam:	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
	General Classification and Introduction to Manufacturing processes.	
2	Foundry Technology : Casting: Definition and major classification;	
	Casting materials, Patterns: types, material and pattern allowances.	
	Moulding sands; composition, preparation, properties and testing;	3
	Grain fineness; moisture content, clay content and permeability test.	
	Core & core prints; Gating system: types, pouring basin, sprue,	
	runner and risers; Melting, pouring and solidification. Principles and method of floor mould casting, shell mould casting, pit	
	mould and loam mould casting; centrifugal casting, investment	
	casting; Permanent mould casting. Die casting; Slush casting. Casting	5
	defects; types, causes and remedy	
	Forming Processes : Classification; Hot working and cold working;	3
3	principle, advantages, disadvantages and applications.	
	Forging: Classification, drop forging and press forging methods and	4
	use; Forging dies; types, materials.	
	Rolling: Characteristics and applications of hot rolling and cold	3
	rolling;	-
4	Extrusion; Work materials and products; Press tool works; Basic	4
4	principles, system, operations and applications. Shearing; Parting,	4
	notching, trimming, nibbling, blanking and piercing, Drawing: wire drawing, tube drawing and deep drawing.	3
	Metal Joining Processes : Welding, Brazing and soldering,	3
5	classification of welding process, Principle, characteristics and	
Ũ	applications of gas welding, thermit welding, electrical arc welding;	6
	Submerged arc welding; TIG and MIG welding; Resistance welding;	
	Spot welding; Butt welding; Seam welding; Projection welding.	
	Principles and process details of Forge welding; Friction welding;	
	Diffusion welding; Ultrasonic welding. Explosive welding. Welding	3
	defects; Types, causes, effects and remedy. Electrodes and Electrode	0
	Coatings	
6	Powder Metallurgy : Properties of Powder processed materials, Powder	
	manufacturing, mechanical pulverization, sintering, Electrolytic	
	Process, chemical reduction, atomization, properties of metal powders,	4
	compacting of powders sintering, advantages and applications of Powder metallurgy.	
	TOTAL	39
	IOTAL	37

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME4-07: THEORY OF MACHINES

Credit: 4 Max. Marks: 100 (IA:30, E)		ETE:70)
3L+	1T+OP End Term Exam: 5	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to mechanism: Basic concept of machines, links, kinematic pair, kinematic chain and mechanism. Inversions of kinematic chains: four bar chain mechanisms, quick return mechanisms, inversions of double slider crank mechanisms.	4
	Velocity and acceleration in mechanism: Velocity and acceleration polygons, relative velocity and instantaneous centre method	3
3	Friction devices: Types and laws of friction. Pivots and collars. Power screws such as lead screw of the lathe.	3
	Clutches: Single and multi-plate clutches. Brakes: Band, block and band and block brakes.	4
4	Gears: Laws of gearing, gears terminology; tooth form; interference, undercutting and minimum number of teeth on pinion. Rack and pinion, Spur, helical, basic introduction of bevel, worm and worm gears.	6
	Gear Trains: Simple, compound and epicyclic gear trains.	3
5	Cams: Type of cams; displacement, velocity and acceleration curves for different cam followers; consideration of pressure angle and wear.	4
	Gyroscope: Principles of gyroscopic couple, effect of gyroscopic couple and centrifugal force on vehicles taking a turn, stabilization of ship.	4
6	Balancing: Balancing of rotating masses in same and different planes, balancing of reciprocating masses, swaying couple, hammer blow and tractive effort.	7
	TOTAL	39

RUK

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME3-21: DIGITAL ELECTRONICS LAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

J1+3P		
To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also		
to verify the truth table of Ex-OR, Ex-NOR (For 2, 3 & 4 inputs using gates		
with 2, 3, & 4 inputs).		
To verify the truth table of OR, AND, NOR, Ex-OR. Ex-NOR realized using		
NAND & NOR gates.		
To realize an SOP and POS expression.		
To realize Half adder/ Subtractor & Full Adder/ Subtractor using NAND &		
NOR gates and to verify their truth tables.		
To realize a 4-bit ripple adder/ Subtractor using basic half adder/ Subtractor		
& basic Full Adder/ Subtractor.		
To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize		
the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer		
and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4		
demulriplexer.		
Design & Realize a combinational circuit that will accept a 2421 BCD code and		
drive a TIL -3 I 2 seven-segment display.		
Using basic logic gates, realize the R-S, J-K and D-flip flops with and without		
clock signal and verify their truth table.		
Construct a divide by 2, 4 & 8 asynchronous counter. Construct a 4-bit binary		
counter and ring counter for a particular output pattern using D flip flop.		
Perform input/output operations on parallel in/parallel out and Serial		
in/Serial out registers using clock. Also exercise loading only one of multiple		
values into the register using multiplexer.		

Note: As far as possible, the experiments shall be performed on bread board. However experiment Nos. 1-4 are to be performed on bread board only

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME4-22: FLUID MECHANICS LAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

OL +(DL+OT+3P		
SN			
1	Determination of Meta-centric height of a given body.		
2	Determination of Cd, Cv & Cc for given orifice.		
3	Calibration of contracted Rectangular Notch and / Triangular Notch and		
	determination of flow rate.		
4	Determination of velocity of water by Pitot tube.		
5	Verification of Bernoulli's theorem.		
6	Calibration and flow rate determination using Venturimeter & Orifice meter		
	and Nozzle meter		
7	Determination of head loss in given length of pipe.		
8	Determination of the Reynold's number for laminar, turbulent and transient		
	flow in pipe.		
9	Determination of Coefficient for minor losses in pipes.		
10	To study the velocity distribution in a pipe and also to compute the discharge		
	by integrating the velocity profile.		
11	To study the boundary layer velocity profile over a flat plate and to determine		
	the boundary layer thickness.		
12	Conducting experiments and drawing the characteristic curves of centrifugal		
	pump/submergible pump.		
13	Conducting experiments and drawing the characteristic curves of reciprocating		
	pump.		
14	Conducting experiments and drawing the characteristic curves of Pelton wheel.		
15	Conducting experiments and drawing the characteristics curves of Francis		
	turbine.		
16	Conducting experiments and drawing the characteristic curves of Kaplan		
	turbine.		

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME4-23: PRODUCTION PRACTICE LAB

Max. Marks: 100 (IA:60, ETE:40)

	0T+3P
SN	Turning Shar
1	Turning Shop
1	To study lathe machine construction and various parts including attachments,
0	lathe tools cutting speed, feed and depth of cut.
2	To perform step turning, knurling and chamfering on lathe machine as per
•	drawing.
3	To cut multi-start Square/Metric threads on lathe machine.
4	Boring using a boring bar in a centre lathe and cut BSW/Metric internal threads on lathe machine.
5	To perform taper turning using compound rest.
-	Machine shop
1	To study the milling machine, milling cutters, indexing heads and indexing
	methods and to prepare a gear on milling machine.
2	To machine a hexagonal /octagonal nut using indexing head on milling
-	machine.
3	To study of single point cutting tool geometry and to grind the tool as per given
	tool geometry.
4	To study shaper machine, its mechanism and calculate quick return ratio. To
	prepare a job on shaper from given mild steel rod.
5	Cylindrical grinding using grinding attachment in a centre lathe
	Demonstration and study
1	Demonstration for job by eccentric turning on lathe machine.
2	Study of capstan lathe and its tooling and prepare a tool layout & job as per
	given drawing.
3	Demonstration on milling machine for generation of plane surfaces and use of
	end milling cutters.
4	Grinding of milling cutters and drills.
	Foundry Shop
1	To prepare mould of a given pattern requiring core and to cast it in aluminium.
2	To perform moisture test and clay content test.
3	To perform permeability test
4	A.F.S. Sieve analysis test.
5	Strength Test (compressive, Tensile, Shear Transverse etc. in green and dry
	conditions) and Hardness Test (Mould and Core).
	Welding Shop
1	Hands-on practice on spot welding.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Credit: 1.5

RUC DUCK

Syllabus

2nd Year - IV Semester: B.Tech. : Mechanical Engineering

4ME4-24: THEORY OF MACHINES LAB

Credit: 1.5 0L+0T+3P

Max. Marks: 100 (IA:60, ETE:40)

-	
SN	
1	To study inversions of four bar chain and slider crank mechanism and their
	practical applications.
2	To study Steering Mechanisms: Davis and Ackerman.
3	Study of quick return mechanism and its practical applications.
4	Study of inversion of Double slider chain: Oldham Coupling, Scotch Yoke and
	Elliptical Trammel.
5	Study of various cam-follower arrangements. To plot displacement v/s angle of
	rotation curve for various cams
6	To determine co-efficient of friction using two roller oscillating arrangement.
7	Study of various types of dynamometers, Brakes and Clutches.
8	Study of differential gear box.
9	To verify the torque relation for gyroscope.
10	To perform wheel balancing. To perform static and dynamic balancing on
	balancing set up.
11	Study of a lathe gear box, sliding mesh automobile gear box, planetary gear
	box.

SEMESTER-V & VI

Syllabus

Credit: 2

2L+0T+0P

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME3-01: MECHATRONIC SYSTEMS

Max. Marks: 100(IA: 20, ETE:80) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of Mechatronics: Historical perspective, Definition, Applications, Block diagram of Mechatronic system, Functions of Mechatronics Systems, Systems Engineering, Verification Vs Validation, Benefits of mechatronics in manufacturing.	2
	Electrical and Electronic Systems: Electrical circuits and Kirchhoff's laws, Network Theorems and AC circuit Analysis, Transformers, Analog Devices, Signal Conditioning, Digital Electronics, Data Acquisition systems.	З
3	Modeling, Analysis and Control of Physical Systems: Basics of System Modeling: LTI and LTV systems, Need for modeling, Types of modeling, Steps in modeling, Building blocks of models, Modelling of one and two degrees of freedom systems, Modeling of Electro- mechanical systems, Mechanical Systems, Fluid systems, Thermal systems; Dynamic Responses, System Transfer Functions, State Space Analysis and System Properties, Stability Analysis using Root Locus Method, Stability Analysis using Bode Plots, PID Controllers (with and without Time Delay)	
4	Sensors and Actuators: Static characteristics of sensors and actuators, Position, Displacement and Proximity Sensors, Force and torque sensors, Pressure sensors, Flow sensors, Temperature sensors, Acceleration sensors, Level sensors, Light sensors, Smart material sensors, Micro and Nano sensors, Selection criteria for sensors, Actuators: Electrical Actuators (Solenoids, Relays, Diodes, Thyristors, Triacs, BJT, FET, DC motor, Servo motor, BLDC motor, AC motor, Stepper motors), Hydraulic and Pneumatic actuators,	7
	Design of Hydraulic and Pneumatic circuits, Piezoelectric actuators, Shape memory alloys.	
5	Microprocessors, Microcontrollers and Programmable Logic Controllers: Logic Concepts and Design, System Interfaces, Communication and Computer Networks, Fault Analysis in Mechatronic Systems, Synchronous and Asynchronous Sequential Systems, Architecture, Microcontrollers.	3
6	Programmable Logic Controllers (PLCs): Architecture, Number Systems Basics of PLC Programming, Logics, Timers and Counters, Application on real time industrial automation systems.	4
	Case Studies: Design of pick and place robot, Car engine management system, Automated manufacturing system, Automatic camera, Automatic parking system, Safety devices and systems.	3
	TOTAL	28

ZUC ZUC

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-02: HEAT TRANSFER

SN	CONTENTS	HOURS
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Heat transfer processes, conduction and radiation. Fourier's law of heat conduction, thermal conductivity, thermal conductivity of solids, liquids and gases, effect of temperature on thermal conductivity. Newton's law of cooling, definition of overall heat transfer coefficient. General parameters influence the value of heat transfer coefficient.	4
	Conduction: General 3-Dimensoinal conduction equation in Cartesian, cylindrical and spherical coordinates; different kinds of boundary conditions; nature of differential equations; one dimensional heat conduction with and without heat generation; electrical analogy; heat conduction through composite walls; critical thickness of insulation	3
3	Heat transfer from extended surfaces: Governing differential equation of fin, fin efficiency and effectiveness for different boundary conditions.	3
	Unsteady state heat conduction for slab, cylinder and sphere, Heisler chart.	2
	Convection: Review of Navier – Stokes and energy equation, hydrodynamic and thermal boundary layers; laminar boundary layer equations; forced convection appropriate non dimensional members; effect of Prandtl number; empirical relations for flow over a flat plate and flow through pipes.	4
4	Natural convection: Dimensional analysis, Grashoff number, boundary layers in external flows (flow over a flat plate only), boundary layer equations and their solutions, heat transfer correlations.	4
	Heat transfer with change of phase: Nature of vaporization phenomena; different regimes of boiling heat transfer; correlations for saturated liquid vaporization; condensation on flat plates; correlation of experimental results, drop wise condensation.	4
5	Heat exchanger: Types of heat exchangers, arithmetic and logarithmic mean temperature differences, heat transfer coefficient for parallel, counter and cross flow type heat exchanger; effectiveness of heat exchanger, N.T.U. method, fouling factor. Constructional and manufacturing aspects of Heat Exchangers.	8
6	Thermal Radiation: Plank distribution law, Krichoff's law; radiation properties, diffuse radiations; Lambert's law. Radiation intensity, heat exchange between two black bodies heat exchanger between gray bodies. Shape factor; electrical analogy; reradiating surfaces heat transfer in presence of reradiating surfaces.	8
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-03: MANUFACTURING TECHNOLOGY

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

	Ellu Term Exam. 5 Hours	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Classification of metal removal process and machines: Geometry of single point cutting tool and tool angles, tool nomenclature in ASA, ORS. Concept of orthogonal and oblique cutting.	5
	Type of chips, Mechanics of metal cutting; interrelationships between cutting force, shear angle, strain and strain rate. Thermal aspects of machining and measurement of chip tool interface temperature.	5
3	Concept of machinability, machinability index, factors affecting machinability, Different mechanism of tool wear. Types of tool wear (crater, flank etc), Concept of tool life.	5
	Taylor's tool life equation. Introduction to economics of machining. Cutting fluids: Types, properties, selection and application methods.	5
4	Basic machine tools: Constructional configuration, estimation of machining time on lathe, drilling, shaping, milling, grinding, Gear cutting on milling, Gear hobbling.	5
	Special Purpose Machine Tools: Automatic lathes, capstan and turret lathe machines, operational planning and turret tool layout, sequence of operations.	5
5	Introduction to Grinding and different methods of grinding, Abrasives; natural and synthetic, manufacturing and selection of grinding wheels, Wheel specifications. Honing, lapping, super- finishing.	5
6	High Velocity Forming Methods: Definition; Hydraulic forming, Explosive forming, Electro-hydraulic forming, Magnetic pulse forming.	5
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-04: DESIGN OF MACHINE ELEMENTS – I

Credit: 3
3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Materials: Mechanical Properties and IS coding of various materials, Selection of material from properties and economic aspects.	3
	Manufacturing Considerations in Design: Standardization, Interchangeability, limits, fits tolerances and surface roughness, BIS codes, Design consideration for cast, forged and machined parts. Design for assembly.	4
3	Design for Strength: Modes of failure, Strength and Stiffness considerations, Allowable stresses, factor of safety, Stress concentration: causes and mitigation, fatigue failures.	4
	Design of Members subjected to direct stress: pin, cotter and keyed joints.	5
4	Design of Members in Bending: Beams, levers and laminated springs. Design for stiffness of beam: Use of maximum deflection formula for various endconditions for beam design.	7
5	Design of Members in Torsion Shaft and Keys: Design for strength, rigidity. Solid and hollow shafts. Shafts under combined loading. Sunk keys.	5
	Couplings: Design of muff coupling, flanged couplings: rigid and flexible.	3
6	Design of Threaded fasteners: Bolt of uniform strength, Preloading of bolts: Effect of initial tension and applied loads, Eccentric loading.	4
	Power screws like lead screw, screw jack.	2
	Design of members which are curved like crane hook, body of C- clamp, machine frame etc.	3
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-05: PRINCIPLES OF MANAGEMENT

	Credit: 2 Max. Marks: 100(IA:20, ETE:80) 2L+0T+0P End Term Exam: 2 Hours	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic concepts of management: Definition – Need and Scope – Different schools of management thought – Behavioural, Scientific, Systems, and Contingency	2
	Contribution of Management Thinkers: Kautilya, Taylor, Fayol, Peter Drucker and C.K. Prahlad.	4
3	Functions of Management: Planning: Essentials of Planning and Managing by Objectives; Strategies, Policies and Planning Premises; Decision making.	2
	Organizing The Nature of organizing, Entrepreneuring, and Reengineering; Organizational Structure, Departmentation; Line/staff authority, empowerment, and decentralization; Effective organizing and organization culture;	3
4	Staffing Human resource Management and Selection; Performance Appraisal and Career Strategy; managing change through Manager and Organization Development.	2
5	Leading Human Factors and Motivation; Leadership: Committees, Terms, and Group Decision making; Communication.	3
	Controlling The system and process of controlling; Control Techniques and Information Technology; Productivity, Operations Management and Total Quality Management.	2
6	Management practices of: Dhirubhai Ambani, Narayan Murthy, Premji, Ratan Tata, Steve Jobs, Bill Gates.	4
	Studying organizational structures of any 10 companies and classifying them into different types of organizations which are studied above and justifying why such structures are chosen by those organizations.	2
	Preparing the leadership profiles of any 5 business leaders and studying their leadership qualities.	3
	TOTAL	28

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME5-11: STEAM ENGINEERING

Credit: 3Max. Marks: 150(IA:30, ETE:120)3L+0T+0PEnd Term Exam: 3 HoursSNContents

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Steam generators: Classification of Boilers, water and fire tube boilers, High pressure boilers, Advantages of high pressure Boilers, Natural and forced circulation boilers, Water wall.	4
	Steam drum internal, steam super heaters, Economizers, air preheater, induced, forced and balanced draught boilers, Fluidized bed boilers.	4
3	Definition and type of nozzle and diffuser equation of continuity, sonic velocity, mach no. and stagnation properties, the steady flow energy equation for nozzles, momentum energy equation for flow through steam nozzles nozzle efficiency, effect of friction, nozzle for uniform pressure drop, throat pressure for maximum discharge or chock flow, critical pressure ratio, design of nozzle and diffuser.	8
4	Steam Turbines: Principle and working of steam turbines, type of turbines, compounding for pressure and velocity. Overview and difference of various type of turbine, different types of governing of turbines.	3
	Impulse turbine: The effect of blade friction on velocity diagram. Force, work and power, Blade or diagram efficiency, Gross stage efficiency, steam speed to blade, speed ratio for optimum performance, turbine performance at various loads.	5
5	Impulse reaction turbine: Velocity diagram and work done, degree of reaction, Parson turbine, blade efficiency, gross stage efficiency comparison of enthalpy drop in various stages, size of blades in impulse reaction turbines for various stages of impulse reaction and impulse turbine.	5
	Regenerative Feed Heating Cycles: Introduction, Ideal regenerative feed heating cycle, Regenerative heating cycles and their representation on T-s and h-s Diagram, Representation of actual process on T-s and h-s Diagram Regenerative cycles, types of feed heating arrangements, Optimum feed water temperature and saving in Heat Rate. direct contact and surface heaters.	4
6	Reheating of steam: Practical reheating and Non- reheating cycles, advantage and disadvantages of reheating, reheat regenerative cycle, regenerative water extraction cycles.	
	Process heat and by product power cycle, pass out turbine, Binary vapour cycle. Condensers.	3
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-12: AUTOMOBILE ENGINEERING

Credit: 3 3L+0T+0P

Max. Marks: 150(IA:30, ETE:120) End Term Exam: 3 Hours

	DI+OP End Term Exam:	1
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Frame & Body: Layout of chassis, types of chassis frames and bodies, their constructional features and materials.	3
	Clutches: single plate, multi-plate, cone clutch, semi	
	centrifugal, electromagnetic, vacuum and hydraulic clutches. Fluid	
	coupling.	5
	Brakes: Classification and function; Mechanical, hydraulic, vacuum	_
	air and selfengineering brakes; Brake shoes and lining materials.	
3	Gear Boxes: Sliding mesh, constant mesh, synchromesh and	
	epicyclic gear boxes, Automatic transmission system; Hydraulic torque	4
	converter;	
	Drives: Overdrive, Propeller shaft, Universal joints, Differential; Rear axle drives. Hotchkiss and torque tube drives; Rear axle types;	4
	Front wheel and All wheel drive.	
4	Wheels and Tyres: Tyre types, Tyre construction; Tyre	2
	inflation pressure, Tyre wear and their causes; Re-treading of the tyre,	4
	Steering system: steering gear boxes, Steering linkages,	
	Steering mechanism, Under and Over steering. Steering	3
	Geometry, Effect of camber, caster, king pin inclination, toe in and toe out; Power steering; Integral and linkage types.	
	Suspension system: objective and requirements, Suspension	
	spring, front and rear suspension systems, Independent	3
	suspension system Shock absorbers.	
5	Automotive Electrical System: Battery construction, Charging	
	and testing, battery types, Starting and Battery Charging System:	4
	Starter motor construction, types of drive, Alternator construction,	
	regulation and rectification. Ignition System: Magneto and coil ignition systems, System	
	components and requirements, Automotive lighting: Wiring	_
	systems Electrical instruments; head lamp, electric horn, fuel level	4
	indicator.	
6	Automotive Air Conditioning: Introduction, Loads, Air	4
	conditioning system Components, Refrigerants, Fault Diagnosis.	Т
	Automotive Safety: Safety requirements, Safety Devices, Air bags,	
	belts, radio ranging, NVS (Night Vision System) GPS (Global Positioning System)	4
	TOTAL	41
		ſ .

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME5-13: NON DESTRUCTIVE EVALUATION AND TESTING

Credit: 3 Max. Marks: 150(IA:30, ETE:12 3L+0T+0P End Term Exam: 3 Hor		
SN	Contents	Hours
1 Introduction: Objective, sc	ope and outcome of the course.	1
2 ACOUSTICAL METHODS ultrasonic waves, Horizont field acoustic wave descrip direct contact type, Angle delay line transducers, acou	: Ultrasonic testing- Generation of cal and shear waves, Near field and far ption, Ultrasonic probes- Straight beam, beam, Transmission/reflection type, and astic coupling and media.	5
B-scan, C-scan, F- scan ar inspection: AVG, Amplitude Multi-modal transducer, ze	smission and pulse echo methods, A-scan, nd P-scan modes, Flaw sizing in ultrasonic e, Transmission, TOFD, Satellite pulse, onal method using focused beam. Flow processing in Ultrasonic NDT; Mimics, Ultrasonic flaw evaluation.	5
3 ELECTRO-MAGNETIC ME	THODS - magnetic particle inspection- impedance, principles of eddy current	6
4 RADIOGRAPHIC METHOD radiographic process, X-ra principles, Factors govern	S : Introduction to x-ray radiography, the ay and Gamma ray sources, Geometric ning exposure, radio graphic screens, etic of exposure, radiographic image quality	6
X-RAY RADIOGRAPHY P techniques, process contro techniques, paper radiograp	ROCESES: Fundamentals of processing ol, the processing room, special processing oby, sensitometric characteristics of X-ray nal to noise ratio in radiographs. The	6
5 OPTICAL METHODS: holo	graphy- Principles and practices of Optical microwave, x-ray and electron beam	6
6 APPLICATIONS: NDT in flat	w analysis of Pressure vessels, piping nstructions, etc., Case studies.	6
	TOTAL	41

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME3-21: MECHATRONICS LAB.

Credit: 1Max. Marks: 50(IA:30, ETE:2OL+0T+2PEnd Term Exam: 2 Hou	
SN	NAME OF EXPERIMENT
1	Using Transducers Kit :-
	Characteristics of LVDT
	Principle & Characteristics of Strain Gauge
	Characteristics of Summing Amplifier
	Characteristics of Reflective Opto Transducer
2	Mobile Robot
	Program for Operating Buzzer Beep
	Program for Operating Motion control
	Program for Operating Direction control
	Program for Operating White line follower for the given arena
3	PLC PROGRAMMING
	Ladder programming on Logic gates ,Timers & counters
	Ladder Programming for digital & Analogy sensors
	 Ladder programming for Traffic Light control, Water level control and Lift control Modules
4	
4	MATLAB Programming
	 Sample programmes on Mat lab Simulation and analysis of PID controller using SIMULINK
	Important Note:
	It is mandatory for every student to undertake a Mini project. Mini
	project shall be a group activity. A group shall consist of maximum five
	students. Final evaluation of sessional component shall include 30%
	weight age to mini project.
	• Mini project can be integration of sensor, actuator and
	transduction units for various home and office applications.

