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Abstract—The global electricity landscape is undergoing a
profound transformation, with an increasing demand for resilient
and sustainable energy infrastructure. In this context, microgrids
(MGs) have emerged as a promising solution, offering localized,
decentralized energy generation and distribution. This research
paper proposes a distributed energy management system for grid-
connected hybrid AC-DC MGs, interconnected through a DC
link. The work proposes a three-layer cloud fog-enabled energy
management system of networked MGs which aims to minimize
the energy cost by facilitating optimal energy utilization within
each MG as well as among the connected MGs. The paper
presents a fog-enabled comprehensive mathematical model of
networked MGs to ensure fast data transmission and real-time
decision-making within the system. K-mean clustering is used to
segregate the load into three categories residential, commercial,
and industrial each of which is primarily supplied by an individual
MG. Python 3.10.12 programming has been employed for
simulating the model, ensuring a realistic and adaptable approach
to assess the suggested energy management system’s efficacy and
performance within the context of networked MGs. Simulation
results demonstrate that the proposed model of networked MGs
integrating fog computing and MILP optimization, enhances
optimal energy allocation and utilization within and among MGs
along with minimizing the operating cost of networked MGs
effectively.

Index Terms—Networked Hybrid Microgrid, Energy
Management, Fog Computing, MILP.

I. INTRODUCTION

The global electricity landscape is witnessing a massive
transformation pushed through increasing strength call for,
issues over weather alternate, and the preference for a
more sustainable and resilient electricity infrastructure. In
this context, microgrids (MGs) have emerged as a promising
technique to address those demanding situations by way
of enabling localized, decentralized strength technology,
distribution and intake [1] . Moreover, the concept of networked
MGs [2], included with modern technology like fog computing
and machine learning techniques, has garnered good sized
attention as a method to decorate the overall performance and
effectiveness of power control within those small-scale energy
structures.

MGs offer a number of benefits to various sectors,
along with residential groups, commercial complexes, and
isolated locations. They constitute a paradigm change from
traditional centralised electricity grids. Distributed energy
resources (DERs), such as solar photovoltaics (PV), wind
turbines, batteries, and small scale generators, are a part
of a MG [3], [4]. By effectively integrating these diverse
energy sources, microgrids can function both connected to and
disconnected from the main utility grid, providing improved
energy resilience, reducing transmission losses, and facilitating
the integration of renewable energy [5].

The concept of networked MGs takes the advantages of
standalone MGs a step further by interconnecting multiple
MG systems. Through this interconnected approach, excess
energy generated in one MG can be shared and utilized by
others, enabling a more efficient utilization of resources and
improved overall grid stability [2], [6]. Additionally, networked
MGs enable collaboration among neighboring communities and
institutions, fostering a sense of energy self-sufficiency and
mutual support.

To optimize the energy management within networked MGs,
fog computing techniques have emerged as a transformative
technology [7]. Fog computing, an expansion of edge
computing, disperses computing resources and data processing
capacities, moving them in proximity to the network edge
where data originates. By reducing latency and bandwidth
requirements, fog computing enables real-time data analysis
and decision-making, critical for the dynamic and distributed
nature of MG operations. Fog computing enables networked
MGs to collect data from numerous interconnected components
such as smart metres, sensors, and energy storage devices.
This data may then be analysed in real time to alter energy
distribution, forecast demand patterns, and respond effectively
to fluctuations in renewable energy output [8] - [10]. The use of
fog computing in networked MGs supports energy managers to
make informed decisions more quickly, resulting in enhanced
energy efficiency, cost savings, and grid stability [6], [11].
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Addressing the intricate challenge of optimizing energy
allocation and utilization within networked MGs requires
advanced optimization techniques. One such powerful approach
is the Mixed-Integer Linear Programming (MILP) solver, which
plays a pivotal role in enhancing energy management efficiency
[12] - [14]. MILP formulates the energy management problem
as a linear optimization model, considering various constraints
and discrete decision variables, such as energy storage and
load allocation. By leveraging MILP, energy managers can
efficiently allocate resources, plan energy schedules, and
ensure the optimal operation of the entire networked MG
system. This mathematical framework enables them to make
informed decisions on which MG to draw power from for
a particular MG and determine the appropriate amount to
meet demand while minimizing costs. By using MILP, energy
managers can strike an optimal balance between energy
generation, consumption, and storage, thus maximizing the
overall efficiency and sustainability of networked MGs [15].

