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Abstract—Classification of finger movements is a challenging
task due to the complications introduced by noise artifacts on
low amplitude biopotential signals. Electromyography enables
the visualization and analysis of changes in biopotential signal
due to different muscular activities, which further allows
the classification of muscular signals. In this article, surface
electromyography (sEMG) based signal has been collected from
two forearm muscles corresponding to the dominant hand,
using the BIOPAC acquisition system. The raw signal collected,
has been pre-processed using static filtering techniques and
converted into seventeen time domain and frequency domain
based features. Conversion of filtered signal into features is done
using overlapping windowing technique. The thirty four extracted
features corresponding to two muscles are used as input in five
machine learning (ML) classifiers and a comparative analysis
has been presented among those classifiers using performance
measures such as Accuracy, Precision, Recall, and F1-score.

Index Terms—Electromyography Signal, Machine Learning,
Feature Extraction, Activity Classification.

I. INTRODUCTION

According to a survey conducted by WHO, 15% of
the population throughout the world suffers from physical
impairments. Such people face difficulties while doing daily
life chores. And they struggle to get similar privileges in
medicine, employment, and education [1]. Amputation or
wrist dis-articulation is a form of physical impairment among
people [2].

In modern life, almost all activities ranging from operating
a computer gadget to washing dishes, requires dexterous
movements. This implies the movement of multiple fingers
in a coordinated way to carry out a specific task. So, the final
goal is to apply the knowledge of such movements into the
building of prosthetics [3]. Prosthetics are intelligent robotic
technology designed to assist in rehabilitation or interface
human to machine. Such sophisticated equipment should
provide significant comfort to amputees. Different biopotential
signals, such as EEG, ECG, or EMG, are used to stimulate
the prosthetics. However, the most common biopotential signal

being used by researchers in forearm assisting devices is EMG
signal [4].

EMG is the process of collecting and visualizing signals
generated by the muscular part of the body. Signals can be
collected using needles (iEMG) or surface electrodes (sEMG).
In iEMG invasive thin wire is injected into the muscle. While,
sEMG signal is obtained from the surface of the skin which
avoids painful experiences by the subject [5]. Conventionally,
Ag/AgCl based electrodes are preferred mostly with a
conductive gel to enhance conductivity on the skin surface [6].

Jiang et al. [7] employed four channels to acquire and
extract a time frequency domain feature to classify six
distinct finger motions in their investigation of dexterous finger
movement. Tenore et al. [8] classified 12 finger movement
activity using 32 channels. The fractal dimension characteristic
was employed by Naik et al. [9] to distinguish four sets of
finger movements. Kanitz et al. [10] used a genetic algorithmic
optimizer and an SVM classifier to classify 12 distinct finger
actions based on time domain characteristics.

According to study [11], the number of EMG channels
employed for finger movement should be more than or
equivalent to the number of fingers whose classification
needs to be done for better accuracy in decision. However,
more electrodes cover a larger region on the forearm, which
is not ideal for amputees. Therefore, the challenge is to
achieve higher classification accuracy with optimal number
of channels. By a decrease in the channel, the cost of the
hardware is reduced, as is the processing time.

Activity classification can be done using primitive
thresholding methods. While it’s fast and reliable, it can only
classify two categories at best. Ulker et al. [12] used fuzzy
control based decision maker to classify activity. While these
methods are reliable and easy they can’t be used when the
number of activities increases or while dealing with signal
collected from amputees. In such cases the pattern of signal
is helpful for classification. ML provides a very efficient way20

23
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

pu
te

r, 
El

ec
tro

ni
cs

 &
 E

le
ct

ric
al

 E
ng

in
ee

rin
g 

&
 th

ei
r A

pp
lic

at
io

ns
 (I

C
2E

3)
 | 

97
9-

8-
35

03
-3

80
0-

3/
23

/$
31

.0
0 

©
20

23
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

2E
35

76
97

.2
02

3.
10

26
26

90

Authorized licensed use limited to: Malaviya National Institute of Technology Jaipur. Downloaded on October 02,2023 at 08:33:51 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Flow diagram of signal classification

to identify and classify these patterns [13].
In this study five Machine Learning (ML) techniques are

employed for finger activity classification: Decision Tree (DT),
AdaBoost (ADB), Random Forest (RF), Logistic Regression
(LR), and Naive Bayes (NB). The dataset description is
provided in section II. The final results and discussion has
been presented in section III, and future work and conclusions
are described in section IV.

II. DATASET

In this study, five classifiers are compared with respect to
their classification accuracy obtained after training them on
a single subject based dataset. In the research mainly six
activities of fingers have been performed for the analysis
ML classifiers. Classification is done on the extracted feature.
There are two forms of feature extraction from the obtained
data: time domain and frequency domain. In these domains,
feature extraction is only possible when the input is a
recurring time series signal. In the entire sEMG signal feature
extractions have been done with a window size of 256 msec
having a 25% overlapping. Then the recovered feature is
utilized as input to various ML classifiers [14].

A. Data Acquisition

Signal is collected from the dominant hand (Right) of a
healthy subject. The subject was instructed to recline in his
chair and lay his arm on the armrests. The subject complies
with the following protocols:

1) Pre-task phase: In this phase subject is briefly instructed
about the activities to be performed.

2) Task Phase: In this phase, the subject performed one
activity after the other with an interval of 2 minutes to
reduce the impact on the muscles.

3) Post-task phase: In this phase subject is advised to
perform muscle relaxation activities.

During the task phase, the participant is instructed to meditate
and relax.