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-22: HEAT TRANSFER LAB.

Credit: 1Max. Marks: 50(IA:30, ETE:20)0L+0T+2PEnd Term Exam: 2 Hours		
SN	NAME OF EXPERIMENT	
1	To Determine Thermal Conductivity of Insulating Powders.	
2	To Determine Thermal Conductivity of a Good Conductor of Heat (Metal Rod).	
3	To determine the transfer Rate and Temperature Distribution for a Pin Fin.	
4	To Measure the Emissivity of the Test plate Surface.	
5	To Determine Stefan Boltzmann Constant of Radiation Heat Transfer.	
6	To Determine the Surface Heat Transfer Coefficient For Heated Vertical Cylinder in Natural Convection.	
7	Determination of Heat Transfer Coefficient in Drop Wise and Film Wise condensation.	
8	To Determine Critical Heat Flux in Saturated Pool Boiling.	
9	To Study and Compare LMTD and Effectiveness in Parallel and Counter Flow	
-	Heat Exchangers.	
10	To Find the Heat transfer Coefficient in Forced Convection in a tube.	
11	To study the rates of heat transfer for different materials and geometries	
12	To understand the importance and validity of engineering assumptions through	
	the lumped heat capacity method.	
	Important Note:	
	It is mandatory for every student to undertake a Mini project. Mini	
	project shall be a group activity. A group shall consist of maximum five	
	students. Final evaluation sessional component shall include 30%	
	weight age to mini project.	
	• Heat exchanger design for different applications, designing for thermal insulation, Use of relevant BIS codes for designing.	

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-23: PRODUCTION ENGINEERING LAB.

Credit: 1 Max. Marks: 50(IA:30, ETE:20) **0L+0T+2P** End Term Exam: 2 Hours NAME OF EXPERIMENT SN Study of various measuring tools like dial gauge, micrometer, vernier caliper 1 and telescopic gauges. Measurement of angle and width of a V-groove by using bevel protector.. 2 (a) To measure a gap by using slip gauges (b) To compare & access the method of small-bore measurement with the aid З of spheres. Measurement of angle by using sine bar. 4 (a) Measurement of gear tooth thickness by using gear tooth vernier caliper. 5 (b) To check accuracy of gear profile with the help of profile projector. To determine the effective diameter of external thread by using three- wire 6 method. 7 To measure flatness and surface defects in the given test piece with the help of monochromatic check light and optical flat. 8 To check the accuracy of a ground, machined and lapped surface - (a) Flat surface (b) Cylindrical surface. 9 Find out Chip reduction co-efficient (reciprocal of chip thickness ratio) during single point turning. **10** Forces measurements during orthogonal turning. **11** Torque and Thrust measurement during drilling. **12** Forces measurement during plain milling operation. Measurement of Chip tool Interface temperature during turning using 13 thermocouple technique. Important Note: It is mandatory for every student to undertake a Mini project. Mini project shall be a group activity. A group shall consist of maximum five students. Final evaluation shall include 30% weight age to mini project. • Fabrication of an assembly in which parts shall be machined and standard parts shall be procured.

Syllabus

3rd Year - V Semester: B.Tech. : Mechanical Engineering

5ME4-24: MACHINE DESIGN PRACTICE - I

Credit: 1 Max. Marks: 50(IA:30, E 0L+0T+2P End Term Exam: 2		
SN	SN Sessional Work	
1	Material selection and relevant BIS nomenclature	
2	Selecting fit and assigning tolerances	
3	3 Examples of Production considerations	
4	4 Problems on:	
	(a) Knuckle & Cotter joints	
	(b) Torque: Keyed joints and shaft couplings	
	(c) Design of screw fastening	
	(d) Bending: Beams, Levers etc.	
	(e) Combined stresses: Shafts, brackets, eccentric loading.	
	Important Note:	
	It is mandatory for every student to undertake a Mini project. Mini	
project shall be a group activity. A group shall consist of maximum five		
	students. Final evaluation shall include 30% weight age to mini project.	
	• Design and analysis of simple mechanical systems/products	

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME3-01: MEASUREMENT and METROLOGY

Credit: 2	
2L+0T+0P	

Max. Marks: 100IA:20, ETE:80 End Term Exam: 2 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Concept of measurement: General concept of measurement, Need for measurement, Generalized measuring system, Units, Standards, Sensitivity, Readability, Range of accuracy, Precision, Accuracy Vs precision, Uncertainty.	3
	Repeatability and reproducibility, Errors in measurement, Types of error, Systematic and random error, Calibration, Interchangeability.	3
3	Linear and angular measurements: Linear measuring instruments: Vernier caliper, Micrometer, Interval measurements:- Slip gauges, Checking of slip gauges for surface quality, Optical flat, Application of limit gauges	3
	Comparators:- Mechanical comparators, Electrical comparator, Optical comparator, Pneumatic comparator;	2
	Sine bar, Use of sine bar, Limitations of sine bars, Sources of error in sine bars, Bevel protractor, Applications of bevel protractor.	3
4	Form measurement: Introduction, Screw thread measurement, Thread gauges, Measurement of gears: Gear errors.	2
	Surface finish measurement:-Introduction, Elements of surface texture, Analysis of surface finish, Methods of measuring surface finish, Straightness measurement, Flatness testing, Roundness measurements	3
5	Coordinate measuring machine CMM: -Types of CMM, Features of CMM, Computer based inspection,	2
	Measurement of power, flow and temperature related properties Measurement of force, Accelerometer, Load cells, Bourdon tube. Torque measurement: Torque measurement using strain gauges, Torque measurement using torsion bars, Mechanical dynamometers.	3
6	Measurement of flow: Variable area meters – rotameter, Hot wire anemometer, Pitot tube. Temperature measurement, Bimetallic strip, Thermocouples Thermo electric effects, Thermistors, Pyrometers	3
	TOTAL	28

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-02: COMPUTER INTEGRATED MANUFACTURING SYSTEMS CIMS

Credit: 3	Max. Marks: 150IA:30, ETE:120)
3L+0T+0P	End Term Exam: 3 Hours

<u> </u>		
<u>3L+0</u>	T+OP End Term Exam:	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to CIM: Overview of Production Systems, the product cycle, Automation in Production Systems, computer's role in manufacturing, sources and types of data used in manufacturing. The Beginning of CAM: Historical Background,	2
	Numerical Control NC): Basic components of an NC system, coordinate system and motions control systems. Computer Numerical Control CNC): features of CNC, machine control unit, CNC software. Direct Numerical Control and Distributed Numerical Control. Applications, advantages and disadvantages of NC. Adaptive control of machining system.	3
3	NC Part programming: Manual and computer assisted part programming, Part programming with APT. NC part programming using CAD/CAM software. NC cutter path verification.	8
4	Computer Aided Process Planning: Traditional Process Planning, Retrieval process planning system, Generative Process Planning, Machinability data systems, computer generated time standards.	4
	Group Technology: Introduction, part families, part classification and coding, coding system and machining cells.	4
5	Computer Aided Production Management Systems: Introduction to computer aided PPC, Introduction to computer aided inventory management, manufacturing resource planning MRPII, computer process monitoring and shop floor control, computer process control.	6
	Computer Aided Quality Control; Computer in quality control, contact inspection methods, Non contact inspection methods, optical and non optical computer aided testing.	3
6	Computer Aided Material Handling; Computer control on material	2

6 handling, conveying, picking. Ware house control, computerized 3 material handling for automated inspection and assembly. Computer Integrated Manufacturing Systems: Introduction, types special manufacturing systems, flexible manufacturing systems 5 FMS. Collaborative Engineering; Introduction, Faster Design throughput, Web based design, Changing design approaches, extended 3 enterprises, concurrent engineering, Agile and lean manufacturing. TOTAL 41

Credit: 3

3L+OT+OP

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-03: MECHANICAL VIBRATIONS

Max. Marks: 150IA:30, ETE:120) End Term Exam: 3 Hours

	OT+OP End Term Exam: 3	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Sound: Frequency dependent human response to sound, Sound pressure dependent human response, Relationship among sound power, sound intensity and sound pressure level.	2
	Introduction to Noise: Auditory and Non auditory effects of Noise, Major sources of the noise, Industrial noise sources, Industrial noise control strategies.	3
	Introduction to Vibration: Importance and scope of vibrations, terminology and classification, Concept of Degrees of freedom, Harmonic motion, vectorial representation, complex number representation, addition.	3
3	Undamped Single Degree of Freedom System: Derivation of equation of motion for one dimensional longitudinal, transverse and torsional vibrations without damping using Newton's second law, D' Alembert's principle and Principle of conservation of energy, Compound pendulum and centre of percussion.	3
	Damped vibrations of single degree of freedom systems: Viscous damping, under-damped, critically damped and over-damped systems, Logarithmic decrement.	3
	Vibration characteristics of Coulomb damped system and Vibration characteristics of Hysteretic damped systems.	2
3	Forced Vibrations of Single Degree of Freedom Systems: Forced vibration with constant harmonic excitation, Steady state and transient parts, Frequency response curves and phase angle plot, Forced vibration due to excitation of support.	4
	Vibration Isolation and Transmissibility: Force transmissibility, Motion transmissibility, Forced vibration with rotating and reciprocating unbalance, Materials used in vibration isolation.	4
5	System with Two Degrees of Freedom: principle mode of vibration, Mode shapes, Undamped forced vibrations of two degrees of freedom system with harmonic excitation, Vibration Absorber, Undamped dynamic vibration absorber and centrifugal pendulum absorber	5
	Critical Speed of Shaft: Critical speed of a light shaft without damping, critical speed of shaft having multiple discs, secondary critical speed.	3
6	Many Degrees of Freedom Systems Exact analysis: Equation of Motion, The matrix method, Eigen Values and Eigen Vectors, Method of influence Coefficients and Maxwell's reciprocal theorem. Torsional vibrations of multi rotor system, vibrations of geared system, Generalized coordinates and coordinate coupling Many Degrees of Freedom Systems approximate methods: Rayleigh's, Dunkerley's, Stodola's and Holzer's methods	5
	Vibrations of continuous systems: Transverse vibration of a string, Longitudinal vibration of a bar, Torsional vibration of a shaft.	3
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-04: DESIGN OF MACHINE ELEMENTS- II

Cred		•
3L+0	T+OP End Term Exam: 3	<u>3 Hours</u>
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Fatigue Considerations in Design: Variable load, loading pattern, endurance stresses, Influence of size, surface finish, notch sensitivity and stress concentration.	3
	Goodman line, Soderberg line, Design of machine members subjected to combined, steady and alternating stresses.	3
	Design for finite life, Design of Shafts under Variable Stresses, Bolts subjected to variable stresses.	2
3	Design of IC Engine components:	8

	subjected to combined, steady and alternating stresses.	3
	Design for finite life, Design of Shafts under Variable Stresses, Bolts subjected to variable stresses.	2
3	Design of IC Engine components: Piston, Cylinder, Connecting Rod and Crank Shaft.	8
4	Design of helical compression, tension, torsional springs, springs under variable stresses.	4
	Design of belt, rope and pulley drive system,	4
5	Design of gear teeth: Lewis and Buckingham equations, wear and dynamic load considerations.	4
	Design and force analysis of spur, helical, bevel and worm gears, Bearing reactions due to gear tooth forces.	4
6	Design of Sliding and Journal Bearing: Methods of lubrication, hydrodynamic, hydrostatic, boundary etc. Minimum film thickness and thermal equilibrium.	4
	Selection of anti-friction bearings for different loads and load cycles, Mounting of the bearings, Method of lubrication.	4
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-05: QUALITY MANAGEMENT

Credit: 3 Max. Marks: 150IA:30, E7	ГЕ:120)
3L+0T+0P End Term Exam:	•

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	The meaning of Quality and quality improvement dimensions of quality, history of quality methodology, quality control, Quality of design and quality of conformance, Quality policy and objectives, Economics of quality.	
	Modeling process quality: Describing variation, frequency distribution, continuous and discrete, probability distributions, pattern of variation, Inferences about process quality: sampling distributions and estimation of process parameters. Analysis of variance.	4
3	Statistical Quality Control: Concept of SQC, Chance and assignable causes of variation, statistical basis of control chart, basic principles, choice of control limits, sample size and sampling frequency, analysis of patterns on control charts. The magnificent seven.	4
	Control chart for variables,: X-bar and R charts, X-bar and S charts, control chart for individual measurement. Application of variable control charts.	4
4	Control chart for attributes: control chart for fraction non conforming P- chart, np-chart, c-chart and u-chart. Demerit systems, choice between attribute and variable control chart. SPC for short production runs. Process capability analysis using histogram and probability plot, capability ratios and concept of six sigma.	7
5	Quality Assurance: Concept, advantages, field complaints, quality rating, quality audit.	2
	Acceptance Sampling: Fundamental concepts in acceptance sampling, operating characteristics curve. Acceptance sampling plans, single, double and multiple sampling plans, LTPD, AOQL, AOQ.	4
	Introduction to Quality systems like ISO 9000 and ISO 14000.	2
6	Reliability and Life Testing- Failure models of components, definition of reliability, MTBF, Failure rate, common failure rate curve, types of failure, reliability evaluation in simple cases of exponential failures in series, paralleled and series-parallel device configurations, Redundancy and improvement factors evaluations. Introduction to Availability and Maintainability	4
	Introduction to Taguchi Method of Design of Experiments, Quality loss function.	4
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME5-11: REFRIGERATION AND AIR CONDITIONING

SN	T+OP End Term Exam: 3 Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction: Refrigeration and second law of Thermodynamics,	-
4	Refrigeration effect and unit of Refrigeration, Heat pump, reversed	
	Carnot cycle.	_
	Vapour Compression Refrigeration System: Analysis of simple	5
	vapour compression Refrigeration cycle by p-h and T-S diagram.	
	Effect of operating conditions	
	Multiple Evaporator and compressor system: Application, air	
	compressor system, Individual compressor, compound	
	compression, cascade system. Application, air compressor	3
	systems, individual compressor, compound compression, cascade	
	system.	
3	Gas Cycle Refrigeration: Limitation of Carnot cycle with gas,	
	reversed Brayton cycle, Brayton cycle with regenerative heat	4
	exchanger.	
	Air cycle for air craft: Necessity of cooling of air craft, Basic cycle, boot strap, regenerative type air craft refrigeration cycle.	4
4	Other refrigeration systems description only: Vapour	
т	absorption refrigeration systems description only. Vapour	
	Bromide - Water system, Water vapour refrigeration system,	4
	Vortex tube refrigeration system, thermo electric refrigeration	_
	system.	
	Refrigerants: Classification, Nomenclature, selection of	
	Refrigerants, global warming potential of CFC Refrigerants.	4
	Refrigeration Equipments: Compressor, condenser, evaporator,	т
	expansion devices, types & working.	
5	Psychrometry: Psychrometric properties, psychometric relations,	_
	pyschrormetric charts, psychrometric processes, cooling coils, By-	5
	pass factor, Apparatus Dew point temperature and air washers. Human Comfort: Mechanism of body heat losses, factors	
	affecting human comfort, effective temperature, comfort chart.	3
6	Cooling load calculations: Internal heat gain, system heat gain,	
U U	RSHF, ERSHF, GSHF, cooling load estimation, heating load	5
	estimation, psychrometric calculation for cooling.	-
	Selection of air conditioning: Apparatus for cooling and	
	dehumidification, Air conditioning system, year round air	3
	conditioning.	
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME5-12: NON CONVENTIONAL MACHINING METHODS

Credit: 3 3L+0T+0P

Max. Marks: 150IA:30, ETE:120) End Term Exam: 3 Hours

01.0		5 mours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction and classification of advanced machining process, consideration in process selection, difference between traditional and non-traditional process, Hybrid process.	4
	Abrasive finishing processes: AFM, MAF for Plain and cylindrical surfaces).	4
3	Mechanical advanced machining process: Introduction, Mechanics of metal removal, process principle, Advantages, disadvantages and applications of AJM, USM, WJC.	6
4	Thermo electric advanced machining process: Introduction, Principle, process parameters, advantages, disadvantages and applications about EDM, EDG,	4
	LBM, PAM, EBM	6
5	Electrochemical and chemical advanced machining process: ECM, ECG, ESD, Chemical machining,	6
	Anode shape prediction and tool design for ECM process. Tool cathode design for ECM Process.	4
6	Introduction to Micro and nanomachining,	5
	TOTAL	40

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME5-13: MICRO ELECTRO AND MECHANICAL SYSTEMS MEMS and MICROSYSTEMS

SN	Contents	Hour
1	Introduction: Objective, scope and outcome of the course.	1
2	Over view of MEMS and Microsystems: Microelectromechanical Systems MEMS and Microsystems, Typical MEMS and Microsystem products, Evaluation of Microfabrication, Microsystem and microelectronics, the multidisciplinary nature of microsystem design and manufacture, Microsystems and miniaturization, Application of Microsystems in the	2
	automotive industry, applications of Microsystems in other industries. Working Principles of Microsystems: Introduction, Microsensors, Microactuation, MEMS with Microactuators, Microaccelerometers, Microfluidics.	3
3	Engineering Science for Microsystem Design and Fabrication: Introduction, atomic structure of matter, ions and ionization, moleculat theory of matter and intermolecular forces, doping of semiconductors, the diffusion process, plasma physics, electrochemistry, quantum physics.	4
	Engineering Mechanics for Microsystem design: Introduction, static bending of thin plates, mechanical vibration, thermomechanics, fracture mechanics, thin-film mechanics, overview of finite element stress analysis.	4
4	Thermofluid Engineering and Microsystem design: Introduction, overview of the basics of fluid mechanics in Macro and mesoscales, Basic equations in continuum fluid dyanimics, laminar fluid flow in circular conduits, computational fluid dynamics, Incompressible fluid flow in microconduits, fluid flow in submicrometer and nanoscale, overview of heat conduction in solids, heat conduction in multilayered thin films, heat conduction in solids in submicrometer scale.	5
	Scaling laws in Miniaurization: Introduction to scaling, scaling in geometry, scaling in rigid-body dynamics, scaling in electrostatic forces, scaling in electromagnetic forces, scaling in electricity, scaling in fluid mechanics, scaling in heat transfer.	5
5	Materials for MEMS and Microsystems: Introduction, substrate and wafers, active substrate materials, silicon as a substrate material, silicon compounds, silicon piezoresistors, gallium arsenide, quartz, piezoelectric crystals, polymers, packaging materials.	5
	Microsystem Fabrication Processes: Introduction, Photolithography, Ion implantation, diffusion, oxidation, chemical vapor deposition, physical vapor deposition- sputtering, deposition by epitaxy, etching.	6
6	Overview of Micromanufacturing: Introduction, bulk micromanufacturing, surface micromachining, LIGA. Microsystem Design: Introduction, design consideration, process design,	3
	mechanical design, mechanical design using finite element method, design of a silicon die for a micropressure sensor, design of microfluidic network systems, design case: capillary electrophoresis network system.	3
	TOTAL	41

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-21: CIMS LAB.

	dit: 1.5 Max. Marks: 75IA:45, ETE:30					
r	0T+3P End Term Exam: 3 Hours					
SN	NAME OF EXPERIMENT					
1	To prepare part programming for plain turning operation.					
2	To prepare part program for turning operations using turning cycle.					
3	To prepare part program for threading operation.					
4	To prepare part program for gear cutting using mill cycle.					
5	To prepare part program for multiple drilling in X and Z axis using drilling cycle.					
	Important Note:					
	It is mandatory for every student to undertake a Mini project. Mini					
	project shall be a group activity. A group shall consist of maximum five					
	students. Final evaluation shall include 30% weight age to mini project.					
	• Engraving of students' name, manufacturing of a part.					

Syllabus 3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-22: VIBRATION LAB.

~	NAME OF EXPERIMENT
SN	NAME OF EXPERIMENT
1	To verify relation $T = 2\pi \frac{1}{g}$ for a simple pendulum.
2	To determine radius of gyration of compound pendulum.
3	To determine the radius of gyration of given bar by using bifilar suspension.
4	To determine natural frequency of a spring mass system.
5	Equivalent spring mass system.
6	To determine natural frequency of free torsional vibrations of single rotor system. i. Horizontal rotor ii. Vertical rotor
7	To verify the Dunkerley's rule.
8	Performing the experiment to find out damping co-efficient in case of free damped torsional vibration
9	To conduct experiment of trifler suspension.
10	Harmonic excitation of cantilever beam using electro-dynamic shaker and determination of resonant frequencies.
11	Study of Vibration measuring instruments.
12	Perform study of the following using Virtual Lab http://www.vlab.co.in/
13	Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End: To calculate the natural freq and damping ratio for forced vibration of a single DOF cantilever beam system, experimentally; and compare the results with theoretical values.
14	Harmonicaly Excited Forced Vibration of a Single DOF System: To analyze the forced vibration response of a single DOF system at diff damping ratio and frequency ratio.
15	Perform study of the following using Virtual Lab http://www.vlab.co.in/
16	Forced Vibration of a Cantilever Beam with a Lumped Mass at Free End: To calculate the natural freq and damping ratio for forced vibration of a single DOF cantilever beam system, experimentally; and compare the results with theoretical values.
17	Harmonicaly Excited Forced Vibration of a Single DOF System: To analyze the forced vibration response of a single DOF system at diff damping ratio and frequency ratio.
	 Important Note: It is mandatory for every student to undertake a Mini project. Mini project shall be a group activity. A group shall consist of maximum five students. Final evaluation shall include 30% weight age to mini project. Design of vibration system, measurement of vibration, FFT analysis using MATLAB

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-23: MACHINE DESIGN PRACTICE - II

	dit: 1.5 Max. Marks: 75IA:45, ETE:30					
OL+OT+3P End Term Exam: 3 Ho						
SN	SESSIONAL WORK					
	Problems on:					
	Use data hand book by Mahadevan and Reddy					
1	Fatigue loading.					
2	Helical compression, tension and torsional springs design.					
3	Curved Beams.					
4	Preloaded bolts and bolts subjected to variable stresses.					
5	Belt, Rope and Chain drive system.					
6	Gear Design.					
7	Sliding contact bearing design.					
8	Anti-friction bearing selection					
	Important Note:					
	It is mandatory for every student to undertake a Mini project. Mini					
	project shall be a group activity. A group shall consist of maximum five					
	students. Final evaluation shall include 30% weight age to mini project.					
	 Design of assembly mechanical systems using various BIS codes/data book 					

Syllabus

3rd Year - VI Semester: B.Tech. : Mechanical Engineering

6ME4-24: THERMAL ENGINEERING LAB-1

	dit: 1.5 Max. Marks: 75IA:45, ETE:30
	0T+3P End Term Exam: 3 Hours
SN	Name Of Experiment
1	Study of working of four stroke petrol engine and four stroke diesel engine with
-	the help of cut section models
2	Study of working of two stroke petrol and two stroke diesel engine with the help
4	of cut section models.
3	To draw valve timing diagram for a single cylinder diesel engine.
4	Study of various types of boilers.
5	Study of various types of mountings and accessories.
6	Demonstration of steering system and measurement of steering geometry angles
U	and their impact on vehicle performance.
7	Study of braking system with specific reference to types of braking system,
-	master cylinder, brake shoes.
8	Study of transmission system including clutches, gear box assembly and
	differential box
	Important Note:
	-
	• Study also includes Assembly and disassembly of above systems
	• It is mandatory for every student to present a term paper. Term
	paper shall be a group activity. A group shall consist of maximum
	two students. Final evaluation shall include 30% weight age to
	term paper. Term paper shall cover study or survey of new
	technologies in above systems.