Fig. 1: The framework of networked hybrid AC-DC microgrids.

Several studies have investigated the benefits and challenges
of networked MGs in enhancing energy management and
grid stability. Researchers have demonstrated the advantages
of interconnected MG systems in sharing excess energy and
optimizing resource utilization, leading to improved overall
efficiency and sustainability [16] - [19]. Additionally, fog
computing has garnered significant attention for its role in
decentralizing data processing and enabling real-time analysis
at the boundary of the network. Studies have highlighted the

potential of fog computing in enhancing the performance of
MG operations by reducing latency, enabling faster decision-
making, and facilitating efficient energy distribution. Moreover,
some researchers have explored the integration of machine
learning techniques with fog computing to optimize MG
operations, predict energy demand patterns, and enhance load
forecasting accuracy [20] - [22]. These combined approaches
have shown promise in achieving higher energy efficiency,
better demand response, and improved grid management.
However, despite the growing interest in both networked MGs
and fog computing, it is evident that there is still a dearth of
research specifically focused on the integration of these two
technologies. Not much work has been done in the area of
networked MGs with fog computing model, which represents a
crucial research gap. Further investigation and empirical studies
are needed to explore the potential synergies, challenges, and
practical implementation of this integrated model to realize its
full benefits in the realm of sustainable and resilient energy
systems.

This research introduces a novel distributed energy
management system for grid-connected hybrid AC-DC MGs,
which are interconnected through a DC link. The main
objective of this study is to enhance energy efficiency and
cost-effectiveness by integrating fog computing and MILP
optimization techniques. The key contributions of this paper
are as follows:

• Three-layer cloud-fog computing: The adoption of a three-
layer cloud-fog computing system ensures rapid data
transmission within the networked MG system, facilitating
real-time analysis and decision-making for efficient energy
management.

• MILP optimization: To reduce costs and optimise the
use of energy resources, the study proposes MILP
optimization strategies inside individual MGs and between
MGs . This improves overall energy efficiency.

• K-mean clustering for load segregation: By utilizing K-
mean clustering, the load data is effectively segregated into
the three networked MG as residential, commercial and
industrial MGs, allowing for tailored energy management
strategies based on customer types.

• Mathematical model development: A mathematical model
of the grid-connected networked MGs is presented,
offering a solid framework for understanding and
optimizing the energy management system.

The subsequent sections of the paper are structured as
follows. Section II presents the framework of Networked
hybrid AC-DC MGs components, along with the mathematical
modeling. In Section III, we propose the fog-enabled
optimization model for the networked hybrid MG.
Subsequently, Section IV provides simulation results and
in-depth discussions. Finally, Section V concludes this paper,
summarizing the key findings and contributions of our
research on efficient energy management in grid-connected

Authorized licensed use limited to: Malaviya National Institute of Technology Jaipur. Downloaded on February 23,2024 at 07:51:10 UTC from IEEE Xplore.  Restrictions apply. 



hybrid AC-DC MGs through the integration of fog computing
and optimization techniques.

II. NETWORKED HYBRID AC-DC MICROGRID

Networked hybrid AC-DC MG is a sophisticated energy
system that connects multiple MG systems through DC
communication. This design provides energy sharing and
seamless operation between different MGs, resulting in
resource efficiency and grid stability. The hybrid nature of
the system, integrating both alternating current (AC) and
direct current (DC) technologies, enhances flexibility and
accommodates diverse energy sources, including renewable and
energy storage devices.

