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Abstract: Milling is a crucial manufacturing process for precision components in industries like aerospace and
automobiles. This review delves into the past, present, and future of milling. It highlights that limited research
exists on the historical context, current state, and future prospects of milling. In today's era of information and
environmental consciousness, sustainability is a growing concern in all research domains, including milling.
Research in milling is increasingly focused on ecological aspects such as reducing cutting fluid consumption
through automatic flood cooling, minimum quantity lubrication, cryogenics, hybrid lubrication, and enhancing
tool life via critical tool modifications. Notable findings include cutting tool enhancements (coating/texturing),
advanced cooling techniques (e.g., MQL, Nano MQL, Cryogenic cooling), automatic flood cooling with on/off
control, and versatile coolant supply methods, all poised to be pivotal research areas.
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1. INTRODUCTION

Sustainable manufacturing (SM) practices have
gained prominence due to global market competition
and rising carbon emissions. Industries are
increasingly recognizing the urgent need to address
environmental impacts and resource depletion. SM
aligns with the idea of "sustainable development"
outlined in the Brundtland report, aiming to meet
present needs without compromising those of future
generations [1]. Sustainability encompasses three
dimensions: environmental, economic, and societal
aspects [2], prompting governments to enact robust
legislation to combat pollution and health issues
stemming from modern manufacturing. The core
principle of triple bottom line sustainability
underscores the interconnectedness of the economy,
society, and environment. The U.S. Department of
Commerce defines sustainable manufacturing as
producing goods with processes that minimize
environmental harm, conserve resources, ensure
safety for all stakeholders, and remain economically
viable [3]. Essentially, it involves efficient resource
use, seeking renewable alternatives, and potentially
delivering both environmental and financial
advantages [4]. As consumer preferences and
environmental regulations intensify, industries
increasingly focus on reducing their environmental
footprint while complying with stringent rules.
Sustainable machining, situated within the broader
context of sustainable manufacturing, represents a
critical frontier in modern industrial practices [5].
This paradigm shift in machining processes is fueled
by the urgent need to minimize the environmental
footprint of Sustainable machining transcends
conventional approaches by prioritizing resource
efficiency, reducing energy consumption, curbing
emissions, and incorporating innovative cooling and
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lubrication techniques [6]. As industries worldwide
grapple with mounting ecological concerns and
heightened regulatory scrutiny, the integration of
sustainable machining practices has become not just
a choice but a necessity [7]. Machining processes
entail the precision shaping of parts through cutting
operations in machine tools, aiming for
predetermined dimensions and surface quality [8].
Techniques like turning, milling, drilling, and
grinding are common for achieving high precision
and intricate geometries. However, challenges arise
when machining difficult-to-machine alloys, such as
heat-assisted alloys and composites, due to their
superior thermo-mechanical properties [9]. Modern
alloys with low thermal conductivity often result in
excess heat and cutting force, limiting surface
quality and tool life, leading to higher machining
costs [10]. Sustainable manufacturing aims to
mitigate these issues, striving for environmentally
friendly, cost-effective, and health-conscious
production  practices, addressing economic,
environmental, and health concerns associated with
conventional cooling methods. Fundamentally, the
integration of sustainable practices into machining
processes is crucial [11]. This requires a thorough
exploration to clarify the methodologies used to
comprehensively determine sustainable aspects in
machining. To achieve this, the review aims to
precisely define machining processes, sustainability
aspects, and the various means of attaining
sustainability. The review extensively examines past
sustainability assessments in the machining industry,
evaluates the current landscape, and identifies
primary challenges. Starting with technical insights
into the significance of machining in production,
sustainability pillars, and the roles of cutting tool
modifications and cooling/lubrication conditions.
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Additionally, the article seeks to explore how these
techniques impact on various factors such as cutting
tool wear, cutting forces, surface roughness, chip
morphology, and other sustainable factors,
particularly in the context of machining hard metals,
widely employed in sectors such as automotive,
aerospace, and machinery due to their unique
properties.
This review pursues following key objectives:
eldentification of machinability/
sustainability concerns in machining of metals
during milling process.
eExploration of potential sustainable
alternatives to replace/ improve conventional
machining techniques.
eDocumentation of published research on
sustainable alternatives like modified cutting
tools and reduced cutting fluid usage in
machining hard metals.
elnvestigation of research gaps in this
review and potential alternative solutions.
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The literature reviewed in this paper critically
assesses relevant research work within a focused
research zone. To select pertinent studies, a search
was conducted on the Scopus database.