SEMESTER-VII & VIII

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

Teaching & Examination Scheme B.Tech.: Mechanical Engineering 4th Year – VII Semester

			THEC	DRY							
	Course		Contact M			Mark	arks				
SN	Catego			hr	s/we	ek	- Madel I	Cr			
	ry	Code	Title	L	т	Р	Exm Hrs	IA	ETE	Total	
1		7ME5-11	I. C. Engines								
2	PEC	7ME5-12	Operations Research	3	0	0	3	30	70	100	3
3		7ME5-13	Turbomachines								
4	OE		Open Elective-I	3	0	0	3	30	70	100	3
			Sub Total	6	0	0		60	140	200	6
			PRACTICAL &	SES	SIO	NAL					
5		7ME4-21	FEA Lab	0	0	3	3	60	40	100	1.5
6	PCC	7ME4-22	Thermal Engineering Lab II	0	0	3	3	60	40	100	1.5
7		7ME4-23	Quality Control Lab	0	0	2	2	60	40	100	1
8	דעוסם	7ME7-30	Industrial Training *	1	0	0	1	60	40	100	2.5
9	PSIT	7ME7-40	Seminar *	2	0	0	2	60	40	100	2
10	SODE CA	7ME8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			100	100	0.5
			Sub- Total	3	0	8		300	300	600	9
		TOTAL	, OF VII SEMEESTER	9	0	8		360	440	800	15

*for the purpose of counting teaching load

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

Teaching & Examination Scheme B.Tech.: Mechanical Engineering 4th Year – VIII Semester

			THE	ORY							
SN	Categ	ateg Course		Contact hrs/week			Marks				Cr
	ory	Code	Title	L	т	Р	Exm Hrs	IA	ET E	Total	
1		8ME5-11	Hybrid and Electric Vehicles								
2	PEC	8ME5-12	Supply and Operations Management	3	0	0	3	30	70	100	3
3		8ME5-13	Additive Manufacturing								
4	OE		Open Elective - II	3	0	0	3	30	70	100	3
			Sub Total	6	0	0		60	140	200	6
			PRACTICAL &		2810	NT A T					
				5 SEC	2210	INAL					
5	PCC	8ME4-21	Industrial Engineering Lab	0	0	2	2	60	40	100	1
6		8ME4-22	Metrology Lab	0	0	2	2	60	40	100	1
7	PSIT	8ME7-50	Project *#	3	0	0	3	60	40	100	7
8	SODE CA	8ME8-00	Social Outreach, Discipline & Extra Curricular Activities	0	0	0			100	100	0.5
			Sub- Total	3	0	4		180	220	400	9.5
		TOTAL	OF VIII SEMEESTER	9	0	4		240	360	600	15.5

*for the purpose of counting teaching load

#Evaluation by one internal and one external examiner (External examiner will preferably be from Industry)

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

<u> </u>	List of Open Electives	10		
Subject Title Code			Subject Code	Title
	Open Elective - I			Open Elective - II
7AG6-60.1	Human Engineering and Safety		8AG6-60.1	Energy Management
7AG6-60.2	Environmental Engineering and Disaster Management		8AG6-60.2	Waste and By-product Utilization
7AN6-60.1	Aircraft Avionic System		8AN6-60.1	Finite Element Methods
7AN6-60.2	Non-Destructive Testing		8AN6-60.2	Factor of Human Interactions
7CH6-60.1	Optimization Techniques		8CH6-60.1	Refinery Engineering Design
7CH6-60.2	Sustainable Engineering		8CH6-60.2	Fertilizer Technology
7CR6-60.1	Introduction to Ceramic Science & Technology		8CR6-60.1	Electrical and Electronic Ceramics
7CR6-60.2	Plant, Equipment and Furnace Design		8CR6-60.2	Biomaterials
7CE6-60.1	Environmental Impact Analysis		8CE6-60.1	Composite Materials
7CE6-60.2	Disaster Management		8CE6-60.2	Fire and Safety Engineering
7CS6-60.1	Quality Management/ISO 9000		8CS6-60.1	Big Data Analytics
7CS6-60.2	Cyber Security		8CS6-60.2	IPR, Copyright and Cyber Law of India
7EE6-60.1	Electrical Machines and Drives		8EE6-60.1	Energy Audit and Demand side Management
7EE6-60.2	Power Generation Sources.		8EE6-60.2	Soft Computing
7EC6-60.1	Principle of Electronic communication		8EC6-60.1	Industrial and Biomedical applications of RF Energy
7EC6-60.2	Micro and Smart System Technology		8EC6-60.2	Robotics and control
7MI6-60.1	Rock Engineering		8MI6-60.1	Experimental Stress Analysis
7MI6-60.2	Mineral Processing		8MI6-60.2	Maintenance Management
7PE6-60.1	Pipeline Engineering		8PE6-60.1	Unconventional Hydrocarbon Resources
7PE6-60.2	Water Pollution control Engineering		8PE6-60.2	Energy Management & Policy
7TT6-60.1	Technical Textiles		8TT6-60.1	Material and Human Resource Management
7TT6-60.2	Garment Manufacturing Technology		8TT6-60.2	Disaster Management

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

7ME5-11: I. C. Engines

Max. Marks: 100(IA:30, ETE:70)

Credit: 3 3L+0T+0P

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	History of IC engines: Nomenclature, Classification & Comparison, SI & CI, 4stroke- 2 stroke, First Law analysis, Energy Balance. Fuelair cycles, Actual cycles.	4
3	Testing & Performance: Performance parameters, Measurement of operating parameters e.g. speed, fuel & air consumption, Powers, IHP, BHP, FHP, Efficiencies Thermal, Mechanical, Volumetric, Emission Measurement, Indian & International standards of Testing, Emission.	4
4	Fuel & Combustion: Combustion in CI & SI engines, Ignition Limits, Stages of combustion, Combustion parameters. Delay period and Ignition Lag, Turbulence and Swirl, Effects of engine variables on combustion parameters, abnormal combustion in CI & SI engines, Detonation & knocking, Theories of detonation, Control of abnormal combustion, Combustion chamber design principles, Types of combustion chamber.	4
5	Alternative Fuels: Methanol, Ethanol, Comparison with gasoline, Manufacturing, Engine performance with pure Methanol, Ethanol & blends, Alcohols with diesel engine, Vegetable oils, Bio gas.	2
6	Engine Systems & Components: Fuel System (SI Engine), Carburetion & Injection, process & parameters, properties of A/F mixture, Requirements of A/F ratios as per different operating conditions, Carburettors, types, Aircraft carburettor, comparison of carburetion & injection, F/A ratio calculations.	4
7	CI engine: Mixture requirements & constraints, Method of injection, Injection systems, CRDI etc. system components, pumps injectors.	3
8	Ignition system: Conventional & Modern ignition systems Magneto v/s Battery, CB point v/s Electronic ignition, Fuel Ignition Energy requirements. Spark advance, centrifugal, vacuum Firing order, spark plugs.	3
9	Engine Friction & Lubrication: Determination of friction, Lubrication principles, Types of lubrication, Places of lubrication Bearings and piston rings etc., Functions of Lubrication, Properties, Rating and Classification of lubricating oil, Additives, Lubrication systems. Engine Cooling: Requirements of cooling, Areas of heat flow, High temperature regions of combustion chamber. Heat Balance, Cooling Systems, Air, Water Cooling, Cooling system components.	5

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

10	Supercharging: Objectives, Thermodynamic cycle & performance of super charged SI & CI engines, Methods of super charging, Limitations, Two stroke engines: Comparison of 4s & 2s engines construction & valve lining scavenging. Process parameters, systems, supercharging of 2 stroke engines.	5
11	Dual & Multi fuel engines: Principle, fuels, Combustion, performance Advantages, Modification in fuel system.	3
12	Special Engines: Working principles of Rotary, Stratified charge, Free piston, Variable compression ratio engines.	2
	Total	40

ТЕХ	KT BOOK
1	Mathur and Sharma, Internal Combustion Engines, Dhanpat Rai & Sons
REF	TERENCE BOOKS
SN	Name of Authors /Books /Publisher
1	Gupta H.N., Fundamentals of Internal Combustion Engines, Prentice Hall of
	India
2	F. EdwardObert, Internal Combustion Engines, Harper and Raw Publisher
3	John B. Heyword, Internal Combustion Engines Fundamentals, McGraw Hill
4	Lichty, Internal Combustion Engines, McGraw Hill.
5	Gill, Smith, Ziurs, Fundamentals of Internal Combustion Engines, Oxford &
	IBH Publishing
6	Rogowsky, IC Engines, International Book Co.
7	Ganeshan V., Internal Combustion Engines, Tata McGraw Hill.
8	R. Yadav, I.C. Engines, Central Publishing House, Allahabad

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

7ME5-12: OPERATIONS RESEARCH

	edit:3 Max. Marks: 100(IA:30, E	•
	OT+OP End Term Exam: 3	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Overview of Operations Research	1
3	Linear Programming : Applications and model formulation, Graphical method, Simplex method, duality and Sensitivity analysis.	4
4	Transportation Model and Assignment Model including travelling salesman problem.	4
5	Integer Linear Programming: Enumeration and cutting Plane solution concept, Gomory's all integer cutting plane method, Branch and Bound Algorithms, applications of zero-one integer programming.	5
6	Replacement Models: Capital equipment replacement with time, group replacement of items subjected to total failure.	3
7	Queuing Theory : Analysis of the following queues with Poisson pattern of arrival and exponentially distributed service times, Single channel queue with infinite customer population, Multichannel queue with infinite customer population,	3
8	Competitive Situations and Solutions : Game theory, two person zero sum game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy, approximate solution, and simplified analysis for other competitive situations. Application of linear programming	4
9	other competitive situations. Application of linear programming Theory of Decision making: Decision making under certainty, risk and uncertainty. Decision trees.	3
10	Deterministic Inventory control models: functional role of inventory, inventory costs, model building, Single item inventory control model without shortages, with shortage and quantity discount. Inventory control model with uncertain demand, service level, safety stock, P and Q systems, two bin system. Single period model. Selective Inventory control techniques.	4
11	Probabilistic Inventory control models: Instantaneous demand without setup cost and with setup cost, Continuous demand without setup cost	4
12	Simulation : Need of simulation, advantages and disadvantages of simulation method of simulation. Generation of Random numbers, Generation of Normal Random numbers. Use of random numbers for system simulation. , Monte Carlo simulation, simulation language ARENA, Application of simulation for solving queuing Inventory Maintenance, Scheduling and other industrial problems Total	4

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

TEX	T BOOK
1	Operations Research, Ravindran, Phillips and Solberg, Wiley India.
2	Operations Research, Gupta and Heera, S. Chand Publications.
REF	ERENCE BOOKS
SN	Name of Authors /Books /Publisher
1	Introduction to Operations Research, Hillier F.S. and Lieberman G.J., CBS
	Publishers.
2	Operations Research, Taha H.A., Pearson Education
3	Linear Programming and Network Flows, Bazaraa, Jarvis and Sherali, Wiley
	India.
4	Principles of Operations Research, Wagner H.M., Prentice Hall of India.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

7ME5-13: TURBOMACHINES

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70)

End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Basic Concepts of Turbo Machines: Definition & classification of Turbo machine, Basic laws and governing equations: continuity equation, steady flow energy equation(1st law of thermodynamics),2nd law of thermodynamics applied to turbo machines, Newton's 2nd law of motion applied to turbomachines - Euler's pump equation and Euler's turbine equation	4
3	Dimensional analysis applied to hydraulic machines, power coefficient, flow coefficient, head coefficient, non-dimensional specific speed, Range of specific speeds for various turbo machines, Dimensional analysis applied to compressible flow machines, pressure ratio as a Function of temperature ratio, mass flow rate parameter and speed parameter	3
4	Centrifugal Compressors and Fans: Components and description, velocity iagrams, slip factor, energy transfer, power input factor, stage pressure rise and loading coefficient, pressure coefficient, degree of reaction, Centrifugal compressor characteristic, surging, rotating Stall and Choking	8
5	Axial Flow Compressors and Fans: Basic constructional features, Advantages of axial flow compressors, working principle, velocity triangle, elementary theory, stage work, work done factor, stage loading, degree of reaction; vortex theory, simple design calculations, introduction to blade design, cascade test, compressibility effects, operating characteristics	8
6	Reciprocating Compressors: Basic constructional features, working principle, work done calculation, single and double acting compressors	4
7	Centrifugal Pumps: Main parts, work done and velocity triangles, slip and slip factor, pump losses and efficiencies, minimum starting speed, net positive suction head, performance curve.	4
8	Axial Flow Pumps: Description, velocity triangles, work done on the fluid, energy transfer, axial pump characteristics, cavitation.	4
9.	Reciprocating Pumps: Classification, component and working, single acting and double acting, discharge, work done and power required, coefficient of discharge, indicator diagram, slip, effect of friction and acceleration, theory of air vessels.	4
	Total	40

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

TE	TEXT BOOK	
1	Gas turbines, V. Ganesan, Tata McGraw-Hill	
2	Hydraulic Machines, Subramanya, K., Tata McGraw Hill	
RE	FERENCE BOOKS	
S N	Name of Authors /Books /Publisher	
1	Principle of Turbo Machinery, Turton R.K., Springer Publication	
2	Fundamentals of Turbo Machinery, William W., John Wiley and Sons.	
3	Turbo Machinery Basic Theory and Application, Logan E.J.	
4	Principles of Turbo Machinery, Shepherd Dennis G., Mac Millan Pub, N.York.	
5	TurboMachines, A ValanArasu, Vikas Publishing House Pvt. Ltd.	
7	Gas turbine theory, Cohen and Saravanamutto, Pearson Educational Pub.	
8	Hydraulic Machines: Turbines and Pumps, Nazarov N.T., Springer New York.	
9	Gas Turbine Theory, Cohen and Roger, Pearson Education.	
1 0	Hydraulic Machinery, Jagdish Lal, Metropolitan Books.	

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

7ME4-21: FEA LAB

Credit: 1.5

Max. Marks: 100(IA:60, ETE:40)

OL+OT+3P	
SN	List of Experiments
1	Laboratory work for the solution of solid mechanics problems, heattransfer problems, and free vibration problems
A: b	y using FE packages such as NASTRAN/ANSYS/SIMULIA/ABAQUS
2	Introduction of GUI of the software in the above mentioned areas' realistic problems.
3	Analysis of beams and frames (bending and torsion problems)
4	Plane stress and plane strain analysis problems
5	Problems leading to analysis of axisymmetric solids
6	Problems leading to analysis of three dimensional solids (a) Heat transfer problems (b) Modal analysis problem
B: b	y writing own code for finite element analysis using MATLAB for:
7	Plane stress and plane strain analysis problems
8	Modal Analysis problem

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

7ME4-22: Thermal Engineering Lab-II

Credit: 1.5 0L+0T+3P

Max. Marks: 100(IA:60, ETE:40)

SN	List of Experiments	
1	To perform constant speed load test on a single cylinder diesel engine and to	
	plot performance curves: indicated thermal efficiency, brake thermal efficiency, mechanical efficiency Vs. Brake power and heat balance sheet.	
2	To estimate the Indicated Power, Friction Power and Mechanical Efficiency of a	
	multi-cylinder Petrol Engine. (Morse Test)	
3	Analysis of engine exhaust gases using Orsat apparatus /Engine gas analyzer.	
4	Determination of coefficient of performance of Refrigeration cycle and tonnage	
	capacity of refrigeration unit.	
5	To determine the COP and tonnage capacity of a Mechanical heat pump.	
6	To study various controls used in Refrigeration and Air conditioning system.	
7	Study of commercial Refrigeration equipments like cooling towers, hermetically	
	sealed compressors, automotive swash plate compressor etc.	
8	To study automotive air conditioning system.	
9	Determination of dryness fraction of steam.	
10	Study and Performance of Simple Steam Turbine	
11	Performance characteristics of Hydraulic turbines.	
12	Study and Performance of Gas Turbine Plant.	
13	Performance characteristics of variable and rated speed centrifugal pump.	

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

7ME4-23: Quality Control Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

SN	List of Experiments
1	Case study on X bar chart and R chart of an industrial process output and process capability analysis of the process. The charts are to be drawn and calculations of process capability analysis to be reported.
2	 p Chart: (a) To verify the Binomial Distribution of the number of defective balls by treating the balls with a red colour to be defective. (b) To plot a p -chart by taking a sample of n=20 and establish control limits
3	Case study on C-chart of a product and establish control limits.
4	 Operating Characteristics Curve: (a) To plot the operating characteristics curve for single sampling attribute plan for n = 20; c = 1, 2, 3. Designate the red ball as defective. (b) To compare the actual O.C. curve with theoretical O.C. curve using approximation for the nature of distribution
5	 Distribution Verification: (a) To verify Normal Distribution using the experimental setup. (b) To find the distribution of numbered cardboard chips by random drawing one at a time with replacement. Make 25 subgroups in size 5 and 10 find the type of distribution of sample average in each case. Comment on your observations
6	To carry out verification of Poisson distribution using experimental set up.
7	 Central Limit Theorem: (a) To show that a sample means for a normal universe follow a normal distribution (b) To show that the sample means for a non normal universe also follow a normal Distribution.
8	Solve quality control problems using SPC software like STATGRAPHICS/MINITAB/SIGMA XL /SYSTAT/EXCEL etc.
	Important Note: It is mandatory for every student to undertake a Case Study. The case study shall be of real problem involving quality issues preferably from local industry whose quality issues shall be solved using seven magnificent tools of SQC and other techniques of quality control. Case study shall be a group activity. A group shall consist of maximum five students. Final evaluation shall include 30% weight age to case study.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

8ME5-11: Hybrid and Electric Vehicles

Credit: 3Max. Marks: 100(IA:30, ETE:70)3L+0T+0PEnd Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.	5
3	Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.	4
4	Hybrid Electric Drive-trains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.	6
5	Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electricdrive-train topologies, fuel efficiency analysis.	6
6	Electric Propulsion unit: Introduction to electric components used inhybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives	6
7	Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery based energy storage and its analysis, Fuel Cell based energy storage and its analysis, Hybridization of different energy storage devices.	6
8	Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology	6
	Total	40

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

ТЕХ	KT BOOK	
1	Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC	
-	Press	
REF	REFERENCE BOOKS	
SN	Name of Authors /Books /Publisher	
1	James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley	
2	Mehrdad Ehsani, YimiGao, Sebastian E. Gay, Ali Emadi, Modern Electric,	
	Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design,	
	CRC Press	

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

8ME5-12: SUPPLY AND OPERATIONS MANAGEMENT

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

	3L+0T+0P End Term Exam: 3 H	
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to operations management (OM), the scope of OM; Historical evolution of OM; Trends in business; the management process. Operations Strategy, Competitiveness and Productivity	4
3	Demand Forecasting: components of forecasting demand, Approaches to forecasting: forecasts based on judgment and opinion, Time series data. Associative forecasting techniques, Accuracy and control of forecasts, Selection of forecasting technique.	4
4	Product and Service design, Process selection, Process types, Product and process matrix, Process analysis.	5
5	Capacity Planning: Defining and measuring capacity, determinants of effective capacity, capacity strategy, steps in capacity planning process, determining capacity requirements, Capacity alternatives, Evaluation of alternatives; Cost-Volume analysis.	5
6	Facility Location: Need for location decisions, factors affecting location, qualitative and quantitative techniques of location. Facilities layout: Product, Process, Fixed position, combination and cellular layouts; line balancing. Material Handling	5
7	Planning levels: long range, Intermediate range and Short range planning, Aggregate planning: Objective, Strategies, and techniques of aggregate planning. Master scheduling; Bill of materials, MRP; inputs processing and outputs, and overview of MRPII, use of MRP to assist in planning capacity requirements, Introduction to ERP	4
8	Techniques of production control in job shop production, batch production and mass production systems. sequencing: priority rules, sequencing jobs through two work centers, scheduling services	4
9	Introduction to Just-in-time (JIT) and Lean Operations: JIT production, JIT scheduling, synchronous production, Lean operations system	4
10	Supply Chain Management (SCM): Need of SCM, Bullwhip effect, Elements of SCM, Logistics steps in creating effective supply chain, Purchasing and supplied management.	4
	Total	40

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

TEX	TEXT BOOK	
1	Stevenson, Operations Management, Tata McGraw Hill.	
REF	REFERENCE BOOKS	
SN	Name of Authors /Books /Publisher	
1	Roberta S. Russell, Bernard W. Taylor, Operations Management, John Wiley	
2	Joseph S. Martinich, Production And Operations Management, John Wiley	
3	S.N. Chary, Production and Operations Management, Tata McGraw Hill	
4	Norman Gaither, Greg Frazier, Operations Management, Thomson Learning	

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

8ME5-13: ADDITIVE MANUFACTURING

Credit: 3 3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1.	Introduction: Objective, scope and outcome of the course.	1
2.	Overview of Rapid Product Development (RPD): Need for the	2
	compression in product development, history of RP systems,	
	Definition of RPD; Components of RPD. Rapid Prototyping (RP);	
	Principle of RP; Technologies and their classifications.	
3.	Stereo Lithography Systems: Principle, Process parameter,	2
	Process details, Data preparation, data files and machine details,	
	Application	
4.	Selective Laser Sintering& Fusion Deposition Modelling:	4
	Selective Laser Sintering: Type of machine, Principle of operation,	
	process parameters, Data preparation for SLS, Applications.	
	Fusion Deposition Modelling: Principle, Process parameter, Path	
	generation, Applications.	
5.	Solid Ground Curing: Principle of operation, Machine details,	4
	Applications. Laminated Object Manufacturing: Principle of	
	operation, LOM materials. Process details, application.	
6.	Selection of RP process; Issues in RP; Emerging trends.	2
7.	Rapid Tooling (RT): Introduction to RT, Indirect RT process-	3
	Silicon rubber molding, Epoxy tooling, Spray metal tooling and	
	Investment Casting, Cast kirksite, 3Q keltool, etc.	
8.	Direct RT processes : Laminated Tooling, Powder Metallurgy	3
	based technologies, Welding based technologies, Direct pattern	
	making (Quick Cast, Full Mold Casting),	
9.	Emerging Trends in RT, Reverse Engineering: Geometric data	3
	acquistion, 3D reconstruction, Applications and Case Studies,	
	Engineering applications, Medical applications.	
10.		2
	format, Defects and repair of STL files,	•
11.		2
	magics etc. TOTAL	40

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

TE	KT BOOK
1.	Rapid Prototyping: Principles and Applications, Volume 1 by Chee Kai
	Chua, Kah Fai Leong, Chu Sing Lim, World Scientific.
RE	FERENCE BOOKS
1.	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and
	Direct Digital Manufacturing by Brent Stucker, David W. Rosen, and Ian
	Gibson, Springer
2.	Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital
	Manufacturing, Gibson, Ian, Rosen, David, Stucker, Brent, Pearson.
3.	Rapid Prototyping: Principles and Applications in Manufacturing
	Noorani R, John Wiley & Sons.
4.	Rapid Prototyping and Engineering applications: A tool box for prototype
	development, Liou W. L., Liou F. W., CRC Press.
5.	Rapid Prototyping: Theory and practice, Kamrani A. K., Nasr E.A.,
	Springer.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

8ME4-21: INDUSTRIAL ENGINEERING LAB

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

SN	List of Experiments
1	Determination of time standard for a given job using stopwatch time-study.
2	Preparation of flow process chart, operation process chart and man-machine charts for an existing setup and development of an improved process.
3	Study of existing layout of a workstation with respect to controls and displays and suggesting improved design from ergonomic viewpoint.
4	To perform ABC analysis for the given set of inventory data.
5	To develop Bill of Materials/Product structure tree and calculate planned order release (POR) using MRP format
6	To solve the operations research problems on Linear programming/Transportation/Assignment etc. using OR software's like TORA/LINGO/LINDO/SAS/EXCEL SOLVER etc.
7	Simulation of inventory system/Queuing system/production system using Monte-Carlo method.
8	To perform case study on sales forecasting.
9	To perform case study on project management using PERT/CPM.
10	To perform a case study on plant location and layout planning.
	To perform a case study on capacity planning.

It is mandatory for every student to undertake a Mini project. The mini project shall involve a detailed project report of establishing a factory in which plant location, plant layout, capacity planning, selection of processes, ergonomically designing of equipments and other facilities are to be installed. Mini project shall be a group activity. A group shall consist of maximum five students. Final evaluation shall include 30% weight age to mini project.

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. (Mechanical Engineering)

8ME4-22: METROLOGY LAB

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

SN	List of Experiments Study of various measuring tools like dial gauge, micrometer, vernier caliper and telescopic gauges.								
1									
2	Measurement of angle and width of a V-groove by using bevel protector.								
3	To measure a gap by using slip gauges								
4	Measurement of angle by using sine bar.								
5	Study and use of surface roughness instrument (Taylor Hobson make) Inspection of various elements of screw thread by Tool makers microscope and optical projector.								
6	Measurement of gear tooth thickness by using gear tooth vernier caliper.								
7	To check accuracy of gear profile with the help of profile projector.								
8	To determine the effective diameter of external thread by using three-wire method.								
9	To measure flatness and surface defects in the given test piece with the help of monochromatic check light and optical flat.								
10	To plot the composite errors of a given set of gears using composite gear tester.								
11	Measurement of coating thickness on electroplated part and paint coating on steel and non-ferrous material using coating thickness gauge.								
12	Study and use of hardness tester for rubber and plastics.								
13	To check the accuracy of a ground, machined and lapped surface - (a) Flat surface (b) Cylindrical surface.								
14	To compare & access the method of small-bore measurement with the aid of spheres.								