As illustrated in Fig. 1, the configuration of the envisaged
networked hybrid AC-DC MGs is presented. Each discrete
hybrid AC-DC MG is comprised of diverse energy sources
and loads, meticulously linked to AC and DC sub-grids.
Within the AC sub-grid, a shared AC bus connects diesel
generators (DGs) and AC loads, whereas the DC sub-
grid interconnects photovoltaics (PV), energy storage systems
(Battery), and the DC link for other MG to a communal
DC bus. Bidirectional interlinking converters (BICs) facilitate
the seamless connection between the AC and DC sub-grids.
Moreover, the AC bus is linked to the utility grid (UG) to
offer backup power and facilitate surplus energy exchange.
Through the interconnection of multiple MGs via a DC network
at their individual DC buses, a comprehensive networked MG
system is established. The DC network’s flexibility allows
for modifications based on the interconnection relationships
of multiple MGs, making it adaptable for large-scale system
applications. The proposed networked MG system employs
two-way communication links to ensure effective and efficient
energy operations among its interconnected components.
Energy exchange between neighboring entities within the
community MG is facilitated through BIC’s. Smart meters
at both ends of power lines monitor energy consumption,
generation, and distribution throughout the network, including
the main grid. The MG energy management system, operating
in individual fog layers, oversees energy operations within each
MG, while a central energy management system in the cloud
coordinates the excess and shortage of power information from
all MGs. Acting as prosumers in the energy trading process,
MGs can buy or sell energy based on their power surplus or
deficit. In case of insufficient local power generation, MGs can
purchase power from other MGs within the community, and if
needed, from the main grid. The MILP method is employed to
optimize the net available power of each MG, ensuring efficient
energy utilization and seamless grid operations.

The proposed architecture of the networked hybrid AC-DC
MG is driven by several compelling reasons. Firstly, hybrid
AC/DC MGs capitalize on the inherent benefits of both AC and
DC MGs, streamlining the integration of diverse energy sources
and loads by reducing multiple power conversion stages.
Additionally, these hybrid systems are seamlessly compatible

with the conventional utility grid [23] - [25]. Secondly, the
inclusion of a DC network in the MG facilitates easier power
merging and simplifies system analysis, eliminating concerns
related to reactive power sharing and frequency synchronization
that are common in traditional AC-based networks [26].
Overall, the development of this architecture represents a
significant step towards enhancing energy efficiency and grid
stability in modern MG applications.

III. PROPOSED FOG-ENABLED OPTIMIZATION MODEL

Fig. 2 depicts the architecture of the proposed fog-
enabled optimisation model, which seeks to improve energy
management inside the networked MG system by leveraging
advanced fog computing and MILP optimisation techniques.
This section presents the key components of the model, as
follows:

Fig. 2: Proposed three-layer cloud-fog model.

A. Three-layer Cloud-Fog Computing

The proposed fog-enabled optimization model encompasses
a three-layered architecture, each playing a pivotal role in
revolutionizing energy management within the networked
MG system. At the topmost layer is the cloud layer,
representing an extensive storage space with substantial
computational capabilities. It provides various services to
consumers, categorized into Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS)
[27]. The cloud layer acts as the central hub, connecting service
providers, utilities and past MG information. Data summaries
from the fog layer are stored in the cloud’s significant storage
for long-term records. Additionally, the cloud layer regulates
policies and executes punitive measures for malicious units.
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Crucially, it is within the cloud layer that the optimization
(MILP) algorithm is implemented.

The fog layer acts as an intermediary between the cloud and
consumer layers, reducing communication delays and bringing
services in close proximity to the network’s edge [28]. It
temporarily stores data before sending it to the cloud for
permanent storage. Inside the fog layer, data from all networked
MGs and consumers, along with their energy consumption
specifics, are centralized. This layer incorporates network
equipment with distributed computational capabilities and local
servers, effectively bringing cloud computing closer to devices,
enabling immediate analysis and temporary data retention. For
this proposed model, three fog nodes are established, each
assigned to manage one of the three MGs. These fog nodes
store all individual information pertaining to their respective
MGs, enabling efficient and localized energy management.