2. Results and Discussions

Because there's more production and competition
globally, people are trying to reduce resource use
and nature pollution. They're doing this by
promoting "sustainable production," which means
making things in a way that's good for the
environment. The machining industry, a big part of
production, is strongly affected. To make machining
more sustainable, we can improve performance,
choose the right cutting tools, cooling techniques,
and use biodegradable coolants/ lubricants.
Researchers use different methods to understand
how to make machining better for the environment.
In this part, we'll look at different machining
practices with their effects on machinability and
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sustainability.
3. Dry Machining (DM)

The exploration of dry machining in various studies
focused on understanding its effects on tool wear,
surface finish, and overall machining performance.
Researchers investigated challenges associated with
dry machining, such as elevated temperatures and
increased friction, proposing strategies to mitigate
these issues [12], [11]. Dry machining not only
addressed environmental concerns related to coolant
disposal but also contributed to energy savings and
operational efficiency [13]. Dry machining emerged
as a sustainable option to reduce environmental
impact and costs associated with cutting fluids,
involving cutting or machining without using any
fluids [14]. However, dry cutting had drawbacks,
such as high temperatures leading to poor
performance and tool wear. Researchers explored
ways to improve this technique, focusing on tool
surface enhancements [15]. Two approaches were
tool coating and surface texturing [16]. Tool coating
involved adding a thin layer of materials like
titanium or ceramics to improve properties. Ceramic
coatings, like alumina, offered good chemical and
mechanical properties. Super hard coatings, such as
CVD, diamond and CBN, provided high hardness
and wear resistance [17]. Solid lubricant coatings
reduced friction [18], while soft coatings, like
MoS2, enhanced hard coatings' properties [19] .
Researchers even explored new coating materials
from quarry dust. Textures came in two main types:
dimple and strip arrays, created on either the tool's
rake face or flank face [20]. Various techniques like
electron discharge machining (EDM) and laser
surface technology (LST) were used to create micro-
textures [21]. The effectiveness of textured tools
depended on the shape and dimensions of the
textures. Researchers used a trial-and-error approach
to find effective texture designs. Experiments were
conducted to evaluate different texture designs
during milling processes. Results indicated reduced
cutting forces, improved lubrication, and enhanced
performance with textured tools [22] . Different
studies compared textured tools with conventional
ones, considering factors like friction, cutting forces,
and tool life [21]. Overall, surface texturing proved
to be a promising method to improve machining
efficiency and sustainability. Improving cutting
tools through coating and surface texture was
considered sustainable and environmentally
friendly. Some explore the cost-effectiveness of
coated inserts during milling [23] [24]. More
research is needed to compare different coatings and
substrates, especially under various cutting
conditions. Evaluating diverse surface textures and
their sustainability on difficult-to-cut materials is
crucial.

a. Minimum Quantity Lubrication

(MQL):