Syllabus and Scheme

B.Tech. in Computer Science (AI)

(2023-24)

SEMESTER-I & II

Teaching and Examination Scheme

I Semester: B. Tech Common to all branches of UG Engineering & Technology

SN	Categ	Course	Course Title	Hours			Marks			Cr
	ory	Code		L	Т	Ρ	IA	ETE	Total	
1	BSC	1FY2-01	Engineering Mathematics-I	3	1	-	30	70	100	4
2	BSC	1FY2-02/ 1FY2-03	Engineering Physics/ Engineering Chemistry	3	1	-	30	70	100	4
3	HSMC	1FY1-04/ 1FY1-05	Communication Skills/ Human Values	2	-	-	30	70	100	2
4	ESC	1FY3-06/ 1FY3-07	Programming for Problem Solving/ Basic Mechanical Engineering	2	-	-	30	70	100	2
5	ESC	1FY3-08/ 1FY3-09	Basic Electrical Engineering/ Basic Civil Engineering	2	-	-	30	70	100	2
6	BSC	1FY2-20/ 1FY2-21	Engineering Physics Lab/ Engineering Chemistry Lab	-	-	2	60	40	100	1
7	HSMC	1FY1-22/ 1FY1-23	Language Lab/ Human Values Activities and Sports	-	-	2	60	40	100	1
8	ESC	1FY3-24/ 1FY3-25	Computer Programming Lab/ Manufacturing Practices Workshop	-	-	3	60	40	100	1.5
9	ESC	1FY3-26/ 1FY3-27	Basic Electrical Engineering Lab/ Basic Civil Engineering Lab	-	-	2	60	40	100	1
10	ESC	1FY3-28/ 1FY3-29	Computer Aided Engineering Graphics/ Computer Aided Machine Drawing	-	-	3	60	40	100	1.5
11	SODE CA	1FY8-00							100	0.5
Total									20.5	

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

Teaching and Examination Scheme

II Semester: B.Tech. Common to all branches of UG Engineering & Technology

SN	Catego	Course	Course Title	Hours	rs	Marl		KS	Cr	
	ry	Code		L	T	Ρ	IA	ETE	Total	
1	BSC	2FY2-01	Engineering	3	1	-	30	70	100	4
			Mathematics-II							
2	BSC	2FY2-03/	Engineering Chemistry/	3	1	-	30	70	100	4
		2FY2-02	Engineering Physics							
3	HSMC	2FY1-05/	Human Values/	2	-	-	30	70	100	2
		2FY1-04	Communication Skills							
4	ESC	2FY3-07/	Basic Mechanical	2	-	-	30	70	100	2
			Engineering/							
		2FY3-06	Programming for							
			Problem Solving							
5	ESC	2FY3-09/	Basic Civil Engineering/	2	-	-	30	70	100	2
		2FY3-08	Basic Electrical							
			Engineering							
6	BSC	2FY2-21/	Engineering Chemistry	-	-	2	60	40	100	1
			Lab/							
		2FY2-20	Engineering Physics Lab							
7	HSMC	2FY1-23/	Human Values Activities	-	-	2	60	40	100	1
		_	and Sports/							
		2FY1-22	Language Lab							
8	ESC	2FY3-25/	Manufacturing Practices	-	-	3	60	40	100	1.5
		_	Workshop/							
		2FY3-24	Computer Programming							
			Lab							
9	ESC	2FY3-27/	Basic Civil Engineering	-	-	2	60	40	100	1
		_	Lab/							
		2FY3-26	Basic Electrical							
			Engineering Lab							
10	ESC	2FY3-29/	Computer Aided Machine	-	-	3	60	40	100	1.5
		,	Drawing/							
		2FY3-28	Computer Aided							
			Engineering Graphics							
11	SODE	2FY8-00		•	•				100	0.5
	CA									
									Total	20.5

L = Lecture, **T** = Tutorial,

P = Practical, **IA**=Internal Assessment,

ETE=End Term Exam, **Cr**=Credits

SYLLABUS

I Semester

Common to all branches of UG Engineering & Technology

1FY2-01: Engineering Mathematics-I

SN	CONTENTS
1	Calculus: Improper integrals (Beta and Gamma functions) and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.
2	Sequences and Series: Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions.
3	Fourier Series: Periodic functions, Fourier series, Euler's formula, Change of intervals, Half range sine and cosine series, Parseval's theorem.
4	Multivariable Calculus (Differentiation): Limit, continuity and partial derivatives, directional derivatives, total derivative; Tangent plane and normal line; Maxima, minima and saddle points; Method of Lagrange multipliers; Gradient, curl and divergence.
5	Multivariable Calculus (Integration): Multiple Integration: Double integrals (Cartesian), change of order of integration in double integrals, Change of variables (Cartesian to polar), Applications: areas and volumes, Centre of mass and Gravity (constant and variable densities); Triple integrals (Cartesian), Simple applications involving cubes, sphere and rectangular parallelepipeds; Scalar line integrals, vector line integrals, scalar surface integrals, vector surface integrals, Theorems of Green, Gauss and Stokes.

1FY2-02/ 2FY2-02: Engineering Physics

SN	CONTENTS
1	Wave Optics: Newton's Rings, Michelson's Interferometer, Fraunhofer Diffraction from a Single Slit. Diffraction grating: Construction, theory and spectrum, Resolving power and Rayleigh criterion for limit of resolution, Resolving power of diffraction grating, X-Ray diffraction and Bragg's Law.
2	Quantum Mechanics: Introduction to quantum Mechanics, Wave-particle duality, Matter waves, Wave function and basic postulates, Time dependent and time independent Schrodinger's Wave Equation, Physical interpretation of wave function and its properties, Applications of the Schrodinger's Equation: Particle in one dimensional and three dimensional boxes.
3	Coherence and Optical Fibers: Spatial and temporal coherence: Coherence length; Coherence time and 'Q' factor for light, Visibility as a measure of Coherence and spectral purity, Optical fiber as optical wave guide, Numerical aperture; Maximum angle of acceptance and applications of optical fiber.
4	Laser: Einstein's Theory of laser action; Einstein's coefficients; Properties of Laser beam, Amplification of light by population inversion, Components of laser, Construction and working of He-Ne and semiconductor lasers, Applications of Lasers in Science, engineering and medicine.
5	Material Science & Semiconductor Physics: Bonding in solids: covalent and metallic bonding, Energy bands in solids: Classification of solids as Insulators, Semiconductors and Conductors, Intrinsic and extrinsic semiconductors, Fermi dirac distribution function and Fermi energy, Conductivity in semiconductors, Hall Effect: Theory, Hall Coefficient and applications.
6	Introduction to Electromagnetism: Divergence and curl of electrostatic field, Laplace's and Poisson's equations for electrostatic potential, Bio-Savart law, Divergence and curl of static magnetic field, Faraday's law, Displacement current and magnetic field arising from time dependent electric field, Maxwell's equations, Flow of energy and Poynting vector.

Common to all branches of UG Engineering & Technology

1FY2-03/ 2FY2-03: Engineering Chemistry

SN	CONTENTS
1	Water: Common impurities, hardness, determination of hardness by complexometric (EDTA method), Degree of hardness, Units of hardness Municipal water supply: Requisite of drinking water, Purification of water; sedimentation, filtration, disinfection, breakpoint chlorination. Boiler troubles: Scale and Sludge formation, Internal treatment methods, Priming and Foaming, Boiler corrosion and Caustic embrittlement Water softening; Lime-Soda process, Zeolite (Permutit) process, Demineralization process. Numerical problems based on Hardness, EDTA, Lime-Soda and Zeolite process.
2	Organic Fuels: Solid fuels: Coal, Classification of Coal, Proximate and Ultimate analyses of coal and its significance, Gross and Net Calorific value, Determination of Calorific value of coal by Bomb Calorimeter. Metallurgical coke, Carbonization processes; Otto-Hoffmann by-product oven method. Liquid fuels: Advantages of liquid fuels, Mining, Refining and Composition of petroleum, Cracking, Synthetic petrol, Reforming, Knocking, Octane number, Anti-knocking agents, Cetane number Gaseous fuels; Advantages, manufacturing, composition and Calorific value of coal gas and oil gas, Determination of calorific value of gaseous fuels by Junker's calorimeter Numerical problems based on determination of calorific value (bomb calorimeter/Junkers calorimeter/Dulongs formula, proximate analysis & ultimate and combustion of fuel.
3	Corrosion and its control: Definition and significance of corrosion, Mechanism of chemical (dry) and electrochemical (wet) corrosion, galvanic corrosion, concentration corrosion and pitting corrosion. Protection from corrosion; protective coatings-galvanization and tinning, cathodic protection, sacrificial anode and modifications in design.
4	Engineering Materials: Portland Cement; Definition, Manufacturing by Rotary kiln. Chemistry of setting and hardening of cement. Role of Gypsum. Glass: Definition, Manufacturing by tank furnace, significance of annealing, Types and properties of soft glass, hard glass, borosilicate glass, glass wool, safety glass Lubricants: Classification, Mechanism, Properties; Viscosity and viscosity index, flash and fire point, cloud and pour point. Emulsification and steam

emulsion number.

Organic reaction mechanism and introduction of drugs:

Organic reaction mechanism: Substitution; SN1, SN2, Elecrophilic aromatic substitution in benzene, free radical halogenations of alkanes, Elimination; elimination in alkyl halides, dehydration of alcohols, Addition: electrophilic and free radical addition in alkenes, nucleophilic addition in aldehyde and ketones, Rearrangement; Carbocation and free radical rearrangements Drugs: Introduction, Synthesis, properties and uses of Aspirin, Paracetamol

1FY1-04/ 2FY1-04: Communication Skills

SN	CONTENTS
1	Communication: Meaning, Importance and Cycle of Communication. Media and Types of Communication. Verbal and Non-Verbal Communication. Barriers to communication. Formal and Informal Channels of Communication (Corporate Communication). Divisions of Human Communication and Methods to improve Interpersonal Communication. Qualities of good communication.
2	Grammar: Passive Voice. Reported Speech. Conditional Sentences. Modal Verbs. Linking Words (Conjunctions)
3	Composition: Job Application and Curriculum-Vitae Writing. Business Letter Writing. Paragraph Writing. Report Writing.
4	Short Stories: "Luncheon" by Somerset Maugham ."How Much Land Does a Man Need?" by Count Leo Tolstoy. "The Night Train at Deoli" by Ruskin Bond.
5	Poems: "No Men are Foreign" by James Kirkup. "If" by Rudyard Kipling. "Where the Mind is without Fear" by Rabindranath Tagore.

I & II Semester

Common to all branches of UG Engineering & Technology

1FY1-05/ 2FY1-05: Human Values

SN	CONTENTS
	Course Introduction - Need, Basic Guidelines, Content and Process for
1	Value Education Understanding the need, basic guidelines, Self Exploration - its content and process; 'Natural Acceptance' and Experiential Validation, Continuous Happiness and Prosperity- Human Aspirations, Right understanding, Relationship and Physical Facilities, Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario. Method to fulfill the above human aspirations: understanding and living in harmony at various levels
2	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' - Sukh and Suvidha Understanding the Body as an instrument of 'I',Understanding the characteristics and activities of 'I' and harmony in 'I' Understanding the harmony of I with the Body: Sanyam and Swasthya; correct appraisal of Physical needs, meaning of Prosperity in detail, Programs to ensure Sanyam and Swasthya.
3	Understanding Harmony in the Family and Society- Harmony in Human- Human Relationship Understanding harmony in the Family, Understanding values in human- human relationship; meaning of Nyaya and program for its fulfillment to ensure Ubhay-tripti; Trust (Vishwas) and Respect (Samman) , meaning of Vishwas; Difference between intention and competence, meaning of Samman, Difference between respect and differentiation; the other salient values in relationship, harmony in the society , Samadhan, Samridhi, Abhay, Sah-astitva as comprehensive Human Goals ,Visualizing a universal harmonious order in society- Undivided Society (AkhandSamaj), Universal Order (SarvabhaumVyawastha)- from family to world family.
4	Understanding Harmony in the Nature and Existence - Whole existence as Coexistence Understanding the harmony in the Nature. Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature. Understanding Existence as Co-existence (Sah-astitva) of mutually interacting units in all pervasive Space. Holistic perception of harmony at all levels of existence

Implications of the above Holistic Understanding of Harmony on Professional Ethics. Natural acceptance of human values
Definitiveness of Ethical Human Conduct. Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order. Competence in Professional Ethics: a) Ability to utilize the professional competence for augmenting universal human order, (b) Ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models. Strategy for transition from the present state to Universal Human Order: (a). At the level of individual: as socially and ecologically responsible engineers, technologists and managers.
(b). At the level of society: as mutually enriching institutions and organization.
Case studies related to values in professional life and individual life.

Common to all branches of UG Engineering & Technology

1FY3-06/ 2FY3-06: Programming for Problem Solving

 Fundamentals of Computer: Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing algorithms through flowchart and pseudo code. Number system: Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these statements, Structures, files, pointers and multi file handling. 	SN	CONTENTS
 2 Data representations, Concepts of radix and representation of numbers in radix r with special cases of r=2, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction, Representation of alphabets. 3 C Programming: Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	1	Stored program architecture of computers, Storage device- Primary memory, and Secondary storage, Random, Direct, Sequential access methods, Concepts of High-level, Assembly and Low-level languages, Representing
 Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these 	2	Data representations, Concepts of radix and representation of numbers in radix r with special cases of $r=2$, 8, 10 and 16 with conversion from radix r1 to r2, r's and (r-1)'s complement, Binary addition, Binary subtraction,
	3	Problem specification, flow chart, data types, assignment statements, input output statements, developing simple C programs, If statement, for loops, while loops, do-while loops, switch statement, break statement, continue statement, development of C programs using above statements, Arrays, functions, parameter passing, recursion, Programming in C using these

Common to all branches of UG Engineering & Technology

1FY3-07/ 2FY3-07: Basic Mechanical Engineering

SN	CONTENTS
1	Fundamentals: Introduction to mechanical engineering, concepts of thermal engineering, mechanical machine design, industrial engineering and manufacturing technology. Steam Boilers classification and types of steam boilers and steam turbines. Introduction and Classification of power plants.
2	Pumps and IC Engines: Applications and working of Reciprocating and Centrifugal pumps. Introduction, Classification of IC Engines, Main Components of IC Engines, Working of IC Engines and its components.
3	Refrigeration and Air Conditioning: Introduction, classification and types of refrigeration systems and air- conditioning. Applications of refrigeration and Air-conditioning.
4	Transmission of Power: Introduction and types of Belt and Rope Drives, Gears.
5	Primary Manufacturing Processes: Metal Casting Process: Introduction to Casting Process, Patterns, Molding, Furnaces. Metal Forming Processes: Introduction to Forging, Rolling, Extrusion, Drawing. Metal Joining Processes: Introduction to various types of Welding, Gas Cutting, Brazing, and Soldering.
6	Engineering Materials and Heat Treatment of Steel: Introduction to various engineering materials and their properties.
	1

Common to all branches of UG Engineering & Technology

1FY3-08/ 2FY3-08: Basic Electrical Engineering

SN	CONTENTS
1	DC Circuits: Electrical circuit elements (R, L and C), voltage and current sources, Kirchhoff current and voltage laws, Series-Parallel circuits, Node voltage method, Mesh current method, Superposition, Thevenin's, Norton's and Maximum power transfer theorems.
2	AC Circuits: Representation of sinusoidal waveforms, peak and r.m.s values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase AC circuits consisting of R, L, C, RL, RC and RLC combinations (series and parallel), resonance. Three phase balanced circuits, voltage and current relations in star and delta connections.
3	Transformers: Ideal and practical transformer, EMF equation, equivalent circuit, losses in transformers, regulation and efficiency.
4	Electrical Machines: Generation of rotating magnetic fields, Construction and working of a three- phase induction motor, Significance of torque-slip characteristic. Starting and speed control of induction motor, single-phase induction motor. Construction, working, torque-speed characteristic and speed control of separately excited DC motor. Construction and working of synchronous generators.
5	Power Converters: Semiconductor PN junction diode and transistor (BJT). Characteristics of SCR, power transistor and IGBT. Basic circuits of single phase rectifier with R load, Single phase Inverter, DC-DC converter.
6	Electrical Installations: Layout of LT switchgear: Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing. Power measurement, elementary calculations for energy consumption.
	TOTAL

Common to all branches of UG Engineering & Technology

1FY3-09/ 2FY3-09: Basic Civil Engineering

SN	CONTENTS
1	Introduction to objective, scope and outcome the subject
2	Introduction: Scope and Specialization of Civil Engineering, Role of civil Engineer in Society, Impact of infrastructural development on economy of country.
3	Surveying: Object, Principles & Types of Surveying; Site Plans, Plans& Maps; Scales & Unit of different Measurements. Linear Measurements: Instruments used. Linear Measurement by Tape, Ranging out Survey Lines and overcoming Obstructions; Measurements on sloping ground; Tape corrections, conventional symbols. Angular Measurements: Instruments used; Introduction to Compass Surveying, Bearings and Longitude & Latitude of a Line, Introduction to total station. Levelling: Instrument used, Object of levelling, Methods of levelling in brief, Contour maps.
4	Buildings: Selection of site for Buildings, Layout of Building Plan, Types of buildings, Plinth area, carpet area, floor space index, Introduction to building byelaws, concept of sun light and ventilation. Components of Buildings & their functions, Basic concept of R.C.C., Introduction to types of foundation.
5	Transportation: Introduction to Transportation Engineering; Traffic and Road Safety: Types and Characteristics of Various Modes of Transportation; Various Road Traffic Signs, Causes of Accidents and Road Safety Measures.
6	 Environmental Engineering: Environmental Pollution, Environmental Acts and Regulations, Functional Concepts of Ecology, Basics of Species, Biodiversity, Ecosystem, Hydrological Cycle; Chemical Cycles: Carbon, Nitrogen& Phosphorus; Energy Flow in Ecosystems. Water Pollution: Water Quality standards, Introduction to Treatment & Disposal of Waste Water. Reuse and Saving of Water, Rain Water Harvesting. Solid Waste Management: Classification of Solid Waste, Collection, Transportation and Disposal of Solid. Recycling of Solid Waste: Energy Recovery, Sanitary Land fill, On-Site Sanitation.

Air& Noise Pollution: Primary and Secondary air pollutants, Harmful effects of Air Pollution, Control of Air Pollution. Noise Pollution, Harmful Effects of noise pollution, control of noise pollution, Global warming& Climate Change, Ozone depletion, Green House effect

TOTAL

1FY2-20/ 2FY2-20: Engineering Physics Lab

- 1. To determine the wave length of monochromatic light with the help of Michelson's interferometer.
- 2. To determine the wave length of sodium light by Newton's Ring.
- 3. To determine the wave length of prominent lines of mercury by plane diffraction grating with the help of spectrometer.
- 4. Determination of band gap using a P-N junction diode.
- 5. To determine the height of given object with the help of sextant.
- 6. To determine the dispersive power of material of a prism with the help of spectrometer.
- 7. To study the charge and discharge of a condenser and hence determine the same constant (both current and voltage graphs are to be plotted.
- 8. To determine the coherence length and coherence time of laser using He Ne laser.
- 9. To measure the numerical aperture of an optical fibre.
- 10. To study the Hall Effect and determine the Hall Voltage and Hall coefficients.

1FY2-21/ 2FY2-21: Engineering Chemistry Lab

- 1. Determination the hardness of water by EDTA method
- 2. Determination of residual chlorine in water
- 3. Determination of dissolved oxygen in water
- 4. Determination of the strength of Ferrous Ammonium sulphate solution with the help of K2Cr2O7 solution by using diphenyl amine indicator
- 5. Determination of the strength of CuSO4 solution iodometrically by using hypo solution
- 6. Determination of the strength of NaOH and Na2CO3 in a given alkali mixture
- 7. Proximate analysis of Coal
- 8. Determination of the flash & fire point and cloud & pour point of lubricating oil
- 9. Determination of the kinematic viscosity of lubricating oil by Redwood viscometer no. 1 at different temperature
- 10. Synthesis of Aspirin/ Paracetamol

1FY2-22/ 2FY2-22: Language Lab

- 1. Phonetic Symbols and Transcriptions.
- 2. Extempore.
- 3. Group Discussion.
- 4. Dialogue Writing.
- 5. Listening comprehension.

Common to all branches of UG Engineering & Technology

1FY1-23/ 2FY1-23: Human Values Activities and Sports

PS 1:

Introduce yourself in detail. What are the goals in your life? How do you set your goals in your life? How do you differentiate between right and wrong? What have been your salient achievements and shortcomings in your life? Observe and analyze them.

PS 2:

Now-a-days, there is a lot of talk about many techno-genic maladies such as energy and material resource depletion, environmental pollution, global warming, ozone depletion, deforestation, soil degradation, etc. - all these seem to be manmade problems, threatening the survival of life Earth - What is the root cause of these maladies & what is the way out in opinion?

On the other hand, there is rapidly growing danger because of nuclear proliferation, arms race, terrorism, breakdown of relationships, generation gap, depression & suicidal attempts etc. - what do you think, is the root cause of these threats to human happiness and peace - what could be the way out in your opinion?

PS 3:

1. Observe that each of us has the faculty of 'Natural Acceptance', based on which one can verify what is right or not right for him. (As such we are not properly trained to listen to our 'Natural Acceptance' and may a time it is also clouded by our strong per-conditioning and sensory attractions).

Explore the following:

- What is Naturally Acceptable' to you in relationship the feeling of respect or (i) disrespect for yourself and for others?
- What is 'naturally Acceptable' to you to nurture or to exploit others? (ii) Is your living in accordance with your natural acceptance or different from it?
 - 2. Out of the three basic requirements for fulfillment of your aspirations right understanding, relationship and physical facilities - observe how the problems in your family are related to each. Also observe how much time & effort you devote for each in your daily routine.

PS 4:

a. Observe that any physical facility you use, follows the given sequence with 1. time:

Necessary and tasteful - unnecessary but still tasteful - unnecessary and tasteless intolerable

b. In contrast, observe that any feeling in you is either naturally acceptable or not acceptable at all. If not acceptable, you want it continuously and if not acceptable, you do not want it any moment!

2. List down all your important activities. Observe whether the activity is of 'I' or of Body or with the participation of both or with the participation of both 'I' and Body.

3. Observe the activities within 'i'. Identify the object of your attention for different moments (over a period of say 5 to 10 minutes) and draw a line diagram connecting these points. Try to observe the link between any two nodes.

PS 5:

- 1. Write a narration in the form of a story, poem, skit or essay to clarify a salient Human Value to the children.
- 2. Recollect and narrate an incident in your life where you were able to exhibit willful adherence to values in a difficult situation.

PS 6:

List down some common units (things) of Nature which you come across in your daily life and classify them in the four orders of Nature. Analysis and explain the aspect of mutual fulfillment of each unit with other orders.

PS 7:

Identify any two important problems being faced by the society today and analyze the root cause of these problems. Can these be solved on the basic of natural acceptance of human values? If so, how should one proceed in this direction from the present situation?

PS 8:

- 1. Suggest ways in which you can use your knowledge of Science/Technology/Management etc. for moving towards a universal human order.
- 2. Propose a broad outline for humanistic Constitution at the level of Nation.

Project:

Every student required to take-up a social project e.g. educating children in needy/weaker section; services in hospitals, NGO's and other such work i.e. social work at villages adopted by respective institute/ college.

Sports:

- a) Planning in Sports,
- b) Sports & Nutrition
- c) Yoga and Life style
- d) Measures Physical Education & Sports for CWSN (Children with Special needs Divyang)
- e) Children & Sports
- f) Women & Sports
- g) Test & Measurement in Sports
- h) Physiology & Sports
- i) Sports Medicine
- j) Kinesiology, Biomechanics & Sports
- k) Psychology & Sports
- 1) Training in Sports

I & II Semester Common to all branches of UG Engineering & Technology

1FY3-24/ 2FY3-24: Computer Programming Lab

1.	To learn about the C Library, Preprocessor directive, Input-output
	statement.
2.	Programs to learn data type, variables, If-else statement
3.	Programs to understand nested if-else statement and switch statement
4.	Programs to learn iterative statements like while and do-while loops
5.	Programs to understand for loops for iterative statements
6.	Programs to learn about array and string operations
7.	Programs to understand sorting and searching using array
8.	Programs to learn functions and recursive functions
9.	Programs to understand Structure and Union operation
10.	Programs to learn Pointer operations
11.	Programs to understand File handling operations
12.	Programs to input data through Command line argument

Common to all branches of UG Engineering & Technology

1FY3-25/ 2FY3-25: Manufacturing Practices Workshop

Carpentry Shop

- 1. T Lap joint
- 2. Bridle joint

Foundry Shop

- 3. Mould of any pattern
- 4. Casting of any simple pattern

Welding Shop

- 5. Lap joint by gas welding
- 6. Butt joint by arc welding
- 7. Lap joint by arc welding
- 8. Demonstration of brazing, soldering & gas cutting

Machine Shop Practice

9. Job on lathe with one step turning and chamfering operations

Fitting and Sheet Metal Shop

- 10. Finishing of two sides of a square piece by filing
- 11. Making mechanical joint and soldering of joint on sheet metal
- 12. To cut a square notch using hacksaw and to drill a hole and tapping

1FY3-26/ 2FY3-26: Basic Electrical Engineering Lab

1. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors. 2. Transformers: Observation of the no-load current waveform on an oscilloscope. Loading of a transformer: measurement of primary and secondary voltages and currents, and power. 3. Three-phase transformers: Star and Delta connections. Voltage and Current relationships (line-line voltage, phase-to-neutral voltage, line and phase currents).Phase-shifts between the primary and secondary side. 4. Demonstration of cut-out sections of machines: dc machine (commutatorbrush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging - slip ring arrangement) and single-phase induction machine. 5. Torque Speed Characteristic of separately excited dc motor. 6. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the use of dc-ac converter for speed control of an induction motor and (d)

Components of LT switchgear.