Lastly, the device layer encompasses the tangible elements
of MGs, including renewable sources, sensors, meters, energy
storage systems, and AC-DC loads. These constituents function
according to data sourced from the fog layer and engage with
their virtual counterparts, thus promoting a harmonized and
cooperative energy management procedure. This paper’s focus
revolves around three MGs and a utility grid, all interconnected
to internet of things (IoT) devices that effectively store and
transmit data to the fog layer [29]. The proposed fog-enabled
optimization model harnesses the strengths of fog computing,
enabling real-time monitoring, rapid data analysis and localized
energy management. This distributed architecture empowers
the networked MG system to optimize energy utilization
efficiently and achieve improved grid performance.

The utilization of the proposed three-layer cloud-fog
computing technique offers distinct advantages over traditional
cloud computing. Firstly, it establishes a real-time monitoring
framework that can promptly track load changes at any
time, accommodating abrupt unit entries and exits within
the networked MG system. Secondly, the fog computing
layer facilitates fast and accurate optimization for energy
management in Networked MGs. This distributed architecture
ensures swift data transactions by gathering data readings in
a decentralized manner through fog computing. In contrast to
cloud computing, which mandates centralized data collection
and analysis, cloud-fog computing dispenses with this necessity
by empowering the fog layer to act as a decentralized data
aggregator and logger. Drawing inspiration from the natural
world, where fog resides closer to the ground compared to
clouds, the cloud-fog concept situates the fog layer beneath the
cloud layer, facilitating rapid data collection and transmission.
This paradigm eradicates the primary constraint of cloud
computing, mitigating latency by obviating the reliance on
a centralized data transmission and recording framework.
The fog computing approach proves to be advantageous in
providing real-time insights and quick decision-making in
energy management for networked MGs.

B. Microgrid components

The MG proposed in this paper incorporates several essential
components, each playing a vital role in ensuring the MGs
efficiency and reliability. The photovoltaic (PV) module
serves as a renewable energy source, harnessing solar energy
and converting it into electricity to promote environmental
sustainability. The diesel generator(DG) acts as a backup
power source, ensuring uninterrupted electricity supply during
low solar generation or high demand periods. The energy
storage system, typically in the form of batteries, balances
energy by storing excess power and supplying it during
peak periods or insufficient renewable energy availability. The
Bidirectional Interlinking Converter (BIC) facilitates seamless
energy exchange between AC and DC sub-grids, contributing
to grid stability and optimal energy utilization. AC loads
represent electrical devices within the MG that consume energy,
catering to various users needs. The utility grid (UG) interfaces
with the MG, enabling external power exchange and offering
supplementary support during emergencies or peak demands.
Together, these integrated components form an efficient and
resilient MG system that optimizes energy usage, fosters
sustainability and supports modern energy requirements.

C. MILP Optimization

To minimize costs and optimize energy resource utilization
in the networked MG system, Mixed-Integer Linear
Programming (MILP) optimization strategies are proposed.
MILP is chosen as the optimization model due to its ability
to handle discrete decision variables, which are essential
in representing binary decisions related to the operation
of various components within the MG. By formulating the
energy management problem as a linear optimization model
with constraints and discrete decision variables, MILP allows
for identifying optimal energy allocation strategies while
considering practical limitations and operating conditions.
This optimization framework not only enhances overall energy
efficiency by reducing wastage but also promotes sustainable
energy practices within the MG, ensuring the optimal use of
resources and contributing to the long-term viability of the
energy system.

D. K-mean Clustering

K-means clustering is a popular unsupervised machine
learning algorithm used for data segmentation and pattern
recognition. It aims to partition data points into K clusters,
where each data point belongs to the cluster with the nearest
mean. The algorithm iteratively assigns data points to the
nearest cluster center (centroid) and updates the centroids
based on the average of the data points in each cluster.
This process continues until convergence, where the centroids
stabilize and no further changes occur [30]. In the context of
the networked MG system, K-means clustering is applied to the
load data to group customers into three categories: residential,
commercial, and industrial MGs. This segmentation enables
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tailored energy management strategies based on different
customer types, facilitating efficient resource allocation and
optimized energy usage specific to the requirements of each
MG category, ultimately enhancing customer satisfaction and
MG performance.