Traditional machining heavily relied on cutting
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fluids for cooling and lubrication during the process.
These fluids were crucial for removing heat
generated from friction and shear heating, reducing
friction coefficients at tool-chip and tool-work
interfaces, and aiding in chip disposal [25].
However, machining produced various waste
products, including metal chips, spent cutting fluid,
oil mist, and unnecessary energy usage. Common
cutting fluids, such as petroleum-based mineral oils,
were effective but resulted in detrimental waste by-
products. Researchers explored MQL as a
sustainable cutting fluid [26]. MQL was
environmentally friendly, with reduced
environmental impact and successful applications
[27]. Tts advantages included decreased fluid
consumption  [28], cost efficiency [29],
environmental friendliness, improved cutting
performance [15], and enhanced surface quality
[30]. The principle of MQL involved applying a fine
mist of a compressed air mixture with a minimal
amount of cutting fluid to the cutting zone. This
resulted in high lubrication, reducing the friction
coefficient [31]. At high cutting speeds, the
lubricating fluid tended to evaporate, impacting its
effectiveness [32]. To enhance MQL, researchers
explored nanofluid containing nanoparticles like
Al203, MoS2, Si02, CuO, and diamond, aiming to
increase cutting performance and productivity [22].
Researchers also explored mist-assisted lubri-
cooling, a modern strategy that gained popularity in
achieving better outcomes in cutting forces, surface
roughness, temperatures, tool wear, and tool life
[33], [12]. This strategy involved using a minimal
amount of lubricant mixed with air from an air
compressor, leading to cost reduction and
environmental safety [34]. Experiments in milling
operations on AISI 4340 steel using MQL showed
improvements in tool life and positive
environmental and energy benefits [18]. Studies
consistently showed that MQL had the Ieast
environmental impact in comparisons with dry
cutting and flood cooling [7]. [12] examined
Hastelloy C276 machining, this study assesses dry,
MQL, Cryo CO2, and N-MQL with nano carbon
dots (CDs) in soybean oil. Optimizing CDs
concentration at 0.8 wt%, N-MQL significantly
improves surface roughness by 56-69% as shown in
Fig. 2, showcasing its potential for efficient and
sustainable machining.
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The studies collectively emphasize the importance
of transitioning from traditional cooling methods to
modern and sustainable strategies like MQL/
NMQL/ SMQL to achieve better outcomes in
machining processes.

4. CRYOGENIC COOLING

Cryogenic machining, a cutting-edge technology
explored in sustainable machining practices,
involved the use of extremely low temperatures to
enhance machining processes [35]. The technique
typically utilized liquid nitrogen or other cryogenic
fluids to cool the workpiece and cutting tool [36].
This innovative approach addressed challenges
associated with traditional machining methods, such
as high temperatures leading to tool wear and
thermal damage to the workpiece. Cryogenic
machining offered several benefits, including
improved tool life [37], enhanced material removal
rates [38], and better surface finish [2]. The cooling
effect minimized friction and heat generation,
reducing the likelihood of thermal distortion in the
workpiece [37]. Additionally, cryogenic machining
aligned with sustainability goals by potentially
reducing the need for cutting fluids, which could
have environmental impacts [34]. As research in this
area progressed, the exploration of cryogenic
machining held promises for advancing sustainable
and efficient metal-cutting practices in various
industrial applications [39].

The cryogenic machining represents a promising
avenue for sustainable manufacturing. It offers
improved machining performance, reduced
environmental footprint, and enhanced tool
longevity. As evident from the diverse research
papers, cryogenic machining is a compelling
approach that aligns with the global shift towards
more environmentally friendly and efficient
machining practices.

HYBRID SUSTAINABLE MACHINING

Hybrid sustainable machining was an advanced
approach that combined the benefits of cryogenic
cooling and Minimum Quantity Lubrication (MQL)
in metal cutting processes [24], incorporating
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modifications to cutting tools such as tool coating
and surface texturing [23]. This method harnessed
the effectiveness of cryogenic cooling in managing
heat and MQL in reducing friction [32]. By
employing these techniques simultaneously and
incorporating tool modifications, hybrid machining
achieved further reductions in cutting forces,
improved surface finish, and prolonged tool life
[35]. Cryogenic hybrid machining utilized both
liquid nitrogen (LN2) and carbon dioxide (CO2)
[36]. CO2, while not meeting the strict definition of
cryogenic  temperatures, provided technical
advantages, delivering cooling media at room
temperature and high pressure [40]. Implementing
these advanced cooling/lubricating strategies, along
with cutting tool modifications, enhanced machining
performance compared to conventional flood-
cooling methods [23]. CO2-based approaches
considered combining MQL lubricant aerosols with
"cryogenic" CO2 dry-ice cooling for greater control
over application specifics like flow rate, and particle
velocity [21]. [41] evaluated sustainable
lubricooling methods (MQL, CryoLLN2, Flood) in
hard milling, considering energy efficiency,
economics, and environmental impact shown in Fig.
3. Cryo-MQL showed higher productivity, 50%
lower cost, but 44.3% more CO2 emissions,
highlighting economic sustainability ~ but
environmental concerns.