1FY3-27/ 2FY3-27: Basic Civil Engineering Lab

1.	Linear Measurement by Tape:
	a) Ranging and Fixing of Survey Station along straight line and across
	obstacles.
	b) Laying perpendicular offset along the survey line
2.	Compass Survey: Measurement of bearing of linesusing Surveyor's and
	Prismatic compass
3.	Levelling: Using Tilting/ Dumpy/ Automatic Level
	a) To determine the reduced levels in closed circuit.
	b) To carry out profile levelling and plot longitudinal and cross sections
	for road by Height of Instrument and Rise & Fall Method.
4.	To study and take measurements using various electronic surveying
	instruments like EDM, Total Station etc.
5.	To determine pH, hardness and turbidity of the given sample of water.
6.	To study various water supply Fittings.
7.	To determine the pH and total solids of the given sample of sewage.
8.	To study various Sanitary Fittings.

1FY3-28/ 2FY3-28: Computer Aided Engineering Graphics

Introduction: Principles of drawing, lines, type of lines, usage of Drawing instruments, lettering, Conic sections including parabola, hyperbola, Rectangular Hyperbola (General method only); Scales-Plain, Diagonal and Vernier Scales.

Projections of Point & Lines: Position of Point, Notation System, Systematic Approach for projections of points, front view & Top view of point, Position of straight lines, line parallel to Both the RPs, Line perpendicular to either of the RPs, Line inclined to one RP and parallel to the other, Line inclined to Both the RPs, Traces of a line (One drawing sheet, one assignment in sketch book).

Projection of Planes: Positions of planes, Terms used in projections of planes, plane parallel to RP, plane inclined to one RP and perpendicular to the other RP, plane perpendicular to Both the RPs, plane Inclined to Both the RPs, True shape of the plane, Distance of a point from plane, Angle between two planes.

Projections of Regular Solids: frustum and truncated solids, those inclined to both the Planes-Auxiliary Views.

Section of Solids: Theory of sectioning, section of prisms and cubes, section of pyramids and Tetrahedron section of Cylinders, section of cones, section of spheres (One drawing sheet, one assignment in sketch book)

Overview of Computer Graphics : Covering theory of CAD software [such as: The menu System, Toolbars (standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of lines, Planes, Simple and compound Solids.

1FY3-29/ 2FY3-29: Computer Aided Machine Drawing

Introduction: Principles of drawing, conventional representation of machine components and materials, lines, types of lines, dimensioning types, rules of dimensioning.

Conversion of pictorial views into orthographic views: (1 drawing sheet) Introduction to orthographic projection, concept of first angle and third angle projection, drawing of simple machine elements in first angle projection, missing view problems covering Principles of Orthographic Projections.

Sectional views of mechanical components: (1 drawing sheet) Introduction, cutting plane line, type of sectional views-full section, half section, partial or broken section, revolved section, removed section, offset section, sectioning conventions-spokes, web rib, shaft, pipes, different types of holes, conventions of section lines for different metals and materials.

Fasteners and other mechanical components: (Free hand sketch) Temporary and permanent fasteners, thread nomenclature and forms, thread series, designation, representation of threads, bolted joints, locking arrangement of nuts, screws, washers, foundation bolts etc., keys, types of keys, cotter and knuckle joints. Riveted joints, rivets and riveting, type of rivets, types of riveted joints etc. Bearing: Ball, roller, needle, foot step bearing. Coupling: Protected type, flange, and pin type flexible coupling. Other components: Welded joints, belts and pulleys, pipes and pipe joints, valves etc.

Overview of Computer Graphics: (2 drawing sheets) Covering theory of CAD software such as: The menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), Command Line (Where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.: Isometric Views of Lines, Planes, Simple and compound Solids.

II Semester

Common to all branches of UG Engineering & Technology

2FY2-01: Engineering Mathematics-II

SN	CONTENTS
1	Matrices: Rank of a matrix, rank-nullity theorem; System of linear equations; Symmetric, skew-symmetric and orthogonal matrices; Eigenvalues and eigenvectors; Diagonalization of matrices; Cayley-Hamilton Theorem, and Orthogonal transformation.
2	First order ordinary differential equations: Linear and Bernoulli's equations, Exact equations, Equations not of first degree: equations solvable for p, equations solvable for y, equations solvable for x and Clairaut's type.
3	Ordinary differential equations of higher orders: Linear Differential Equations of Higher order with constant coefficients, Simultaneous Linear Differential Equations, Second order linear differential equations with variable coefficients: Homogenous and Exact forms, one part of CF is known, Change of dependent and independent variables, method of variation of parameters, Cauchy-Euler equation; Power series solutions including Legendre differential equation and Bessel differential equations.
4	Partial Differential Equations - First order: Order and Degree, Formation; Linear Partial differential equations of First order, Lagrange's Form, Non Linear Partial Differential equations of first order, Charpit's method, Standard forms.
5	Partial Differential Equations- Higher order: Classification of Second order partial differential equations, Separation of variables method to simple problems in Cartesian coordinates including two dimensional Laplace, one dimensional Heat and one dimensional Wave equations.

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (AI) 2nd Year - III Semester

			THEO	RY							
SN	Categ		Course	Contact hrs/week			Marks				Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	3CAI2-01	Advanced Engineering Mathematics	3	0	0	3	30	70	100	3
2	HSMC	3CAI1-02/ 3CAI1-03	Technical Communication/ Managerial Economics and Financial Accounting	2	0	0	2	30	70	100	2
3	ESC	3CAI3-04	Digital Electronics	3	0	0	3	30	70	100	3
4		3CAI4-05	Data Structures and Algorithms	3	0	0	3	30	70	100	3
5	PCC	3CAI4-06	Object Oriented Programming	3	0	0	3	30	70	100	3
6		3CAI4-07	Software Engineering	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
											•
			PRACTICAL &	SESS	ION	AL					
7		3CAI4-21	Data Structures and Algorithms Lab	0	0	3		60	40	100	1.5
8	PCC	3CAI4-22	Object Oriented Programming Lab	0	0	3		60	40	100	1.5
9		3CAI4-23	Software Engineering Lab	0	0	3		60	40	100	1.5
10		3CAI4-24	Digital Electronics Lab	0	0	3		60	40	100	1.5
11	PSIT	3CAI7-30	Industrial Training	0	0	1		60	40	100	1
12	SODE CA	3CAI8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	13					7.5
		ТС	OTAL OF III SEMESTER	17	0	13					24.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

SEMESTER-III & IV

Syllabus

NOT THE REAL PROPERTY OF THE R

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI2-01: Advanced Engineering Mathematics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Random Variables: Discrete and Continuous random variables, Joint distribution, Probability distribution function, conditional distribution.Mathematical Expectations: Moments, Moment Generating Functions, variance and correlation coefficients, Chebyshev's Inequality, Skewness and Kurtosis.	7
2	Binomial distribution , Normal Distribution, Poisson Distribution and their relations, Uniform Distribution, Exponential Distribution. Correlation: Karl Pearson's coefficient, Rank correlation. Curve fitting. Line of Regression.	5
3	Historical development , Engineering Applications of Optimization, Formulation of Design Problems as a Mathematical Programming Problems, Classification of Optimization Problems	8
4	Classical Optimization using Differential Calculus: Single Variable and Multivariable Optimization with & without Constraints, Langrangian theory, Kuhn Tucker conditions	6
5	Linear Programming: Simplex method, Two Phase Method and Duality in Linear Programming. Application of Linear Programming: Transportation and Assignment Problems.	14
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI1-02/4CAI1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction to Technical Communication- Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	4
2	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Readingand comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
3	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
4	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI1-03/ 4CAI1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	4
2	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
3	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
4	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
5	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI3-04: Digital Electronics

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Fundamental concepts: Number systems and codes, Basic logic Gates and Boolean algebra: Sign & magnitude representation, Fixed point representation, complement notation, various codes & arithmetic in different codes & their inter conversion. Features of logic algebra, postulates of Boolean algebra.Theorems of Boolean algebra.	8
2	Minimization Techniques and Logic Gates: Principle of Duality - Boolean expression -Minimization of Boolean expressions — Minterm – Maxterm - Sum of Products (SOP) – Product of Sums (POS) – Karnaugh map Minimization – Don't care conditions – Quine - McCluskey method of minimization.	8
3	Digital Logic Gate Characteristics: TTL logic gate characteristics. Theory & operation of TTL NAND gate circuitry. Open collector TTL. Three state output logic. TTL subfamilies.MOS& CMOS logic families. Realization of logic gates in RTL, DTL, ECL, C-MOS & MOSFET.	8
4	Combinational Circuits: Combinational logic circuit design, adder, subtractor, BCD adder encoder, decoder, BCD to 7-segment decoder, multiplexer demultiplexer.	*
5	Sequential Circuits: Latches, Flip-flops - SR, JK, D, T, and Master-Slave Characteristic table and equation,counters and their design, Synchronous counters – Synchronous Up/Down counters – Programmable counters – State table and state transition diagram ,sequential circuits design methodology. Registers –shift registers.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-05: Data Structures and Algorithms

Credit-3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Stacks: Basic Stack Operations, Representation of a Stack using Static Array and Dynamic Array, Multiple stack implementation using single array, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions and Towers of Hanoi.	8
2	Queues: Basic Queue Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm. Circular Queues, DeQueue Priority Queues. Linked Lists:Introduction, single linked list, representation of a linked list in memory, Different Operations on a Single linked list, Reversing a single linked list, Advantages and disadvantages of single linked list, circular linked list, double linked list and Header linked list.	10
3	Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts, Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort, radix sort and counting sorting algorithms.	7
4	Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals (recursive), Binary search tree, B-tree, B+ tree, AVL tree, Threaded binary tree.	7
5	Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS & DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra's shortest path algorithms.Hashing: Hash function, Address calculation techniques, Common hashing functions, Collision resolution: Linear and Quadratic probing, Double hashing.	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-06: Object Oriented Programming

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction to different programming paradigm, characteristics of OOP, Class, Object, data member, member function, structures in C++, different access specifiers, defining member function inside and outside class, array of objects.	8
2	Concept of reference, dynamic memory allocation using new and delete operators, inline functions, function overloading, function with default arguments, constructors and destructors, friend function and classes, using this pointer.	8
3	Inheritance, types of inheritance, multiple inheritance, virtual base class, function overriding, abstract class and pure virtual function	9
4	Constant data member and member function, static data member and member function, polymorphism, operator overloading, dynamic binding and virtual function	9
5	Exception handling, Template, Stream class, File handling.	6
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-07: Software Engineering

Credit-3 3L+0T+0P

Max. Marks : 100 (IA:30, ETE:70) End Term Exam: 3 Hours

SN	CONTENTS	Hours
1	Introduction, software life-cycle models, software requirements specification, formal requirements specification, verification and validation.	8
2	Software Project Management: Objectives, Resources and their estimation, LOC and FP estimation, effort estimation, COCOMO estimation model, risk analysis, software project scheduling.	8
3	Requirement Analysis: Requirement analysis tasks, Analysis principles. Software prototyping and specification data dictionary, Finite State Machine (FSM) models. Structured Analysis: Data and control flow diagrams, control and process specification behavioral modeling	8
4	Software Design: Design fundamentals, Effective modular design: Data architectural and procedural design, design documentation.	8
5	Object Oriented Analysis: Object oriented Analysis Modeling, Data modeling. Object Oriented Design: OOD concepts, Class and object relationships, object modularization, Introduction to Unified Modeling Language	8
	TOTAL	40

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-21: Data Structures and Algorithms Lab

Credit-1.5 0L+0T+3P Max. Marks :100 (IA:60, ETE:40)

SN	CONTENTS
211	Write a simple C program on a 32 bit compiler to understand the concept of
-	array storage, size of a word. The program shall be written illustrating the
1	concept of row major and column major storage. Find the address of element
	and verify it with the theoretical value. Program may be written for arrays up to
	4-dimensions.
	Simulate a stack, queue, circular queue and dequeue using a one dimensional
2	array as storage element. The program should implement the basic addition,
	deletion and traversal operations.
	Represent a 2-variable polynomial using array. Use this representation to
3	implement addition of polynomials
	Represent a sparse matrix using array. Implement addition and transposition
4	operations using the representation.
	Implement singly, doubly and circularly connected linked lists illustrating
5	operations like addition at different locations, deletion from specified locations
	and traversal.
6	Repeat exercises 2, 3 & 4 with linked structure.
7	Implementation of binary tree with operations like addition, deletion, traversal.
	Depth first and breadth first traversal of graphs represented using adjacency
8	matrix and list.
9	Implementation of binary search in arrays and on linked Binary Search Tree.
	Implementation of different sorting algorithm like insertion, quick, heap, bubble
10	and many more sorting algorithms.

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-22 : Object Oriented Programming Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS					
1	Understand the basics of C++ library, variables, data input-output.					
2	C++ program using with the concept of structures.					
3	Implement class and object concepts and function overloading.					
4	Write programs to understand dynamic memory allocation and array of objects.					
5	Program to understand different types of constructors and destructor.					
6	Implement friend function to access private data of a class and usage of this					
0	pointer.					
7	Write programs to understand the usage of constant data member and member					
1	function, static data member and member function in a class.					
8	Implement different types of inheritance, function overriding and virtual					
ð	function					
9	Implement Operator overloading concepts.					
10	Write programs to understand function template and class template.					
11	Write programs to understand exception handling techniques.					
12	Write programs to understand file handling techniques.					

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-23: Software Engineering Lab

Credit-1.5 0L+0T+3P Max. Marks : 100 (IA:60, ETE:40)

CONTENTS
Development of requirements specification, function oriented design using
SA/SD, object-oriented design using UML, test case design, implementation
using Java and testing. Use of appropriate CASE tools and other tools such as
configuration management tools, program analysis tools in the software life
cycle.
Develop Software Requirements Specification (SRS) for a given problem in IEEE
template.
Develop DFD model (level-0, level-1 DFD and Data dictionary) of the project.
Develop structured design for the DFD model developed.
Developed all Structure UML diagram of the given project.
Develop Behavior UML diagram of the given project.
Manage file, using ProjectLibre project management software tool.

Syllabus

II Year-III Semester: B.Tech. Computer Science and Engineering (AI)

3CAI4-24: Digital Electronics Lab

Max. Marks : 100 (IA:60, ETE:40)

SN	CONTENTS
	To verify the truth tables of basic logic gates: AND, OR, NOR, NAND, NOR. Also
1	to verify truth table of Ex-OR, Ex-NOR (For 2, 3, & 4 inputs using gateswith 2, 3,
	& 4 inputs).
2	To verify the truth table of OR, AND, NOR, Ex-OR, Ex-NOR realized usingNAND&
4	NOR gates.
3	To realize an SOP and POS expression.
4	To realize Half adder/ Subtractor& Full Adder/ Subtractor using NAND & NOR
4	gatesand to verify their truth tables.
5	To realize a 4-bit ripple adder/ Subtractor using basic Half adder/ Subtractor&
Э	basic Full Adder/ Subtractor.
	To verify the truth table of 4-to-1 multiplexer and 1-to-4 demultiplexer. Realize
6	the multiplexer using basic gates only. Also to construct and 8-to-1 multiplexer
0	and 1-to-8 demultiplexer using blocks of 4-to-1 multiplexer and 1-to-4
	demultiplexer.
7	Design & Realize a combinational circuit that will accept a 2421 BCD code and
1	drive a TIL -312 seven-segment display.
8	Using basic logic gates, realize the R-S, J-K and D-flip flops with and without
0	clock signal and verify their truth table.
9	Construct a divide by 2,4& 8 asynchronous counter. Construct a 4-bit binary
9	counter and ring counter for a particular output pattern using D flip flop.
	Perform input/output operations on parallel in/Parallel out and Serial in/Serial
	out registers using clock. Also exercise loading only one of multiple values into
10	the register using multiplexer. Note: As far as possible, the experiments shall be
	performed on bread board. However, experiment Nos. 1-4 are to be performed on
	bread board only.

Office of Dean Academic Affairs Rajasthan Technical University, Kota

Credit-1.5 **0L+0T+3P**

Teaching & Examination Scheme B.Tech. : Computer Science & Engineering (AI) 2nd Year - IV Semester

			THEO	RY							
SN	Categ		Course	-	onta s/we		Mark	S			Cr
	ory	Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	BSC	4CAI2-01	Discrete Mathematics Structure	3	0	0	3	30	70	100	3
2	HSMC	4CAI1-03/ 4CAI1-02	Managerial Economics and Financial Accounting /Technical Communication	2	0	0	2	30	70	100	2
3	ESC	4CAI3-04	Microprocessor & Interfaces	3	0	0	3	30	70	100	3
4		4CAI4-05	Database Management System	3	0	0	3	30	70	100	3
5	PCC	4CAI4-06	Theory of Computation	3	0	0	3	30	70	100	3
6		4CAI4-07	Data Communication and Computer Networks	3	0	0	3	30	70	100	3
			Sub Total	17	0	0					17
			PRACTICAL &	SESS	ION	AL					
7		4CAI4-21	Microprocessor & Interfaces Lab	0	0	2		60	40	100	1
8	PCC	4CAI4-22	Database Management System Lab	0	0	3		60	40	100	1.5
9		4CAI4-23	Network Programming Lab	0	0	3		60	40	100	1.5
10		4CAI4-24	Linux Shell Programming Lab	0	0	2		60	40	100	1
11		4CAI4-25	Java Lab	0	0	2		60	40	100	1
12	SODE CA	4CAI8-00	Social Outreach, Discipline & Extra Curricular Activities							100	0.5
			Sub- Total	0	0	12					6.5
		TO	TAL OF IV SEMEESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI2-01: Discrete Mathematics Structure

	dit: 3 Max. Marks: 100(IA:30, 1 OT+OP End Term Exam: 3	3L+0
Hou	Contents	SN
1	Introduction: Objective, scope and outcome of the course.	1
7	 Set Theory: Definition of sets, countable and uncountable sets, Set operations, Partition of set, Cardinality (Inclusion-Exclusion & Addition Principles) Venn Diagrams, proofs of some general identities on sets. Relation: Definition, types of relation, composition of relations, Pictorial representation of relation, Equivalence relation, Partial ordering relation, Job-Scheduling problem. Function: Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions, pigeonhole principle. Theorem proving Techniques: Mathematical induction, Proof by contradiction. Composition of Functions. The Pigeonhole and Generalized Pigeonhole Principles. 	2
8	Propositional Logic: Proposition, First order logic, Basic logical operation, truth tables, tautologies, Contradictions, Algebra of Proposition, logical implications, logical equivalence, predicates, Normal Forms, Universal and existential quantifiers. 2 way predicate logic. Introduction to finite state machine Finite state machines as models of physical system equivalence machines, Finite state machines as language recognizers.	3
8	 Posets, Hasse Diagram and Lattices: Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, bounded and complemented lattices. Combinatorics: Introduction, Permutation and combination, Binomial Theorem, Multimodal Coefficients Recurrence Relation and Generating Function: Introduction to Recurrence Relation and Recursive algorithms, linear recurrence relations with constant coefficients, Homogeneous solutions, Particular solutions, Total solutions, Generating functions, Solution by method of generating functions. 	4
8	Algebraic Structures: Definition, Properties, types: Semi Groups, Monoid, Groups, Abelian group, properties of groups, Subgroup, cyclic groups, Cosets, factor group, Permutation groups, Normal subgroup, Homomorphism and isomorphism of Groups, example and standard results, Rings and Fields: definition and standard results.	5
8	Graph Theory: Introduction and basic terminology of graphs, Planer graphs, Multigraphs and weighted graphs, Isomorphic graphs, Paths, Cycles and connectivity, Shortest path in weighted graph, Introduction to Eulerian paths and circuits, Hamiltonian paths and circuits, Graph coloring, chromatic number, Isomorphism and Homomorphism of graphs, matching vertex/edge covering	6
irs 40	Office of Dean Acadomic Affa	

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI1-03/3CAI1-03: Managerial Economics and Financial Accounting

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Basic economic concepts- Meaning, nature and scope of economics, deductive vs inductive methods, static and dynamics, Economic problems: scarcity and choice, circular flow of economic activity, national income-concepts and measurement.	3
3	Demand and Supply analysis- Demand-types of demand, determinants of demand, demand function, elasticity of demand, demand forecasting –purpose, determinants and methods, Supply-determinants of supply, supply function, elasticity of supply.	5
4	Production and Cost analysis- Theory of production- production function, law of variable proportions, laws of returns to scale, production optimization, least cost combination of inputs, isoquants. Cost concepts-explicit and implicit cost, fixed and variable cost, opportunity cost, sunk costs, cost function, cost curves, cost and output decisions, cost estimation.	5
5	Market structure and pricing theory- Perfect competition, Monopoly, Monopolistic competition, Oligopoly.	4
6	Financial statement analysis- Balance sheet and related concepts, profit and loss statement and related concepts, financial ratio analysis, cash-flow analysis, funds- flow analysis, comparative financial statement, analysis and interpretation of financial statements, capital budgeting techniques.	8
	TOTAL	26

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI1-02/3CAI1-02: Technical Communication

Credit-2 2L+0T+0P

Max. Marks : 100(IA:30, ETE:70) End Term Exam: 2 Hours

SN	CONTENTS	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Technical Communication - Definition of technical communication, Aspects of technical communication, forms of technical communication, importance of technical communication, technical communication skills (Listening, speaking, writing, reading writing), linguistic ability, style in technical communication.	3
3	Comprehension of Technical Materials/Texts and Information Design & development- Reading of technical texts, Reading and comprehending instructions and technical manuals, Interpreting and summarizing technical texts, Note-making. Introduction of different kinds of technical documents, Information collection, factors affecting information and document design, Strategies for organization, Information design and writing for print and online media.	6
4	Technical Writing, Grammar and Editing - Technical writing process, forms of technical discourse, Writing, drafts and revising, Basics of grammar, common error in writing and speaking, Study of advanced grammar, Editing strategies to achieve appropriate technical style, Introduction to advanced technical communication. Planning, drafting and writing Official Notes, Letters, E-mail, Resume, Job Application, Minutes of Meetings.	8
5	Advanced Technical Writing - Technical Reports, types of technical reports, Characteristics and formats and structure of technical reports. Technical Project Proposals, types of technical proposals, Characteristics and formats and structure of technical proposals. Technical Articles, types of technical articles, Writing strategies, structure and formats of technical articles.	8
	TOTAL	26

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI3-04: Microprocessor & Interfaces

Credit: 3

3L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Microprocessors, microcontroller; 8085 Microprocessor Architecture, pin description, Bus concept and organization; concept of multiplexing and de-multiplexing of buses; concept of static and dynamic RAM, type of ROM, memory map.	7
3	Software architecture registers and signals, Classification of instruction, Instruction set, addressing modes, Assembly Language Programming and Debugging, Programming Technique, instruction Format and timing.	8
4	Advance Assembly Language Programming, Counter and time delay; types of Interrupt and their uses, RST instructions and their uses, 8259 programmable interrupt controller; Macros, subroutine; Stack- implementation and uses with examples; Memory interfacing.	8
5	8085 Microprocessor interfacing:, 8255 Programmable Peripheral Interface, 8254 programmable interval timer, interfacing of Input/output device, 8279 Key board/Display interface.	8
6	Microprocessor Application: Interfacing scanned multiplexed display and liquid crystal display, Interfacing and Matrix Keyboard, MPU Design; USART 8251, RS232C and RS422A, Parallel interface- Centronics and IEEE 488.	8
	Total	40