E. Objective Function

The energy trading method in this research study is meant
to minimise costs inside a networked MG model comprised of
three MGs and a utility grid. When a particular MGs energy
demand exceeds the supply from its PV, Battery, and DG
components, it can trade energy with the other two MGs (“a”
and “b”) that have surplus energy, or it can source energy from
the utility grid(referred to as grid “c”), all while minimising
costs. The Cost function is formulated as follows:

Cost = prc.MGa[t] ∗A+ prc.MGb[t] ∗B
+prc.UGc[t] ∗ C (1)

• Power balance

PUG, i(t) + PDG, i(t) + ηDC−ACPDC−AC , i(t)

= PLoad, i(t) + PAC−DC , i(t) (2)

PBatt,C , i(t)− PBatt,D, i(t) + ηAC−DCPAC−DC , i(t)

+PPV , i(t) = PMG, i(t) + PDC−AC , i(t)
(3)

• Constraints

SOCmin ≤ SOC(t) ≤ SOCmax (4)

PDG,min ≤ PDG(t) ≤ PDG,max (5)

0 ≤ PUG(t) ≤ PUG,max (6)

where prc.MGa[t], prc.MGb[t], and prc.UGc[t] represent the
price rates per unit of energy for microgrid “a”, microgrid
“b”, and the utility grid “c”, respectively, at a given time
interval t. A, B and C are the energy traded from microgrid
“a” , microgid “b” and utility grid “c”, at a given time
interval t. PUG,i(t), PDG,i(t),PBatt,C ,i(t), PBatt,D,i(t),PMG,i(t)
are real power outputs in kW of UG, DG, battery charge,battery
discharge and power transfer between ith MG and network
during time slot t , respectively. The terms PDC−AC ,i(t) and
PAC−DC ,i(t) represent the power transferred from the DC bus
to the AC bus and from the AC bus to the DC bus through a BIC
with efficiencies ηDC−AC and ηAC−DC in the ith MG during
the time slot t, respectively. Additionally, PPV ,i(t) denotes the
PV output, and PLoad,i(t) signifies the actual AC load within
the ith MG during the same time slot t.

Eq.(1) presents the system’s objective function,
encapsulating the overarching optimization goal. Eq. (2)
and (3) delineate the power equilibrium at the AC and DC

buses within the i-th MG, respectively, ensuring energy
balance within the MG configuration. To preserve battery
health and enhance its longevity, State of Charge (SOC)
limitations, as depicted in Eq.(4), impose crucial constraints
on the maximum and minimum SOC values. These constraints
prevent overcharging or deep discharging, which could
jeopardize battery performance and lifespan. Ensuring safe
and efficient operation, Eq. (5) define the essential maximum
and minimum constraints for diesel generators, preventing
equipment damage and energy wastage. Utility grid constraints
are vital for grid stability and reliability. Eq.(6) establishes
maximum constraints for the utility grid, contributing to
balanced electricity distribution, averting overload situations,
and safeguarding against power outages and equipment
impairment.

The main goal of the cost function is to determine the
optimal arrangement for energy exchange between the MGs
and the utility grid, taking into account the varying cost rates
associated with each energy source. The core aim of cost
minimization is realized through the determination of optimal
values for A, B and C, which when harmonized, result in the
comprehensive reduction of energy procurement costs for the
deficient MG.

The implementation of the mathematical model,
encompassing the three-layer cloud-fog computing architecture
and the MILP optimization algorithm, is executed through
the utilization of the Python programming language. The
pseudocode of the model is outlined in Algorithm 1, wherein
N signifies the number of MGs, t stands for the timestamp,
PNet denotes the net power, St represents the snapshot
capturing real-time networked grid data stored within the
fog layers, and PReq designates the power requirement or
the deficit power specific to each MG. This implementation
enables real-time computation and decision-making, thereby
facilitating efficient energy management across the networked
MG system.