A concise summary of the sustainability effects,
encompassing environmental, economic, and social
dimensions, associated with the above discussed
machining techniques shown in table 1. These tables
aim to provide a comprehensive understanding of
the implications and outcomes of employing
different machining strategies, aiding in informed
decision-making for sustainable manufacturing
practices.

The combination of tool modification with
Minimum Quantity Lubrication (MQL) represents a
cutting-edge approach to machining sustainability
and efficiency. Tool modification, such as coatings
and geometrical enhancements, enhances tool life
and machining performance. Integrating MQL
minimizes lubricant usage, addressing
environmental concerns and improving health and
safety aspects. This synergistic approach not only
extends tool longevity but also contributes to
sustainable manufacturing by minimizing resource
consumption and environmental impact, making it a
promising avenue for advanced and eco-friendly
machining practices.
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Table 3: sustainability effects associated with various machining

techniques
. Environmental Economic .
Technique Social Effects
q Effects Effects
Lower
Reduced operational Improved
chemical and | costs due to | worker health
Dry coolant waste, | the and safety by
Machining minimizing elimination eliminating
environmental of  coolant | exposure to
pollution. purchase and | cutting fluids.
disposal.
Potential Increased Operator
environmental | tool life | exposure to
impact due to | reduces tool | coolants may
Flood . .
Coolin the higher | replacement impact  health
e consumption frequency, and safety,
and disposal of | lowering necessitating
coolants. tooling costs. | precautions.
Extended tool . Improved
. Initial
life  reduces | . . worker
investment in . .
. the frequency . satisfaction and
Cutting Tool coatings  or

of tool safety through

Modifications texturing
replacements, . enhanced
RN may increase .
minimizing machining
upfront costs.
waste. performance.
Reduced
lubricant Lower
. . Improved
Minimum usage lubricant
. worker  safety
Quantity decreases costs L
L . . by minimizing
Lubrication environmental | contribute to exposure ©
MQL impact and | economic X .
(MQL) P . cutting fluids.
waste savings.
generation.
Potential
. Worker  safety
economic
Enhanced tool . concerns due to
R strain due to .
. life  reduces . handling
Cryogenic . high . .
. tooling waste . cryogenic fluids
Cooling equipment R
and resource and may impact
consumption. . social well-
operational X
being.
costs.
Optimization Balanced .
P need Skilled  labor
of energy | consideratio .
. may be required
efficiency and | n of .
. - L for effective
Hybrid machining conflicting . .
L L implementation
Machining performance objectives . .
s impacting
can lead to | may lead to
. . workforce
sustainable optimized .
. dynamics.
operations. costs.

CE at product level, CE, (kg-CO,)
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5. Conclusions and future directions

a) Dry machining is an eco-friendly
solution, but it faces challenges with hard
metals. Coolant is still preferred for such
situations.

b)  Flood cooling remains essential,
with a focus on improving coolant
compositions and delivery methods.
Biodegradable oils and automation are also
beneficial.

c) Minimum Quantity Lubrication
(MQL) is a sustainable choice with ongoing
enhancements like nanofluids and mist-
assisted lubri-cooling.

d) Cryogenic  machining, using
extremely low temperatures, offers benefits
like improved tool life and surface finish.

e) Hybrid machining, combining
MQL and cutting tool modifications,
improves cutting forces, surface finish, and
tool life.

Future research should focus on advanced tool
coatings, smart MQL, and optimization for better
sustainability.
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