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-05: Database Management System

	lit: 3 Max. Marks: 100(IA:30, I 0T+0P End Term Exam: 3	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to database systems: Overview and History of DBMS. File System v/s DBMS.Advantage of DBMS Describing and Storing Data in a DBMS.Queries in DBMS.Structure of a DBMS.	
	Entity Relationship model: Overview of Data Design Entities, Attributes and Entity Sets, Relationship and Relationship Sets. Features of the ER Model- Key Constraints, Participation Constraints, Weak Entities, Class Hierarchies, Aggregation, Conceptual Data Base, and Design with ER Model- Entity v/s Attribute, Entity vs Relationship Binary vs Ternary Relationship and Aggregation v/s ternary Relationship Conceptual Design for a Large Enterprise.	7
3	 Relationship Algebra and Calculus: Relationship Algebra Selection and Projection, Set Operations, Renaming, Joints, Division, Relation Calculus, Expressive Power of Algebra and Calculus. SQL queries programming and Triggers: The Forms of a Basic SQL Query, Union, and Intersection and Except, Nested Queries, Correlated Nested Queries, Set-Comparison Operations, Aggregate Operators, Null Values and Embedded SQL, Dynamic SQL, ODBC and JDBC, Triggers and Active Databases. 	8
4	Schema refinement and Normal forms: Introductions to Schema Refinement, Functional Dependencies, Boyce-Codd Normal Forms, Third Normal Form, Normalization-Decomposition into BCNF Decomposition into 3-NF.	8
5	Transaction Processing: Introduction-Transaction State, Transaction properties, Concurrent Executions. Need of Serializability, Conflict vs. View Serializability, Testing for Serializability, Recoverable Schedules, Cascadeless Schedules.	8
6	 Concurrency Control: Implementation of Concurrency: Lock-based protocols, Timestamp-based protocols, Validation-based protocols, Deadlock handling, Database Failure and Recovery: Database Failures, Recovery Schemes: Shadow Paging and Log-based Recovery, Recovery with Concurrent transactions. 	8
	Total	40

Office of Dean Academic Affairs Rajasthan Technical University, Kota

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

Credit: 3

4CAI4-06: Theory Of Computation

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

3L+(0T+0P End Term Exam: 3	3 Hours
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Finite Automata & Regular Expression: Basic machine, Finite state machine, Transition graph, Transition matrix, Deterministic and non- deterministic finite automation, Equivalence of DFA and NDFA, Decision properties, minimization of finite automata, Mealy & Moore machines.	
	Alphabet, words, Operations, Regular sets, relationship and conversion between Finite automata and regular expression and vice versa, designing regular expressions, closure properties of regular sets, Pumping lemma and regular sets, Myhill- Nerode theorem, Application of pumping lemma, Power of the languages.	7
3	Context Free Grammars (CFG), Derivations and Languages, Relationship between derivation and derivation trees, leftmost and rightmost derivation, sentential forms, parsing and ambiguity, simplification of CFG, normal forms, Greibach and Chomsky Normal form , Problems related to CNF and GNF including membership problem.	8
4	Nondeterministic PDA, Definitions, PDA and CFL, CFG for PDA, Deterministic PDA, and Deterministic PDA and Deterministic CFL, The pumping lemma for CFL's, Closure Properties and Decision properties for CFL, Deciding properties of CFL.	8
5	 Turing Machines: Introduction, Definition of Turing Machine, TM as language Acceptors and Transducers, Computable Languages and functions, Universal TM & Other modification, multiple tracks Turing Machine. Hierarchy of Formal languages: Recursive & recursively enumerable languages, Properties of RL and REL, Introduction of Context sensitive grammars and languages, The Chomsky Hierarchy. 	8
6	Tractable and Untractable Problems: P, NP, NP complete and NP hard problems, Un-decidability, examples of these problems like vertex cover problem, Hamiltonian path problem, traveling sales man problem.	8
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-07: Data Communication and Computer Networks

Credit: 3	Max. Marks: 100(IA:30, ETE:70
3L+0T+0P	End Term Exam: 3 Hour
<u>en</u>	Contents

SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introductory Concepts: Network hardware, Network software, topologies, Protocols and standards, OSI model, TCP model, TCP/IP model, Physical Layer: Digital and Analog Signals, Periodic Analog Signals, Signal Transmission, Limitations of Data Rate, Digital Data Transmission, Performance Measures, Line Coding, Digital Modulation, Media and Digital Transmission System	7
3	Data Link Layer: Error Detection and Correction, Types of Errors, Two dimensional parity check, Detection verses correction, Block Coding, Linear Block Coding, Cyclic Codes, Checksum, Standardized Polynomial Code, Error Correction Methods, Forward Error Correction, Protocols: Stop and wait, Go-back-N ARQ, Selective Repeat ARQ, Sliding window, Piggy backing, Pure ALOHA, Slotted ALOHA, CSMA/CD, CSMA/CA	9
4	Network Layer: Design issues, Routing algorithms: IPV4, IPV6, Address mapping: ARQ, RARQ, Congestion control, Unicast, Multicast, Broadcast routing protocols, Quality of Service, Internetworking	8
5	Transport Layer: Transport service, Elements of transport protocols, User Datagram Protocol, Transmission Control Protocol, Quality of service, Leaky Bucket and Token Bucket algorithm	8
6	Application Layer: WWW, DNS, Multimedia, Electronic mail, FTP, HTTP, SMTP, Introduction to network security	7
	Total	40

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-21: Microprocessor & Interfaces Lab

Credit: 1 0L+0T+2P

Max. Marks: 100(IA:60, ETE:40)

Office of Dean Academic Affairs Rajasthan Technical University, Kota

List of Experiments:

- 1. Add the contents of memory locations XX00 &XX01 & place the result in memory location XX02.
- 2. Add the 16 bit numbers stored in memory location & store the result in another memory location.
- 3. Transfer a block of data from memory location XX00 to another memory location XX00 in forward & reverse order.
- 4. Write a program to swap two blocks of data stored in memory.
- 5. Write a program to find the square of a number.
- 6. Write a main program and a conversion subroutine to convert Binary to its equivalent BCD.
- 7. Write a program to find largest & smallest number from a given array.
- 8. Write a program to Sort an array in ascending & descending order.
- 9. Write a program to multiply two 8 bit numbers whose result is 16 bit.
- 10. Write a program of division of two 8 bit numbers.
- 11. Generate square wave from SOD pin of 8085 & observe on CRO.
- 12. Write a program to perform traffic light control operation.
- 13. Write a program to control the speed of a motor.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-22: Database Management System Lab

Credit: 1.5 0L+0T+3P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Design a Database and create required tables. For e.g. Bank, College Database
- 2. Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- 3. Write a SQL statement for implementing ALTER, UPDATE and DELETE.
- 4. Write the queries to implement the joins.
- 5. Write the query for implementing the following functions: MAX (), MIN (), AVG () and COUNT ().
- 6. Write the query to implement the concept of Integrity constrains.
- 7. Write the query to create the views.
- 8. Perform the queries for triggers.
- 9. Perform the following operation for demonstrating the insertion , updation and deletion
- 10.Using the referential integrity constraints.
- 11.Write the query for creating the users and their role.

Data Base Designing Project:

For better understanding students (group of 3-4 students) should design data base for any data base project, understand the requirement and design methodology of project by its own.

Some example of data base design project like:

College management system, Inventory management system and Hospital management system.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-23: Network Programming Lab

Credit: 1.5 0L+0T+3P Max. Marks: 100(IA:60, ETE:40)

List of Experiments:

- 1. Study of Different Type of LAN& Network Equipments.
- 2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.
- 3. LAN installations and Configurations.
- 4. Write a program to implement various types of error correcting techniques.
- 5. Write a program to implement various types of framing methods.
- 6. Write two programs in C: hello_client and hello_server
 - a. The server listens for, and accepts, a single TCP connection; it reads all the data it can from that connection, and prints it to the screen; then it closes the connection
 - b. The client connects to the server, sends the string "Hello, world!", then closes the connection
- 7. Write an Echo_Client and Echo_server using TCP to estimate the round trip time from client to the server. The server should be such that it can accept multiple connections at any given time.
- 8. Repeat Exercises 6 & 7 for UDP.
- 9. Repeat Exercise 7 with multiplexed I/O operations.
- 10. Simulate Bellman-Ford Routing algorithm in NS2.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-24: Linux Shell Programming Lab

Credit: 1

Max. Marks: 100(IA:60, ETE:40)

0L+0)T+2P
List	of Experiments:
1.	Use of Basic Unix Shell Commands: ls, mkdir, rmdir, cd, cat, banner, touch,
	file, wc, sort, cut, grep, dd, dfspace, du, ulimit.
2.	Commands related to inode, I/O redirection and piping, process control
	commands, mails.
3.	Shell Programming: Shell script based on control structure- If-then-fi, if-then-
	else-if, nested if-else, to find:
	3.1 Greatest among three numbers.
	3.2 To find a year is leap year or not.
	3.3 To input angles of a triangle and find out whether it is valid triangle or not.
	3.4 To check whether a character is alphabet, digit or special character.
	3.5 To calculate profit or loss.
4.	Shell Programming - Looping- while, until, for loops
	4.1 Write a shell script to print all even and odd number from 1 to 10.
	4.2 Write a shell script to print table of a given number
	4.3 Write a shell script to calculate factorial of a given number.
	4.4 Write a shell script to print sum of all even numbers from 1 to 10.
	4.5 Write a shell script to print sum of digit of any number.
5.	Shell Programming - case structure, use of break
	5.1 Write a shell script to make a basic calculator which performs addition,
	subtraction,
	Multiplication, division
	5.2 Write a shell script to print days of a week.
-	5.3 Write a shell script to print starting 4 months having 31 days.
6.	Shell Programming - Functions
	6.1 Write a shell script to find a number is Armstrong or not.
	6.2 Write a shell script to find a number is palindrome or not.
	6.3 Write a shell script to print Fibonacci series.
	6.4 Write a shell script to find prime number.
7	6.5 Write a shell script to convert binary to decimal and decimal to binary
7.	Write a shell script to print different shapes- Diamond, triangle, square,
0	rectangle, hollow square etc.
8.	Shell Programming – Arrays
	8.1 Write a C program to read and print elements of array.
	8.2 Write a C program to find sum of all array elements.
	8.3 Write a C program to find reverse of an array.
	8.4 Write a C program to search an element in an array.
	8.5 Write a C program to sort array elements in ascending or descending order.

Syllabus

II Year-IV Semester: B.Tech. Computer Science and Engineering (AI)

4CAI4-25: Java Lab

	edit: 1 Max. Marks: 100(IA:60, ETE:40)
	+0T+2P
	t of Experiment: Develop an in depth understanding of programming in Java: data types, variables, operators, operator precedence, Decision and control statements, arrays, switch statement, Iteration Statements, Jump Statements, Using break, Using continue, return.
2.	Write Object Oriented programs in Java: Objects, Classes constructors, returning and passing objects as parameter, Inheritance, Access Control, Using super, final with inheritance Overloading and overriding methods, Abstract classes, Extended classes.
3.	Develop understanding to developing packages & Interfaces in Java: Package, concept of CLASSPATH, access modifiers, importing package, Defining and implementing interfaces.
4.	Develop understanding to developing Strings and exception handling: String constructors, special string operations, character extraction, searching and comparing strings, string Buffer class. Exception handling fundamentals, Exception types, uncaught exceptions, try, catch and multiple catch statements. Usage of throw, throws and finally.
5. 6.	Develop applications involving file handling: I/O streams, File I/O. Develop applications involving concurrency: Processes and Threads, Thread Objects, Defining and Starting a Thread, Pausing Execution with Sleep, Interrupts, Joins, and Synchronization.
	Indicative List of exercises:
7.	Programs to demonstrate basic concepts e.g. operators, classes, constructors, control & iteration statements, recursion etc. such as complex arithmetic, matrix arithmetic, tower of Hanoi problem etc.
8.	Development of programs/projects to demonstrate concepts like inheritance, exception handling, packages, interfaces etc. such as application for electricity department, library management, ticket reservation system, payroll system etc.
9. 10.	Development of a project to demonstrate various file handling concepts. Develop applications involving Applet: Applet Fundamentals, using paint method and drawing polygons. It is expected that each laboratory assignments to given to the students with an aim to In order to achieve the above objectives.

SEMESTER-V & VI

Teaching & Examination Scheme B.Tech Computer Science and Engineering (Artificial Intelligence) 3rd Year - V Semester

			THEORY	Y							
			Course	C	onta	ct					
SN	Category			hrs	/we	ek		M	arks	r	Cr
		Code	Title	L	Т	Р	Exm Hrs	IA	ETE	Total	
1	PCC	5CAI3-01	Data Mining- Concepts and Techniques	2	0	0	3	30	70	100	2
2		5CAI4-02	Compiler Design	3	0	0	3	30	70	100	3
3		5CAI4-03	Operating System	3	0	0	3	30	70	100	3
4	PCC	5CAI4-04	Computer Graphics & Multimedia	3	0	0	3	30	70	100	3
5		5CAI4-05	Analysis of Algorithm	3	0	0	3	30	70	100	3
6		5CAI5-11	Fundamentals of Blockchain	2	0	0	3	30	70	100	2
7	PEC	5CAI5-12	Mathematical Modelling for Data Science								
8		5CAI5-13	Programming for Data Sciences								
			Sub Total	16	0	0					16
				2001	<u></u>	-					
9		5CAI4-21	PRACTICAL & SE Computer Graphics & Multimedia Lab	0		L 2	2	60	40	100	1
10		5CAI4-22	Compiler Design Lab	0	0	2	2	60	40	100	1
11	PCC	5CAI4-23	Analysis of Algorithm Lab	0	0	2	2	60	40	100	1
12		5CAI4-24	Advanced Java Lab	0	0	2	2	60	40	100	1
13	PSIT	5CAI7-30	Industrial Training	0	0	1		60	40	100	2.5
14	SODECA	5CAI8-00	Social Outreach, Discipline & Extra Curricular Activities						100	100	0.5
			Sub- Total	0	0	9					7
		TC	DTAL OF V SEMESTER	16	0	9					23

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

5CAI3-01: Data Mining-Concepts and Techniques

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. To introduce the fundamental processes data warehousing and major issues in data mining
- 2. To impart the knowledge on various data mining concepts and techniques that can be applied to text mining, web mining etc.
- 3. To develop the knowledge for application of data mining and social impacts of data mining.

Course Outcomes: After completion of the course, students would be able to:

- 1. Interpret the contribution of data warehousing and data mining to the decision-support systems.
- 2. Prepare the data needed for data mining using pre-processing techniques.
- 3. Extract useful information from the labelled data using various classifiers.
- 4. Compile unlabeled data into clusters applying various clustering algorithms.
- 5. Discover interesting patterns from large amounts of data using Association Rule Mining
- 6. Demonstrate capacity to perform a self-directed piece of practical work that requires the application of data mining techniques.

Detailed Syllabus: (per session plan)

UNIT	Contents
1	Introduction to Data Mining: Introduction to data mining-Data mining functionalities-Steps in data mining process- Classification of data mining systems, Major issues in data mining. Data Wrangling and Preprocessing: Data Preprocessing: An overview-Data cleaning-Data transformation and Data discretization
2	Predictive Modeling: General approach to classification-Decision tree induction- Bayes classification methods- advanced classification methods: Bayesian belief networks-Classification by Backpropagation- Support Vector Machines-Lazy learners
3	Descriptive Modeling: Types of data in cluster analysis-Partitioning methods- Hierarchical methods-Advanced cluster analysis: Probabilistic model-based clustering- Clustering high-dimensional data-Outlier analysis
4	Discovering Patterns and Rules: Frequent Pattern Mining: Basic Concepts and a Road Map - Efficient and scalable frequent item set mining methods: Apriori algorithm, FP-Growth algorithm- Mining frequent itemsets using vertical data format- Mining closed and max patterns- Advanced Pattern Mining: Pattern Mining in Multilevel, Multidimensional Space
5	Data Mining Trends and Research Frontiers: Other methodologies of data mining: Web mining-Temporal mining-Spatial mining-Statistical data mining- Visual and audio data mining- Data mining applications- Data mining and society: Ubiquitous and invisible data mining- Privacy, Security, and Social Impacts of data mining

TEXT BOOKS:

- 1. Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, third edition ,2013
- 2. Pang-Ning Tan,Michael Steinbach, Anuj Karpatne, Vipin Kumar, Introduction to Data Mining, second edition, Pearson, 2019

REFERENCE BOOKS:

- 1. Ian.H.Witten, Eibe Frank and Mark.A.Hall, Data Mining:Practical Machine Learning Tools and Techniques,third edition , 2017
- 2. Alex Berson and Stephen J. Smith, Data Warehousing, Data Mining & OLAP, Tata McGraw Hill Edition, Tenth Reprint, 2008.
- 3. Hand, D., Mannila, H. and Smyth, P. Principles of Data Mining, MIT Press: Massachusets. third edition, Pearson, 2013

5CAI4-02: Compiler Design

Credit: 3

Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam	m: 3 Hours
SN Contents	Hours
1 Introduction: Objective, scope and outcome of the course.	01
2 Introduction: Objective, scope and outcome of the course. Compiler, Translator, Interpreter definition, Phase of compiler, Bootstrapping, Review of Finite automata lexical analyzer, Input, Recognition of tokens, Idea about LEX: A lexical analyzer generator, Error handling.	06
3 Review of CFG Ambiguity of grammars: Introduction to parsing. Top down parsing, LL grammars & passers error handling of LL parser, Recursive descent parsing predictive parsers, Bottom up parsing, Shift reduce parsing, LR parsers, Construction of SLR, Conical LR & LALR parsing tables, parsing with ambiguous grammar. Operator precedence parsing, Introduction of automatic parser generator: YACC error handling in LR parsers.	10
4 Syntax directed definitions; Construction of syntax trees, S- Attributed Definition, L-attributed definitions, Top down translation. Intermediate code forms using postfix notation, DAG, Three address code, TAC for various control structures, Representing TAC using triples and quadruples, Boolean expression and control structures.	10
5 Storage organization; Storage allocation, Strategies, Activation records, Accessing local and non-local names in a block structured language, Parameters passing, Symbol table organization, Data structures used in symbol tables.	08
6 Definition of basic block control flow graphs; DAG representation of basic block, Advantages of DAG, Sources of optimization, Loop optimization, Idea about global data flow analysis, Loop invariant computation, Peephole optimization, Issues in design of code generator, A simple code generator, Code	07
generation from DAG.	

5CAI4-03: Operating System

	edit: 3 Max. Marks: 100(IA:30, E OT+0P End Term Exam: 3	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction and History of Operating systems: Structure and operations; processes and files Processor management: inter process communication, mutual exclusion, semaphores, wait and signal procedures, process scheduling and algorithms, critical sections, threads, multithreading	04
3	Memory management: contiguous memory allocation, virtual memory, paging, page table structure, demand paging, page replacement policies, thrashing, segmentation, case study	05
4	 Deadlock: Shared resources, resource allocation and scheduling, resource graph models, deadlock detection, deadlock avoidance, deadlock prevention algorithms Device management: devices and their characteristics, device drivers, device handling, disk scheduling algorithms and policies 	15
5	File management: file concept, types and structures, directory structure, cases studies, access methods and matrices, file security, user authentication	07
6	UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS	08
	Total	40

5CAI4-04: Computer Graphics & Multimedia

	lit: 3 Max. Marks: 100(IA:30) T+OP End Term Exam	•
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Basic of Computer Graphics: Basic of Computer Graphics, Applications of computer graphics, Display devices, Random and Raster scan systems, Graphics input devices, Graphics software and standards	06
3	Graphics Primitives: Points, lines, circles and ellipses as primitives, scan conversion algorithms for primitives, Fill area primitives including scan- line polygon filling, inside-outside test, boundary and flood-fill, character generation, line attributes, area-fill attributes, character attributers. Aliasing, and introduction to Anti Aliasing (No anti aliasing algorithm).	07
4	Two Dimensional Graphics: Transformations (translation, rotation, scaling), matrix representation, homogeneous coordinates, composite transformations, reflection and shearing, viewing pipeline and coordinates system, window-to-viewport transformation, clipping including point clipping, line clipping (cohen-sutherland, liang- bersky, NLN), polygon clipping	08
5	Three Dimensional Graphics: 3D display methods, polygon surfaces, tables, equations, meshes, curved lies and surfaces, quadric surfaces, spline representation, cubic spline interpolation methods, Bazier curves and surfaces, B-spline curves and surfaces.3D scaling, rotation and translation, composite transformation, viewing pipeline and coordinates, parallel and perspective transformation, view volume and general (parallel and perspective) projection transformations.	08
6	Illumination and Colour Models: Light sources – basic illumination models – halftone patterns and dithering techniques; Properties of light – Standard primaries and chromaticity diagram; Intuitive colour concepts – RGB colour model – YIQ colour model – CMY colour model – HSV colour model – HLS colour model; Colour selection.	06
7	 Animations &Realism:Design of Animation sequences – animation function – raster animation – key frame systems – motion specification – morphing – tweening. ComputerGraphics Realism: Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals – turtle graphics – ray tracing. 	06
	Total	42

5CAI4-05: Analysis of Algorithms

	lit: 3 Max. Marks: 100(IA:30	
SN	T+OP End Term Exam Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	 Background: Review of Algorithm, Complexity Order Notations: definitions and calculating complexity. Divide And Conquer Method: Binary Search, Merge Sort, Quick sort and Strassen's matrix multiplication algorithms. 	06
3	 Greedy Method: Knapsack Problem, Job Sequencing, Optimal Merge Patterns and Minimal Spanning Trees. Dynamic Programming: Matrix Chain Multiplication. Longest CommonSubsequence and 0/1 Knapsack Problem. 	10
4	 Branch And Bound: Traveling Salesman Problem and Lower Bound Theory. Backtracking Algorithms and queens problem. Pattern Matching Algorithms: Naïve and Rabin Karp string matching algorithms, KMP Matcher and Boyer Moore Algorithms. 	08
5	 Assignment Problems: Formulation of Assignment and Quadratic Assignment Problem. Randomized Algorithms- Las Vegas algorithms, Monte Carlo algorithms, randomized algorithm for Min-Cut, randomized algorithm for 2- SAT. Problem definition of Multicommodity flow, Flow shop scheduling and Network capacity assignment problems. 	08
6	Problem Classes Np, Np-Hard And Np-Complete: Definitions of P, NP-Hard and NP-Complete Problems. Decision Problems.Cook's Theorem. Proving NP-Complete Problems - Satisfiability problem and Vertex Cover Problem. Approximation Algorithms for Vertex Cover andSet Cover Problem.	08
	Total	41

5CAI5-11: Fundamentals of Blockchain

Credit: 2	
2L+0T+0P	

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. The students should be able to understand a broad overview of the essential concepts of blockchain technology.
- 2. To familiarize students with Bitcoin protocol followed by the Ethereum protocol to lay the foundation necessary for developing applications and programming.
- 3. Students should be able to learn about different types of blockchain and consensus algorithms.

Course Outcomes: After completion of the course, students would be able to:

- 1. To explain the basic notion of distributed systems.
- 2. To use the working of an immutable distributed ledger and trust model that defines blockchain.
- 3. To illustrate the essential components of a blockchain platform.

Detailed Syllabus: (per session plan)

UNIT	Contents
1	Basics: The Double-Spend Problem, Byzantine Generals' Computing Problems, Public- Key Cryptography, Hashing, Distributed Systems, Distributed Consensus.
2	Technology Stack: Blockchain, Protocol, Currency. Bitcoin Blockchain: Structure, Operations, Features, Consensus Model, Incentive Model
3	Ethereum Blockchain: Smart Contracts, Ethereum Structure, Operations, Consensus Model, Incentive Model.
4	Tiers of Blockchain Technology: Blockchain 1.0, Blockchain 2.0, Blockchain 3.0, Types of Blockchain: Public Blockchain, Private Blockchain, Semi-Private Blockchain, Sidechains.
5	Types of Consensus Algorithms: Proof of Stake, Proof of Work, Delegated Proof of Stake, Proof Elapsed Time, Deposite-Based Consensus, Proof of Importance, Federated Consensus or Federated Byzantine Consensus, Practical Byzantine Fault Tolerance. Blockchain Use Case: Supply Chain Management.

TEXT BOOKS:

- 1. Kirankalyan Kulkarni, Essentials of Bitcoin and Blockchain, Packt Publishing.
- 2. Anshul Kaushik, Block Chain & Crypto Currencies, Khanna Publishing House.
- 3. Tiana Laurence, Blockchain for Dummies, 2nd Edition 2019, John Wiley & Sons.
- 4. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks by Imran Bashir, Packt Publishing (2017).