IV. SIMULATION RESULTS AND DISCUSSIONS

The result and discussion section of the proposed model
present a comprehensive analysis based on real-world data
obtained from the Australian grid. The load data and
PV data [31] from 300 customers have been collected to
simulate a networked hybrid AC-DC MG model. Through the
application of K-mean clustering, the load data is effectively
segregated into residential (MG1), commercial(MG2) and
industrial(MG3) MGs, facilitating tailored energy management
strategies to suit the specific needs of each customer category.
Additionally, price data from the Australian Energy Market
Operator (AEMO) [32] has been integrated into the model.
The simulation encompasses 24-hour data, captured at half-
hour intervals, allowing for a detailed assessment of the
MGs performance and energy distribution. The simulation
is conducted using Python 3.10.12, ensuring a realistic and
adaptable approach to assess the suggested energy management
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Algorithm 1 Pseudocode of Problem Solution

1: Initialize the networked microgrid environment.
2: Initialize the networked fog-cloud environment.
3: for t = 1 to 47 do :
4: for N = 1 to 3 do :
5: Get Cumulative PLoad, PPV data from respective

cluster group.
6: PNet ← PLoad − PPV

7: if PNet > 0 then
8: PNet ←Min(PNet, PBatt)
9: end if

10: if PNet > 0 then
11: PNet ←Min(PNet, PDG)
12: end if
13: Fog layer prepare snapshot St of relevant

information.
14: Send St to Cloud layer.
15: end for
16: From St, determine PReq

17: if PReq > 0 then:
18: Optimizer needed.
19: Use MILP to Minimize network fitness function.
20: else
21: No Optimizer needed.
22: end if
23: end for
24: Exit Environment.

system’s efficacy and performance within the context of
networked MGs.
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Fig. 3: K-mean clustering sillhoute score.

The subsequent analysis delves into the outcomes of the
simulation, critically examining the energy efficiency of the
MG, its adeptness in managing loads, and the efficacy of the
employed strategies in optimizing the utilization of energy
resources, all while maintaining dependable and sustainable
power provision across different customer segments. To
enhance clarity, this section focuses on presenting the
simulation outcomes for MG2. Additionally, a comprehensive
overview of power exchange interactions among all three MGs
and the utility grid is presented, offering a comprehensive

TABLE I: Networked Microgrids Information

Microgrid Maximum Load Number of customers
Residential(MG1) 100 kW 179

Commercial (MG2) 120 kW 32
Industrial(MG3) 40 kW 89

TABLE II: Networked Microgrid System Parameters

Parameters MG1 MG2 MG3
PUG,max(kW ) 300 300 300
PBatt,max(kW ) 121 210 55

PDG,max, PDG,min(kW ) 85,0 147,0 39,0
SOCmax, SOCmin 1,0 1,0 1,0
ηDC−AC , ηAC−DC 0.92,0.92 0.92,0.92 0.92,0.92

insight into the energy dynamics and resource optimization
achieved through the model’s implementation.

Fig. 4: Load distribution by K-mean clustering.

Fig. 3 illustrates the silhouette score, a vital metric in k-
means clustering, which determines the effectiveness of load
data categorization, forming the basis for dividing the load
into three distinct categories as guided by the model. This
silhouette score serves as a gauge for evaluating cluster quality,
quantifying the separation between clusters on a scale from -1
to 1. A higher silhouette score signifies well-defined clusters,
where data points exhibit proximity to their respective clusters
and distance from neighboring ones, culminating in more
precise and reliable clustering outcomes. Concurrently, Table I
provides insights into the demographic distribution, revealing
the number of customers and their peak load demands across
the three interconnected MGs. Results from Table I have been
used to get the optimal system parameters presented in Table
II. Furthermore, Fig. 4 visualizes the load distribution achieved
through K-means clustering, offering a graphical representation
of how the load is optimally distributed among the three MGs,
as coordinated by the clustering technique.

The load dynamics of MG2 are vividly portrayed in Fig. 5,
describing its demand profile alongside available PV energy
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and prevailing electricity prices. Fig. 6 offers an insight into
MG2’s DG, showcasing its accessible power and the extent
of power contribution to the MG2 Load. Furthermore, Fig.
7 presents the battery profile of MG2, capturing its charging
and discharging patterns. Upon closer examination of Fig. 5,
6, and 7, a recognizable trend emerges: during the time slot
ranging from 20 to 30, PV power(PPV ) surpasses the load
demand (PLoad) , prompting the battery to undergo charging
(PBatt,C) . Notably, the DG (PDG) exhibits zero consumption
during this interval. Beyond this timeframe, the load is
predominantly satisfied through a sequential hierarchy, starting
with PV energy, followed by battery utilization(PBatt,D), and
subsequently by DG intervention if needed. In instances where
the load demand remains unmet, the system seamlessly taps
into the resources of the other two microgrids(PMG) and utility
grid(PUG) to ensure continuous and efficient power supply.

Table III gives the additional energy requirements of
individual MGs (MG1, MG2, MG3) at different time slots (t),

TABLE III: Networked Microgrid Energy Interactions

Time
Slot (t)

Additional Energy
Requirement of MG (kWh)

Energy Met
by MG

36 MG1 05.450 MG2
37 MG1 06.408 MG2
38 MG1 12.381 MG2
39 MG1 07.761 MG2
40 MG1 01.071 MG2
41 MG3 02.618 MG1
42 MG3 01.375 MG1
43 MG3 00.008 MG3

TABLE IV: Networked Microgrid Profit Analysis

Time
Slot (t)

Optimized Cost
(AUS $/kWh)

Unoptimized Cost
(AUS $/kWh)

Profit
%

36 0.315 0.540 41.67
37 0.490 0.588 16.67
38 0.804 1.176 31.63
39 0.504 0.795 36.60
40 0.0696 0.093 25.16
41 0.170 0.490 65.31
42 0.089 0.149 40.27
43 0.0005 0.000612 18.30
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Fig. 8: Energy exchange among networked microgrid.

which are met by other networked MGs in a way to minimize
the operating cost of the networked MGs. Table IV compares
the cost of meeting the additional energy requirement of a
MG optimally from the networked resources with the cost
if the additional energy requirement is met directly by the
UG. The calculated profit signifies the advantageous outcome
of transferring power from optimized cost sources, i.e., other
networked MGs, instead of procuring energy directly from
the UG. The findings highlight MGs pivotal role in effective
energy management, ensuring minimal costs within and among
MGs. This underscores the potential for cost-efficient energy
utilization by strategically leveraging interconnected MGs. Fig.
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8 vividly illustrates the intricate dynamics of power exchange
within the networked MG model. Evidently, all three MGs
adeptly meet their energy demands by seamlessly drawing
from their individual sources such as PV, DG, and Battery, or
by orchestrating power exchange among themselves. Notably,
this effective energy-sharing mechanism obviates the need
for importing energy from the utility grid, highlighting the
model’s self-sufficiency and resilience. This seamless and
efficient power sharing is underpinned by the three-layer
cloud-fog computing system’s implementation, which expedites
real-time data transmission within the MG network. This, in
turn, supports precise real-time analysis and decision-making
processes, thereby optimizing energy management strategies
and enhancing overall operational efficiency.

V. CONCLUSION

In conclusion, the study on Networked Hybrid AC-DC MGs,
synergistically leveraging Fog Computing and Linear Solver,
has presented a robust and innovative approach for enhancing
energy management efficiency in modern power systems. The
integration of fog computing at different layers of the MG
architecture has demonstrated its effectiveness in enabling
real-time data analysis, faster decision-making, and efficient
energy distribution. This, in turn, addresses the dynamic and
distributed nature of MG operations, resulting in improved
overall performance and grid stability. The utilization of MILP
optimization further enhances energy allocation and utilization
within and between MGs, effectively minimizing costs and
maximizing energy efficiency.

In the future, this research could extend its investigation
to explore the impact of battery charging and discharging
dynamics within the networked MG model, accounting for
potential non-linearities. Additionally, further studies could
delve into the intricate interactions between different MGs,
considering various load profiles and renewable energy outputs
from the latest dataset, to develop even more sophisticated
optimization strategies for enhanced energy management and
grid stability.
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