REFERENCE BOOKS:

1. Blockchain: Blueprint for a New Economy by Melanie Swan, Shroff Publisher O'Reilly Publisher

Media; 1st edition (2015).

2. Mastering Bitcoin: Programming the Open Blockchain by Andreas Antonopoulos.

5CAI5-12: Mathematical Modelling for Data Science

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) **End Term Exam: 3 Hours**

Course Objectives:	1 1
1. To introduce the various mathematical concepts and models, and provide skills required to imp	plement the
models.	
2. To undertake a critical evaluation of a wide range of numerical and data.	
3. To develop designing skills for modeling non-deterministic problems.	
Expected Course Outcome:	
1. Demonstrate understanding of basic mathematical concepts in data science, relating to linear a	lgebra,
probability, and calculus and employ them.	
2. Apply linear models for regression and linear models for classification	
3. Employ kernel models, SVM and RVM	
4. Conceptualize problems as graphical models, mixture models and analyse using estimation-ma	iximation
algorithms	
5. Demonstrate with illustrative examples PCA	
Unit:1 Linear Algebra	3 hours
Matrices, solving linear equations, vector spaces, linear independence, basis and rank, linear map	
affine spaces, norms, inner products, orthogonality, orthonormal basis, inner product of functions	',
orthogonal projections	1
Unit:2 Matrix Decompositions	4 hours
Determinant and trace, Eigen values and Eigen vectors, Cholesky decomposition, Eigen decompo	osition,
Singular value decomposition, matrix approximation	
Unit:3 Vector Calculus	4 hours
Differentiation of Univariate Functions, Partial Differentiation and Gradients, Gradients of Vector	r-Valued
Functions, Gradients of Matrices, Useful Identities for Computing Gradients, Backpropagation and	
Automatic Differentiation, Higher-Order Derivatives, Linearization and Multivariate Taylor Serie	es.
Unit:4 Probability, Distributions and optimizations	4 hours
Construction of a Probability Space, Discrete and Continuous Probabilities, Sum Rule, Product R	ule, and
Bayes' Theorem, Summary Statistics and Independence, Gaussian Distribution, Conjugacy and the	ne
Exponential Family, Change of Variables/Inverse Transform, Continuous Optimization, Optimiz	ation Using
Gradient Descent, Constrained Optimization and Lagrange Multipliers, Convex Optimization	
Unit:5 Data Models	4 hours
Data, Models, and Learning, Empirical Risk Minimization, Parameter Estimation, Probabilistic Mode	ling and
Inference, Directed Graphical Models, Model Selections	-
Text Book(s)	
1. Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, Mathematics for Machine Learning	ng,
Cambridge University Press, 2020.	
Reference Books	

Reference Books

1. Matthias Dehmer, Salissou Moutari, Frank Emmert-Streib, Mathematical Foundations of Data Science Using R, De Gruyter Oldenbourg, 2020.

2. Norman Matloff, Probability and Statistics for Data Science: Math + R + Data, CRC Data Science Series, 2019.

5CAI5-13: Programming for Data Science

Credit: 2
2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

	Objectives:	hlama
-	wide necessary knowledge on data manipulation and to perform analysis on the practical pro	oblems
0	tistical and machine learning approach	
	nerate report and visualize the results in graphical form using programming tool	
1	d Course Outcome:	
	y to gain basic knowledge on data science	
	rt the real time data into suitable form for analysis	
	he insights from the data through statistical inferences	
	op suitable models using machine learning techniques and to analyze its performance	
	y the requirement and visualize the results	
	ze on the performance of the model and the quality of the results	
Unit:1	INTRODUCTION	4 hour
	ence: Introduction to Data Science – Digital Universe – Sources of Data – Information Com	mons –
Data Scie	$\mathbf{D}_{\mathbf{n}} + \mathbf{L} + \mathbf{C}_{\mathbf{n}} = 1$	
	ence Project Life Cycle: OSEMN Framework	-
Unit:2	DATA PREPROCESSING & CONCEPT LEARNING	6 hour
Unit:2 Introduct	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values –	
Unit:2 Introduct Manipula	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability	istic
Unit:2 Introduct Manipula Approxir	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili- nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination	istic
Unit:2 Introduct Manipula Approxir Algorithr	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabili nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m	istic
Unit:2 Introduct Manipula Approxir Algorithr Unit:3	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabilition nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R	istic
Unit:2 Introduct Manipula Approxir Algorithr Unit:3 R Basics	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabilition ately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab	istic
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabilit nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction	istic 8 hour bel
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R	istic 8 hour 9 hour 9 8 hour
Unit:2 Introduct Manipula Approxir Algorithr Unit:3 R Basics Encoding Unit:4 Regressio	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Latg and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV	istic 8 hour 9 hour 9 8 hour
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressic Random I	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabilit nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV Forest, Clustering Models – K Means and Hierarchical clustering	istic 8 hour bel 8 hour M and
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressio Random I Unit:5	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION	istic 8 hour bel 8 hour M and 6 hour
Unit:2 Introduct Manipula Approxin Algorithm Unit:3 R Basics Encoding Unit:4 Regressic Random I Unit:5 Data visu	DATA PREPROCESSING & CONCEPT LEARNING tion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection	istic 8 hour bel 8 hour M and 6 hour
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressic Random I Unit:5 Data visu Balancing	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection	istic 8 hour bel 8 hour M and 6 hour n – Data
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressic Random I Unit:5 Data visu Balancing Unit:6	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probabilit nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection g PERFORMANCE EVALUATION in R	istic 8 hour bel 8 hour M and 6 hour n – Data 4 hour
Unit:2 Introduct Manipula Approxin Algorithr Unit:3 R Basics Encoding Unit:4 Regressic Random I Unit:5 Data visu Balancing Unit:6 Loss Fund	DATA PREPROCESSING & CONCEPT LEARNING ion to Data Preprocessing – Reading, Selecting, Filtering Data – Filtering Missing Values – ating, Sorting, Grouping, Rearranging, Ranking Data Formulation of Hypothesis – Probability nately Correct Learning - VC Dimension – Hypothesis elimination – Candidate Elimination m ESSENTIALS OF R - data types and objects - control structures – data frame -Feature Engineering - scaling, Lab g and One Hot Encoding, Reduction MODEL FIT USING R on Models- Linear and Logistic Model, Classification Models – Decision Tree, Naïve Bayes, SV Forest, Clustering Models – K Means and Hierarchical clustering VISUALIZATION alization: Box plot, histogram, scatter plot, heat map – Working with Tableau – Outlier detection	istic 8 hour bel 8 hour M and 6 hour n – Data 4 hour on criteria

Text Book(s)

- 1. Ethem Alpaydin, Introduction to Machine Learning, Fourth Edition, MIT Press, 2020
- 2. Hadley Wickham, Garrett Grolemund, R for data science : Import, Tidy, Transform, Visualize, And Model Data Paperback, 2017

Reference Books

- 1. Han, J., Kamber, M., Pei, J. Data mining concepts and techniques. Morgan Kaufmann. 2011
- 2. Carl Shan, Henry Wang, William Chen, Max Song. The Data Science Handbook: Advice and Insight from 25 Amazing Data Scientists. The Data Science Bookshelf. 2016
- 3. James, G., Witten, D., T., Tibshirani, R. An Introduction to statistical learning with applications in R. Springer. 2013

5CAI4-21: Computer Graphics & Multimedia Lab

Credit: 1 0L+0T+2P

Max. Marks:100 (IA:60, ETE:40) End Term Exam: 2 Hours

,+UT	+2P End Term Exam: 2 Hours
SN	List of Experiments
1	Implementation of Line, Circle and ellipse attributes
2	To plot a point (pixel) on the screen
3	To draw a straight line using DDA Algorithm
4	Implementation of mid-point circle generating Algorithm
5	Implementation of ellipse generating Algorithm
6	Two Dimensional transformations - Translation, Rotation, Scaling, Reflection, Shear
7	Composite 2D Transformations
8	Cohen Sutherland 2D line clipping and Windowing
9	Sutherland – Hodgeman Polygon clipping Algorithm
10	Three dimensional transformations - Translation, Rotation, Scaling
11	Composite 3D transformations
12	Drawing three dimensional objects and Scenes
13	Generating Fractal images

Credit: 1

RAJASTHAN TECHNICAL UNIVERSITY, KOTA B.Tech Computer Science and Engineering (Artificial Intelligence)

5CAI4-22: Compiler Design Lab

Max. Marks: 100 (IA:60, ETE:40)

+ 0 T+	2P End Term Exam: 2 Hours
SN	List of Experiments
1	Introduction: Objective, scope and outcome of the course.
2	To identify whether given string is keyword or not.
3	Count total no. of keywords in a file. [Taking file from user]
4	Count total no of operators in a file. [Taking file from user]
5	Count total occurrence of each character in a given file. [Taking file from user]
6	Write a C program to insert, delete and display the entries in Symbol Table.
7	 Write a LEX program to identify following: 1. Valid mobile number 2. Valid url 3. Valid identifier 4. Valid date (dd/mm/yyyy) 5. Valid time (hh:mm:ss)
8	Write a lex program to count blank spaces, words, lines in a given file.
9	Write a lex program to count the no. of vowels and consonants in a C file.
10	Write a YACC program to recognize strings aaab,abbb using a^nb^n, where b>=0.
11	Write a YACC program to evaluate an arithmetic expression involving operators +,-,* and /.
12	Write a YACC program to check validity of a strings abcd,aabbcd using grammar a^nb^nc^md^m, where n , m>0
13	Write a C program to find first of any grammar.

5CAI4-23: Analysis of Algorithms Lab

edit: +0T+						
SN	List of Experiments					
1	Sort a given set of elements using the Quicksort method and determine the till required to sort the elements. Repeat the experiment for different values of the number of elements in the list to be sorted and plot a graph of the till taken versus n. The elements can be read from a file or can be generated using the random number generator.					
2	Implement a parallelized Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator.					
3	a. Obtain the Topological ordering of vertices in a given digraph. b. Compute the transitive closure of a given directed graph using Warshall's algorithm.					
4	Implement 0/1 Knapsack problem using Dynamic Programming.					
5	From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.					
6	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.					
7	a. Print all the nodes reachable from a given starting node in a digraph using BFS method. b. Check whether a given graph is connected or not using DFS method.					
8.	Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.					
9.	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.					
10	Implement N Queen's problem using Back Tracking.					

5CAI4-24: Advance Java Lab

Cred	lit: 1 Max. Marks: 100 (IA:60, ETE:40)
L+01	Y+2PEnd Term Exam: 2 Hours
SN	List of Experiments
1	Introduction To Swing, MVC Architecture, Applets, Applications and Pluggable Look and Feel, Basic swing components : Text Fields, Buttons, Toggle Buttons, Checkboxes, and Radio Buttons
2	Java database Programming, java.sql Package, JDBC driver, Network Programming With java.net Package, Client and Server Programs, Content And Protocol Handlers
3	RMI architecture, RMI registry, Writing distributed application with RMI, Naming services, Naming And Directory Services, Overview of JNDI, Object serialization and Internationalization
4	J2EE architecture, Enterprise application concepts, n-tier application concepts, J2EE platform, HTTP protocol, web application, Web containers and Application servers
5	Server side programming with Java Servlet, HTTP and Servlet, Servlet API, life cycle, configuration and context, Request and Response objects, Session handling and event handling, Introduction to filters with writing simple filter application
6	JSP architecture, JSP page life cycle, JSP elements, Expression Language, Tag Extensions, Tag Extension API, Tag handlers, JSP Fragments, Tag Files, JSTL, Core Tag library, overview of XML Tag library, SQL Tag library and Functions Tag library

Teaching & Examination Scheme B.Tech Computer Science and Engineering (Artificial Intelligence) 3rd Year - VI Semester

	1	1	THEC	RY			-				
SN	Category		Course	Contact hrs/week		Marks				Cr	
		Code	Title	L	Т	Р	Exam Hrs	IA	ETE	Total	
1	ESC	6CAI3-01	Digital Image Processing	2	0	0	3	30	70	100	2
2		6CAI4-02	Machine Learning	3	0	0	3	30	70	100	3
3		6CAI4-03	Information Security Systems	2	0	0	3	30	70	100	2
4	PCC	6CAI4-04	Computer Architecture and Organization	3	0	0	3	30	70	100	3
5		6CAI4-05	Principles of Artificial Intelligence	2	0	0	3	30	70	100	2
6		6CAI4-06	Cloud Computing	3	0	0	3	30	70	100	3
7		6CAI5-11	Artificial Neural Network								
8	PEC	6CAI5-12	Natural Language Processing (NLP)	2	0	0	3	30	70	100	2
9		6CAI5-13	Predictive Modeling and Analytics								
			Sub Total	17	0	0					17
	Г	1	PRACTICAL &	SES	SIOI	NAL			1		
8		6CAI4-21	Digital Image Processing Lab	0	0	3	2	60	40	100	1.5
9	PCC	6CAI4-22	Machine Learning Lab	0	0	3	2	60	40	100	1.5
10		6CAI4-23	Python Lab	0	0	3	2	60	40	100	1.5
11		6CAI4-24	Mobile Application Development Lab	0	0	3	2	60	40	100	1.5
12	SODECA	6CAI8-00	Social Outreach, Discipline & Extra Curricular Activities						100	100	0.5
			Sub- Total	0	0	12					6.5
		тота	L OF III SEMESTER	17	0	12					23.5

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

6CAI3-01: Digital Image Processing

Credit: 2Max. Marks: 100(IA:30,2L+0T+0PEnd Term Example			
SN	Contents	Hours	
1	Introduction: Objective, scope and outcome of the course.	01	
2	Introduction to Image Processing: Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation.	04	
3	Image Transformation & Filtering: Intensity transform functions, histogram processing, Spatial filtering, Fourier transforms and its properties, frequency domain filters, colour models, Pseudo colouring, colour transforms, Basics of Wavelet Transforms.	06	
4	Image Restoration: Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering.	07	
5	Image Compression: Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression.	05	
6	Image Segmentation & Representation: Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, Region Based Segmentation, Boundary representation, Boundary Descriptors.	05	
	Total	28	

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA B.Tech Computer Science and Engineering (Artificial Intelligence)

6CAI4-02: Machine Learning

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

: 3 Hou	3L+OT+OP End Term Exam	
Hours	SN Contents	
01	Introduction: Objective, scope and outcome of the course.	1
09	Supervised learning algorithm: Introduction, types of learning, application, Supervised learning: Linear Regression Model, Naive Bayes classifier Decision Tree, K nearest neighbor, Logistic Regression, Support Vector Machine, Random Forest algorithm	2
08	Unsupervised learning algorithm: Grouping unlabelled items using k-means clustering, Hierarchical Clustering, Probabilistic clustering, Association rule mining, Apriori Algorithm, f-p growth algorithm, Gaussian mixture model.	3
08	Introduction to Statistical Learning Theory , Feature extraction - Principal component analysis, Singular value decomposition. Feature selection – feature ranking and subset selection, filter, wrapper and embedded methods, Evaluating Machine Learning algorithms and Model Selection.	4
08	Semi supervised learning, Reinforcement learning: Markov decision process (MDP), Bellman equations, policy evaluation using Monte Carlo, Policy iteration and Value iteration, Q-Learning, State-Action-Reward-State-Action (SARSA), Model-based Reinforcement Learning.	5
08	Recommended system, Collaborative filtering, Content-based filtering Artificial neural network, Perceptron, Multilayer network, Backpropagation, Introduction to Deep learning.	6
42	Total	

6CAI4-03: Information Security System

Credit:2 Max. Marks: 100(IA:30 2L+0T+0P End Term Exam				
SN Conte		Hours		
1 Introduction: Object	ive, scope and outcome of the course.	01		
classical encryption	curity attacks: services and mechanism, n techniques- substitution ciphers and , cryptanalysis, stream and block ciphers.	06		
standard (DES) with	ers : Block Cipher structure, Data Encryption example, strength of DES, Design principles of th structure, its transformation functions, key nd implementation.	06		
	and triple DES, Electronic Code Book, Cipher e, Cipher Feedback mode, Output Feedback			
	ystems with Applications: Requirements and cryptosystem, Rabin cryptosystem, Elgamal curve cryptosystem.	06		
functions, its require	Functions, their applications: Simple hash ments and security, Hash functions based on g, Secure Hash Algorithm (SHA).			
based on Hash Fund Signature, its propert	on Codes, its requirements and security, MACs ctions, Macs based on Block Ciphers. Digital ties, requirements and security, various digital Elgamal and Schnorr), NIST digital Signature	05		
using symmetric and keys, X.509 certifica authentication with s	and distribution: symmetric key distribution asymmetric encryptions, distribution of public ates, Public key infrastructure. Remote user ymmetric and asymmetric encryption, Kerberos	04		
	ts and approaches, SSL architecture and yer security, HTTPS and SSH.			
	Total	28		

6CAI4-04: Computer Architecture and Organization

Credit: 3 3L+0T+0					
SN		Hours			
1 Intro	oduction: Objective, scope and outcome of the course.	01			
Com Micr lang Bus Micr unit Com Instr and	puter Data Representation: Basic computer data types, plements, Fixed point representation, Register Transfer and o-operations: Floating point representation, Register Transfer uage, Register Transfer, Bus and Memory Transfers (Tree-State Buffers, Memory Transfer), Arithmetic Micro-Operations, Logic o-Operations, Shift Micro-Operations, Arithmetic logical shift Basic Computer Organization and DesignInstruction codes, puter registers, computer instructions, Timing and Control, ruction cycle, Memory-Reference Instructions, Input-output interrupt, Complete computer description, Design of Basic puter, design of Accumulator Unit.	10			
3 Prog Lang Prog Prog	gramming The Basic Computer: Introduction, Machine guage, Assembly Language, assembler, Program loops, ramming Arithmetic and logic operations, subroutines, I-O ramming. Micro programmed Control: Control Memory, Address lencing, Micro program Example, design of control	7			
Mod Instr Flyn Pipe	tral Processing Unit: Introduction, General Register anization, Stack Organization, Instruction format, Addressing es, data transfer and manipulation, Program Control, Reduced ruction Set Computer (RISC)Pipeline And Vector Processing, n's taxonomy, Parallel Processing, Pipelining, Arithmetic line, Instruction, Pipeline, RISC Pipeline, Vector Processing, y Processors	8			
5 Com Mult Algo Unit Asyn Inter	puter Arithmetic: Introduction, Addition and subtraction, iplication Algorithms (Booth Multiplication Algorithm), Division rithms, Floating Point Arithmetic operations, Decimal Arithmetic	8			
6 Men Men Mult Inter proc	hory Organization: Memory Hierarchy, Main Memory, Auxiliary hory, Associative Memory, Cache Memory, Virtual Memory. Eipreocessors: Characteristics of Multiprocessors, econnection Structures, Inter-processor Arbitration, Inter- essor Communication and Synchronization, Cache Coherence, red Memory Multiprocessors. Office of Dean Academic Affairs	8			
	Rajasthan Technical University, Kot	a 42			

6CAI4-05: Principles of Artificial Intelligence

Credit: 2 Max. Marks: 100(IA:3) 2L+0T+0P End Term Exam		• •
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	01
2	Introduction to AI and Intelligent agent: Different Approach of AI, Problem Solving : Solving Problems by Searching, Uninformed search, BFS, DFS, Iterative deepening, Bi directional search, Hill climbing, Informed search techniques: heuristic, Greedy search, A* search, AO* search, constraint satisfaction problems.	03
3	Game Playing: Minimax, alpha-beta pruning, jug problem, chess problem, tiles problem	06
4	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order logic, situation calculus. Theorem Proving in First Order Logic. Planning, partial order planning. Uncertain Knowledge and Reasoning, Probabilities, Bayesian Networks.	06
5	Learning: Overview of different forms of learning, Supervised base learning: Learning Decision Trees, SVM, Unsupervised based learning, Market Basket Analysis, Neural Networks.	07
6	Introduction to Natural Language Processing: Different issue involved in NLP, Expert System, Robotics.	05
	Total	28

Credit: 3

RAJASTHAN TECHNICAL UNIVERSITY, KOTA **B.Tech Computer Science and Engineering (Artificial Intelligence)**

6CAI4-06: Cloud Computing

Max. Marks: 100(IA:30, ETE:70)

3L+0T+0P End Term Exam:		
SN Contents		Hours
1	Introduction: Objective, scope and outcome of the course.	01
	Introduction: Objective, scope and outcome of the course. Introduction Cloud Computing: Nutshell of cloud computing, Enabling Technology, Historical development, Vision, feature Characteristics and components of Cloud Computing. Challenges, Risks and Approaches of Migration into Cloud. Ethical Issue in Cloud Computing, Evaluating the Cloud's Business Impact and economics, Future of the cloud. Networking Support for Cloud Computing. Ubiquitous Cloud and the Internet of Things	06
3	Cloud Computing Architecture: Cloud Reference Model, Layer and	
	Types of Clouds, Services models, Data centre Design and interconnection Network, Architectural design of Compute and Storage Clouds. Cloud Programming and Software: Fractures of cloud programming, Parallel and distributed programming paradigms-Map Reduce, Hadoop, High level Language for Cloud. Programming of Google App engine.	10
4	Virtualization Technology: Definition, Understanding and Benefits	
	of Virtualization. Implementation Level of Virtualization, Virtualization Structure/Tools and Mechanisms, Hypervisor VMware, KVM, Xen. Virtualization: of CPU, Memory, I/O Devices, Virtual Cluster and Resources Management, Virtualization of Server, Desktop, Network, and Virtualization of data-centre.	10
5	Securing the Cloud: Cloud Information security fundamentals,	
	Cloud security services, Design principles, Policy Implementation, Cloud Computing Security Challenges, Cloud Computing Security Architecture . Legal issues in cloud Computing. Data Security in Cloud: Business Continuity and Disaster Recovery, Risk Mitigation , Understanding and Identification of Threats in Cloud, SLA-Service Level Agreements, Trust Management	08
6	Cloud Platforms in Industry: Amazon web services , Google	
	AppEngine, Microsoft Azure Design, Aneka: Cloud Application Platform -Integration of Private and Public Clouds Cloud applications: Protein structure prediction, Data Analysis, Satellite Image Processing, CRM	07
	Total	42
	Office of Dean Academic Affairs	

TEXT BOOKS

- 1. Anthony T. Velte Toby J. Velte, Robert Elsenpeter, "Cloud Computing: A Practical Approach", 2010, The McGraw-Hill.
- 2. Dr. Kris Jamsa, "Cloud Computing: SaaS, PaaS, IaaS, Virtualization and more", Wiley Publications, ISBN: 978-0-470-97389-9
- 3. Gautam Shrof, "ENTERPRISE CLOUD COMPUTING Technology Architecture, Applications, Cambridge University Press, ISBN: 9780511778476

REFERENCE BOOKS

- 1. Cloud computing for Dummies (November 2009) Judith Hurwitz, Robin Bloor, Marcia Kaufman, Fern Halper
- 2. IBM Cloud Computing http://www.ibm.com/cloud-computing/us/en/

6CAI5-11/6AID5-11: Artificial Neural Network

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

- 1. To understand the biological neural network and to model equivalent neuron models.
- 2. To understand the architecture, learning algorithm and issues of various feed forward and feedback neural networks.

Course Outcomes: By completing this course the student will be able to:

- Create different neural networks of various architectures both feed forward and feed backward.
- Perform the training of neural networks using various learning rules.
- Perform the testing of neural networks and do the perform analysis of these networks for various pattern recognition applications.

Detailed Syllabus: (per session plan)

UNIT Contents

1 Introduction: A Neural Network, Human Brain, Models of a Neuron, Neural Networks viewed as Directed Graphs, Network Architectures, Knowledge Representation, Artificial

Intelligence and Neural Networks.

Learning Process: Error Correction Learning, Memory Based Learning, Hebbian Learning, Competitive, Boltzmann Learning, Credit Assignment Problem, Memory, Adaption, Statistical Nature of the Learning Process.

2 Single Layer Perceptrons: Adaptive Filtering Problem, Unconstrained Organization Techniques, Linear Least Square Filters, Least Mean Square Algorithm, Learning Curves, Learning Rate Annealing Techniques, Perceptron –Convergence Theorem, Relation Between Perceptron and Bayes Classifier for a Gaussian Environment. Multilayer Perceptron: Back Propagation Algorithm XOR Problem, Heuristics, Output

Representation and Decision Rule, Computer Experiment, Feature Detection.

3 Back Propagation: Back Propagation and Differentiation, Hessian Matrix, Generalization,

Cross Validation, Network Pruning Techniques, Virtues and Limitations of Back Propagation Learning, Accelerated Convergence, Supervised Learning.

- 4 Self-Organization Maps (SOM): Two Basic Feature Mapping Models, Self-Organization Map, SOM Algorithm, Properties of Feature Map, Computer Simulations, Learning Vector
- Quantization, Adaptive Patter Classification.
- 5 Neuro Dynamics: Dynamical Systems, Stability of Equilibrium States, Attractors, Neuro Dynamical Models, Manipulation of Attractors as a Recurrent Network Paradigm. Hopfield Models – Hopfield Models, Computer Experiment.

TEXT BOOKS:

1. Neural Networks a Comprehensive Foundations, Simon Haykin, PHI edition.

REFERENCE BOOKS:

1. Artificial Neural Networks - B. Vegnanarayana Prentice Hall of India Pleta 2005mic Affairs

2. Neural Networks in Computer Intelligence, Li Min Fu MC GRAW HILLTechnical University, Kota

Syllabus of 3rd Year B. Tech. (CAI) for students admitted in Session 2021-22 onwards.

EDUCATION 2003:

- 3. Neural Networks -James A Freeman David M S Kapura Pearson Education 2004.
- 4. Introduction to Artificial Neural Systems Jacek M. Zurada, JAICO Publishing House Ed. 2006.

6CAI5-12/6AID5-12: Natural Language Processing (NLP)

Credit: 2 2L+0T+0P

Max. Marks: 100(IA:30, ETE:70) End Term Exam: 3 Hours

Course Objectives:

 Understanding biology of Natural Language Processing; Place and Manner of Articulation; Word Boundary Detection; Argmax based computations; Morphology fundamentals; Morphological Diversity of Indian Languages; Morphology Paradigms; Finite State Machine Based Morphology; Automatic Morphology Learning; Shallow Parsing; Named Entities; Maximum Entropy Models; Random Fields.

Course Outcomes: After completion of the course, students would be able to:

This course will examine the state-of-the-art in applied NLP, with an emphasis on how well the algorithms work and how they can be used (or not) in applications. Today there are many ready-to-use plug-and-play software tools for NLP algorithms. For this reason, this course will emphasize getting facile with quick programs using existing tools. The intended learning outcomes are for students to:

- 1. Learn about major NLP issues and solutions
- 2. Become agile with NLP programming
- 3. Be able to asses NLP problems
- 4. Be able to get the gist of relevant research papers
- 5. Understand Natural language understanding, processing, generation.

Detailed Syllabus: (per session plan)

UNIT Contents

- 1 Introduction, Machine Learning and NLP, ArgMax Computation, Syntactic Collocations; More on Term Weighting
- 2 Practice with ipython Notebooks, NLTK Text; Adopt a text collection, Tokenize Your Text Collection, Create a First Look at Your Text Collection, Parts of Speech and Tagging, Part of WSD : WordNet, Wordnet; Application in Query Expansion, Wiktionary; semantic relatedness, Measures of WordNet Similarity, Similarity Measures, Resnick's work on WordNet Similarity.
- 3 WordNet Lexical Relations, Work on your Keyphrase assignment, Keyphrase Identification Assignment, Run Keyphrase Extraction on Mystery Text, Names features Parsing Algorithms, Evidence for Deeper Structure; Top Down Parsing Algorithms, Noun Structure; Top Down Parsing Algorithms- contd, Non-noun Structure and Parsing Algorithms
- **4** Probabilistic parsing; sequence labeling, PCFG, Probabilistic parsing; PCFG (contd.), Probabilistic parsing: Training issues Pandas Intro and Readings, Read About Syntactic and Semantic Parsing Review, Parsing, and Logic, Kaggle-based Text Classification Assignment
- **5** Arguments and Adjuncts, Probabilistic parsing; inside-outside probabilities Text Clustering, Distributional Semantics readings, Clustering and Distributional Semantics Morphology, Graphical Models for Sequence Labelling in NLP, Graphical Models for Sequence Labelling in NLP (contd.)

TEXT BOOKS:

1. Natural Language Processing with Python online book: http://www.nltk.org/book/

2. Speech and Language Processing, 2nd Edition 2nd Edition by Daniel Jurafsky, James H. Martin **REFERENCE BOOKS:**

1. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit 1st Edition by Steven Bird, Ewan Klein, Edward Loper.

2. Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning 1st Edition by Benjamin Bengfort, Rebecca Bilbro, Tony Ojeda.

3. Natural Language Processing and Computational Linguistics: A practical guide to text analysis with Python, Gensim, spaCy, and Keras Paperback – June 29, 2018 by Bhargav Srivinasa-Desikan.

6CAI5-13/6CDS5-12: Predictive Modeling and Analytics

Credit: 3

Max. Marks: 100(IA:30, ETE:70)

	Y+OP End Term Exam	m: 3 Hoi
SN	Contents	Hours
1 Ir	ntroduction: Objective, scope and outcome of the course.	01
2 D A D si	Predictive Modeling- Predictive Analytics in the Wild – Exploring Data types and associated Techniques - Complexities of data - Applying Models: Models and simulation, Categorizing Models, Describing, summarizing data, and decisions – Identify imilarities in Data: Data Clustering, converting Raw Data into a Matrix, Identify K-groups in Data.	06
3 cl	Data Classification-I: Background – Exploring Data classification process - Using Data Classification to predict the uture: Decision tree, Algorithm for generating Decision Trees, Support Vector Machine.	10
	Data Classification-II: Ensemble Methods to Boost Prediction Accuracy: Naïve Bayes Classification Algorithm, The Markov	
	Model, Linear Regression, Neural Networks – Deep learning.	08
5 M		08
5 (D) 5 (D) 5 (D) 6 (D) 7 (D)	Model, Linear Regression, Neural Networks – Deep learning. Data Prediction: Adopt predictive analytics - Processing data: dentifying, cleaning, generating, reducing dimensionality of data – Structuring Data – Build predictive model: develop and test the	

TEXT BOOKS

1. Anasse Bari, Mohamed Chaouchi, Tommy Jung, "Predictive Analytics For Dummies", Wiley Publisher, 2nd Edition, 2016.

REFERENCE BOOKS

- 1. Bertt Lantz, Machine Learning with R: Expert techniques for predictive modeling to solve all your data analysis problems, Pack Publisher, 2nd Edition, 2015
- Aurelien, "Hands-On Machine Learning with Scikit-Learn & TensorFlow", O'Reilly Publisher, 5th Edition, 2017.
 Diffice of Dean Academic Affairs
 Painsther Technical University Vision

Rajasthan Technical University, Kota

6CAI4-21: Digital Image Processing Lab

	Credit: 1.5 Max. Marks: 100(IA:60, ETE:4 0L+0T+3P End Term Exam: 2 Hou		
SN	List of Experiments		
1	Point-to-point transformation. This laboratory experiment provides for thresholding an image and the evaluation of its histogram. Histogram equalization. This experiment illustrates the relationship among the intensities (gray levels) of an image and its histogram.		
2	Geometric transformations. This experiment shows image rotation, scaling, and translation. Two-dimensional Fourier transform		
3	Linear filtering using convolution. Highly selective filters.		
4	Ideal filters in the frequency domain. Non Linear filtering using convolutional masks. Edge detection. This experiment enables students to understand the concept of edge detectors and their operation in noisy images.		
5	Morphological operations: This experiment is intended so students can appreciate the effect of morphological operations using a small structuring element on simple binary images. The operations that can be performed are erosion, dilation, opening, closing, open-close, close-open.		

6CAI4-22: Machine Learning Lab

	t: 1.5 Max. Marks: 100(IA:60, ETE:40) T+3P End Term Exam: 2 Hours
SN	List of Experiments
1	Implement and demonstrate the FIND-Salgorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.
2	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm output a description of the set of all hypotheses consistent with the training examples.
3	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge toclassify a new sample
4	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets
5	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.
6	Assuming a set of documents that need to be classified, use the naïve Bayesian Classifier model to perform this task. Built-in Java classes/API can be used to write the program. Calculate the accuracy, precision, and recall for your data set.
7	Write a program to construct aBayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.
8	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.
9	Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.
10	Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.
	Office of Dean Academic Affairs

Rajasthan Technical University, Kota

6CAI4-23: Python Lab

	lit: 1.5 Max. Marks: 100(IA:60, ETE:40)
SN	T+3P End Term Exam: 2 Hours List of Experiments End Term Exam: 2 Hours
1	
2	Write a program to demonstrate basic data type in python.
4	Write a program to compute distance between two points taking input from the user
	Write a program add.py that takes 2 numbers as command line arguments and
	prints its sum.
3	Write a Program for checking whether the given number is an even number or
3	not.
	Using a for loop, write a program that prints out the decimal equivalents of
	$1/2, 1/3, 1/4, \ldots, 1/10$
4	Write a Program to demonstrate list and tuple in python. Write
-	a program using a for loop that loops over a sequence.
	Write a program using a while loop that asks the user for a number, and prints
	a countdown from that number to zero.
5	Find the sum of all the primes below two million.
	By considering the terms in the Fibonacci sequence whose values do not
	exceed four million, WAP to find the sum of the even-valued terms.
6	Write a program to count the numbers of characters in the string and store
	them in a dictionary data structure
	Write a program to use split and join methods in the string and trace a
	birthday of a person with a dictionary data structure
7	Write a program to count frequency of characters in a given file. Can you use
	character frequency to tell whether the given file is a Python program file, C
	program file or a text file?
	Write a program to count frequency of characters in a given file. Can you use
	character frequency to tell whether the given file is a Python program file, C
	program file or a text file?
0	Write a program to print each line of a file in reverse order.
8	Write a program to compute the number of characters, words and lines in a
	file.
9	Write a function nearly equal to test whether two strings are nearly equal. Two
	strings a and b are nearly equal when a can be generated by a single mutation
	on.
	Write function to compute gcd, lcm of two numbers. Each function shouldn't
	exceed one line.
10	Write a program to implement Merge sort.
	Write a program to implement Selection sort, Insertion sort.
	Office of Doon Academic Affairs

6CAI4-24: Mobile Application Development Lab

Cred	it: 1.5 Max. Marks: 100(IA:60, ETE:40)
0L+(T+3P End Term Exam: 2 Hours
SN	List of Experiments
1	To study Android Studio and android studio installation. Create "Hello World" application.
2	To understand Activity, Intent, Create sample application with login module.(Check username and password).
3	Design simple GUI application with activity and intents e.g. calculator.
4	Develop an application that makes use of RSS Feed.
5	Write an application that draws basic graphical primitives on the screen
6	Create an android app for database creation using SQLite Database.
7	Develop a native application that uses GPS location information
8	Implement an application that writes data to the SD card.
9	Design a gaming application
10	Create an application to handle images and videos according to size.

SEMESTER-VII & VIII

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

Teaching & Examination Scheme

B.Tech. : Computer Science and Engineering (AI) 4th Year - VII Semester

			THEO	RY							
SN	0		Contact hrs/week			Marks				Cr	
	ory	Code	Title				Exm				
				L	Т	Р	Hrs	IA	ETE	Total	
1	PCC	7CAI4-01	Deep Learning and Its Applications	3	0	0	3	30	70	100	3
2	OE		Open Elective – I	3	0	0	3	30	70	100	3
			Sub Total	6	0	0	6	60	140	200	6
			PRACTICAL &	SESS	SION	IAL					
3	PCC	7CAI4-21	Deep Learning and Its Application Lab	0	0	4	2	60	40	100	2
4	PCC	7CAI4-22	Computer Vision Lab	0	0	4	2	60	40	100	2
6	PSIT	7CAI7-30	Industrial Training	1	0	0		60	40	100	2.5
7	PSIT	7CAI7-40	Seminar	2	0	0		60	40	100	2
8	SODE CA	7CAI8-00	Social Outreach, Discipline &Extra Curricular Activities						100	100	0.5
			Sub- Total	3	0	8	4	240	260	500	9
		т	OTAL OF VII SEMESTER	6	0	8	10	300	400	700	15

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

Teaching & Examination Scheme

B.Tech. : Computer Science and Engineering (AI)

THEORY Contact Course Marks Cr SN Categ hrs/week ory Title Code Exm Т Р ETE Total L IA Hrs PCC/ 1 8CAI4-01 70 100 **Big Data Analytics** 3 0 0 3 30 3 PEC 2 0 0 3 70 OE 3 30 100 3 Open Elective – II **Sub Total** 0 6 200 6 0 60 140 6 **PRACTICAL & SESSIONAL** 3 **Big Data Analytics Lab** 8CAI4-21 2 2 60 40 100 0 0 1 PCC 4 8CAI4-22 **Robot Programing Lab** 2 2 60 40 100 0 0 1 3 0 5 PSIT 8CAI7-50 Project 0 60 40 100 7 Social Outreach, SODE 6 Discipline &Extra 100 8CAI8-00 100 0.5 CA **Curricular Activities** 400 Sub- Total 3 0 4 4 180 220 9.5 9 0 240 360 600 **TOTAL OF VIII SEMESTER** 4 10 15.5

4th Year – VIII Semester

L: Lecture, T: Tutorial, P: Practical, Cr: Credits

ETE: End Term Exam, IA: Internal Assessment

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

List and syllabus for Open Electives CS (AI)

Subject Code	Title	
	Open Elective - I	
7AG6-60.1	Human Engineering and Safety	
7AG6-60.2	Environmental Engineeringand Disaster Management	
7AID6-60.1	Data Visualization and Communication	
7AN6-60.1	Aircraft Avionic System	
7AN6-60.2	Non-Destructive Testing	1
7CH6-60.1	Optimization Techniques	
7CH6-60.2	Sustainable Engineering Introduction to Ceramic	
7CR6-60.1	Science & Technology	
7CR6-60.2	Plant, Equipment and Furnace Design	
7CE6-60.1	Environmental Impact Analysis	
7CE6-60.2	Disaster Management	
7EE6-60.1	Electrical Machines and Drives	
7EE6-60.2	Power Generation Sources.	
7EC6-60.1	Principle of Electronic communication	
7EC6-60.2	Micro and Smart System Technology	
7ME6-60.1	Finite Element Analysis	
7ME6-60.2	Quality Management	
7MI6-60.1	Rock Engineering	
7MI6-60.2	Mineral Processing	1
7PE6-60.1	Pipeline Engineering	
7PE6-60.2	Water Pollution control Engineering	
7TT6-60.1	Technical Textiles	
7TT6-60.2	Garment Manufacturing Technology	

- Chitt	T: 1 -
Subject Code	Title
	Open Elective - II
8AG6-60.1	Energy Management
8AG6-60.2	Waste and By-product Utilization
8AID6-60.1	Fundamentals of Robotic System
8AN6-60.1	Finite Element Methods
8AN6-60.2	Factor of Human Interactions
8CH6-60.1	Refinery Engineering Design
8CH6-60.2	Fertilizer Technology
8CR6-60.1	Electrical and Electronic Ceramics
8CR6-60.2	Biomaterials
8CE6-60.1	Composite Materials
8CE6-60.2	Fire and Safety Engineering
8EE6-60.1	Energy Audit and Demand side Management
8EE6-60.2	Soft Computing
8EC6-60.1	Industrial and Biomedical applications of RF Energy
8EC6-60.2	Robotics and control
8ME6-60.1	Operations Research
8ME6-60.2	Simulation Modeling and Analysis
8MI6-60.1	Experimental Stress Analysis
8MI6-60.2	Maintenance Management
8PE6-60.1	Unconventional Hydrocarbon Resources
8PE6-60.2	Energy Management & Policy
8TT6-60.1	Material and Human Resource Management
8TT6-60.2	Disaster Management

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

7CAI4-01: Deep Learning and Its Applications

Credit: 3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70) End Term Exam: 3 Hours

3L+	2+01+0P End Term Exam: 5 I		
SN	Contents		
1	Introduction: Objective, scope and outcome of the course.	01	
2	Deep Networks Basics: Learning algorithms, Maximum likelihood estimation, Building machine learning algorithm, Neural Networks Multilayer Perceptron, Back-propagation algorithm and its variants Stochastic gradient decent, Curse of Dimensionality, Deep feed forward networks.	08	
3	Deep Learning Architectures: Machine Learning and Deep learning, Representation Learning, Width and Depth of Neural Networks, Activation Functions: RELU,LRELU,ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders, Deep Learning Applications.	08	
4	Convolutional Neural Networks: Architectural Overview, Motivation, Layers, Filters, Parameter sharing, Regularization, Popular CNN Architectures: ResNet, Alexnet – Applications.	07	
5	Sequence Modelling-Recurrent And Recursive Nets: Recurrent Neural Networks, Bidirectional RNNs, Encoder –decoder sequence to sequence architectures – BPTT for training RNN, Long Short Term Memory Networks. Computer Vision - Speech Recognition - Natural language Processing, Case studies in classification, Regression and deep networks.	09	
6	Auto Encoders: Under complete Auto encoder, Regularized Auto encoder, stochastic Encoders and Decoders, Contractive Encoders.	07	
	Total	40	

ТЕХ	TEXT BOOK		
1	Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016 .		
2	Michael A. Nielsen, Neural Networks and Deep Learning , Determination Press, 2015		
3	Yoshua Bengio, Learning Deep Architectures for AI, now Publishers Inc., 2009		
4	Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017		
REF	FERENCE BOOKS		
1	Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks" Apress, 2018		
2	Antonio Gulli, Sujit Pal "Deep Learning with Keras" Pact Publishers, 2017		
3	Francois Chollet "Deep Learning with Python", Manning Publications, 2017		

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

7CAI4-21: Deep Learning and its Applications Lab

Credit: 2 0L+0T+4P

Max. Marks: 100 (IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
1	Build a deep neural network model start with linear regression usinga) Single variableb) Multiple variables
2	 Write a program to convert : a) Speech into text b) Text into speech c) Video into frames
3	Build a feed forward neural network for prediction of logic gates.
4	Write a program for character recognition using: a) CNN b) RNN
5	Write a program to predict a caption for a sample image using : a) LSTM b) CNN
6	Write a program to develop :a) Autoencoders using MNIST Handwritten Digits.b) GAN for Generating MNIST Handwritten Digits.

REFERENCE BOOKS	
1	Navin Kumar Manaswi ,Deep Learning with Applications Using Python Chatbots and Face, Object, and Speech Recognition With TensorFlow and Keras , Apress,2018.
2	Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2016.
3	Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", O'Reilly Media, First Edition, 2017

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

7CAI4-22: Computer Vision Lab

Credit:	2
0L+0T-	+4P

Max. Marks: 100 (IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
1	Implementing various basic image processing operations in python/matlab/open-CV:
	Reading image, writing image, conversion of images, and complement of an image.
2	Implement contrast adjustment of an image. Implement Histogram processing and
2	equalization.
3	Use of Fourier transform for filtering the image.
4	Utilization of SIFT and HOG features for image analysis.
5	Performing/Implementing image segmentation.
6	Object detection and Recognition on available online image datasets using YOLO Model.

REFERENCE BOOKS	
1	"OpenCV-Python Tutorials" (Official OpenCV documentation and tutorial), Online tutorials documentation for MATLAB and OpenCV.
2	"Python for Computer Vision Handbook" by Benjamin Root.
3	YOLO Model documentation and tutorials,

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

8CAI4-01: Big Data Analytics

Credit: 3 3L+0T+0P

Max. Marks: 100 (IA:30, ETE:70)

		0 110 110
SN	Contents	Hours
1	Introduction: Objective, scope and outcome of the course.	1
2	Introduction to Big Data: Big data features and challenges, Problems with Traditional Large-Scale System , Sources of Big Data, 3 V's of Big Data, Types of Data.	5
3	Working with Big Data: Google File System. Hadoop Distributed File System (HDFS) - Building blocks of Hadoop (Namenode. Data node. Secondary Namenode. Job Tracker. Task Tracker), Introducing and Configuring Hadoop cluster (Local. Pseudo-distributed mode, Fully Distributed mode). Configuring XML files.	7
4	Writing MapReduce Programs: A Weather Dataset. Understanding Hadoop API for MapReduce Framework (Old and New). Basic programs of Hadoop MapReduce: Driver code. Mapper code, Reducer code. Record Reader, Combiner, Partitioner.	5
5	Hadoop I/O: The Writable Interface. Writable Comparable and comparators. Writable Classes: Writable wrappers for Java primitives. Text. Bytes Writable. Null Writable, Object Writable and Generic Writable. Writable collections. Implementing a Custom Writable: Implementing a Raw Comparator for speed, Custom comparators.	7
6	Pig: Hadoop Programming Made Easier Admiring the Pig Architecture, Going with the Pig Latin Application Flow. Working through the ABCs of Pig Latin. Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces, Scripting with Pig Latin.	7
7	Applying Structure to Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive. Examining the Hive Clients. Working with Hive Data Types. Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data	8
	Total	40

TEX	TEXT BOOK	
1	Saumyadipta Pyne "Big Data Analytics: Methods and Applications", CRC Press	
2	Simon Cleveland "Big Data Analytics: Tools and Technology for Effective Planning", CRC Press	
3	Tom White "Hadoop: The Definitive Guide", O'Reilly Media	
REF	REFERENCE BOOKS	
1	Thomas H. Davenport "Big Data at Work: Dispelling the Myths, Uncovering the Opportunities" Harvard Business Review Press	
2	Foster Provost and Tom Fawcett "Data Science for Business", O'Reilly Media	
3	Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman "Mining of Massive Datasets" Cambridge University Press	

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

8CAI4-21: Big Data Analytics Lab

Credit: 1 0L+0T+2P Max. Marks: 100 (IA:60, ETE:40) End Term Exam: 2 Hours

SN	List of Experiments
1	Implement the following Data structures in Java i) Linked Lists ii) Stacks iii) Queues iv) Set v) Map
2	Perform setting up and Installing Hadoop in its three operating modes: Standalone, Pseudodistributed, Fully distributed.
3	 Implement the following file management tasks in Hadoop: Adding files and directories Retrieving files Deleting files Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities.
4	Run a basic Word Count Map Reduce program to understand Map Reduce Paradigm.
5	Write a Map Reduce program that mines weather data. Weather sensors collecting data everyhour at many locations across the globe gather a large volume of log data, which is a goodcandidate for analysis with MapReduce, since it is semi structured and record-oriented.
6	Implement Matrix Multiplication with Hadoop Map Reduce
7	Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data.
8	Install and Run Hive then use Hive to create, alter, and drop databases, tables, views, functions, and indexes.
9	Solve some real life big data problems.
L	

REFERENCE BOOKS	
1	Ted Malaska and Jonathan Seidman "Hadoop Application Architectures"
2	Nathan Marz and James Warren"Big Data: Principles and best practices of scalable realtime data systems"
3	John W. Foreman "Data Smart: Using Data Science to Transform Information into Insight"

Scheme & Syllabus

IV Year- VII & VIII Semester: B. Tech. Computer Science and Engineering (AI)

8CAI4-22: Robot Programming Lab

Credit: 1 Max. Marks: 100 (IA:60, ETE:40	
0L+0T+2P End Term Exam: 2H	
SN	List of Experiments
1	An introduction to robot programming.
2	Object Detection and Tracking Robot: Create a robot with a camera that can detect and track objects in its field of view. Implement object detection algorithms and use them for tracking and interaction.
3	Autonomous Maze Solving Robot: Construct a robot that can autonomously navigate through a maze from the start to the finish. Implement maze-solving algorithms like A* or Dijkstra's algorithm.
4	Reinforcement Learning for Robotic Arm Control: Train a robotic arm to perform tasks using reinforcement learning. Implement algorithms like Deep Q-Networks (DQN) or Proximal Policy Optimization (PPO) to optimize arm movements.
5	Human-Robot Interaction using Natural Language Processing (NLP): Design a robot that can understand and respond to voice commands. Use NLP techniques to process and interpret human language to control the robot's actions.
6	Robot-Assisted Healthcare and Patient Interaction : Design a robot that can assist patients and healthcare professionals. Use AI to understand patient needs, provide information, and interact in a helpful and empathetic manner.
7	Gesture Recognition and Control of Robotic Arm: Build a robotic arm that responds to hand gestures. Train a machine learning model to recognize gestures, and use them to control the movements of the robotic arm.
8	Obstacle Avoidance Robot with Ultrasonic Sensors: Develop a robot capable of navigating an environment while avoiding obstacles using ultrasonic sensors. Implement basic obstacle avoidance algorithms and refine the robot's movements.

REFERENCE BOOKS	
1	Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics,MIT press
2	Francesco Amigoni and Matteo Matteucci, Artificial Intelligence for R obotics, Springer
3	Cameron Hughes and Tracey Hughes, Robot Programming: A Guide to Controlling Autonomous Robots, QUE Publishing