Signal is acquired using the BIOPAC MP150 system
(BIOPAC Systems, Inc.). Hair is removed from the forearm
and skin is wiped with alcoholic sanitizer before collecting
data. Conductive gel is rubbed onto a clean skin, Ag/AgCl
sEMG electrodes are placed. Two channels link the MP 150

to the six sEMG electrodes on the forearm. The extensor
digitorum and flexor pollicis longus are the two primary finger
activity muscles. The raw sEMG signal data is acquired at
a sampling rate of 2000 Hz, amplified by a BIOPAC TEL
100MC with a gain of 1000, and then fed through a 500
Hz low pass filter. Signal is collected in two intervals of 20
seconds each for each finger activity.

During the collection of the sEMG signal, the following
six finger movements were carried out: thumb extension (TE),
middle extension (ME), fore + middle extension (FME), fore
+ middle + thumb extension (FMTE), fore + middle + ring
extension (FMRE), and hand closure (HC). In Fig. 1 represents
the flow from signal collection to signal classify the finger
activity of a subject. On the preprocessed data implementation
of the ML classifier to classify the activity is described in the
figure.

B. Data Preprocessing and Feature Extraction

The collected sEMG signal is filtered using a butterworth
notch band stop filter of the fourth order, with a low and
high filter cut off frequencies of 49 and 51 Hz, respectively.
Then intervals of 256 msec and 25% overlapping length are
created and converted to small segments of signal called signal
windows. Then feature extraction technique is applied onto
these signal windows to necessarily reduce the length of signal
to be fed as input to the classifier, in order to reduce the
calculation cost and training time of classifiers. Seventeen time
and frequency domain based features are calculated, from each
signal window, whose mathematical expression are shown in
TABLE I.

Here xm is the mth input sample of sEMG signal, N is the
total number of samples, Pj is the power at jth frequency and
M is the length of power spectrum density [15]–[17].

C. Machine Learning Models

The following sub section provides a brief description of the
ML models employed in the activity classification of sEMG
signal.

1) Decision Tree: It is a knowledge based classification
algorithm which employs an if-then-rule based classification.
In a DT, nodes represent attributes and branches are split
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TABLE I: Time-Frequency domain features

Time Domain Features

SN Feature Name Mathematical expression SN Feature Name Mathematical expression

1
Mean Absolute Value

(MAV)
1
N

∑k
m=1 |xm| 2

Root Mean Square

(RMS)

√
1
N

∑k
m=1 |xm|2

3
Variance

(VAR)
1

N−1

∑m
i=1 x2

m 4
Average Amplitude

Change (AAC)
1
N

∑N−1
m=1 |xm+1 − xm|

5
Difference Absolute

Stabdard Deviation

Value (DASDV)

√
1

N−1

∑N−1
m=1(xm+1 − xm)2 6

Zero Crossing

(ZC)

N−1∑
m=1

f(xm)

where f(xm) =


1 if (xm > 0 and xm+1 < 0)

or (xm < 0 and xm+1 > 0)

0, otherwise

7 Waveform Length (WL) 1
N−1

∑N
m=1 |xm|2 8

Willson Amplitude

(WAMP)

N−1∑
m=1

f(|xm+1 − xm|)

where f(xm) =

{
1 if x ≥ Threshold

0, otherwise

9
Integrated Electromyogram

(iEMG)

∑N
m=1 |xm| 10

Myopulse

(MYOP)

1

N

N∑
m=1

f(xm)

where f(xm) =

{
1 if x ≥ Threshold

0, otherwise

11
Log Detector

(Log)
e

1
N

∑N
m=1 log(|xm|)

Frequency Domain Features

12 Total Power (TP)
∑M

j=1 Pj 13 Peak Frequency (PKF) 1
2

∑M
i=1 Pj

14 Frequency Ratio (FR)
∑ULC

j−LLC Pj∑UHC
LHC

Pj
15 Mean Frequency (MNF)

∑M
j=1 fjPj∑M
j=1

Pj

16 Median Frequency (MDF) 1
2

∑M
i=1 Pj 17 Mean Power (MNP)

∑M
i=1

Pj
M

according to the values of the attribute represented by a
particular parent node.

The first stage in this process is finding out the
characteristics of the input data. In the second stage parameters
like ginni index or information gain are calculated, which
guides the splitting criteria of this classifier [18]. Information
gain is weighted entropy due to different values of features.
Entropy associated with a particular feature is calculated with
the help of equation 1.

Entropy = −Tplog2Tp − Fplog2Fp (1)

Ginni index is also used many-a-times, to decide value for an
attribute to make the split. And mathematically it is calculated
using following equation 2.

Ginni index = 1− (T 2
p + F 2

p ) (2)

Here, Tp is probability of a true outcome. Fp is the probability
of a false outcome.

2) Random Forest: RF combines outputs of many decision
tree classifiers to finally become a strong classifier. Here, a
subset of features is chosen randomly by a decision tree,
to lower the correlation with the other decision trees. Then
all the DTs are trained separately. Predictions from various
trained tree classifiers are passed through a voting system.
The majority vote decides the final output of a set of input
feature [19].

These majority votes of output give high accuracy to handle
outliers and noise in the data. It uses the same parameters as
that in DT to choose the most selective feature for branching.
Employing large number of DTs also reduces the problem of
overfitting [20].

3) Logistic Regression: Unlike any regression problem, LR
maps input to outputs by estimating the values of coefficients
of the hypothesis function. A hypothesis function is the final
output of a function estimator after tuning all the coefficients.
A simple regression problem is given by the following
equation 3-4,

y = wTx+ ε (3)

h(x) = wTx (4)

Here, h(x) is the hypothesis function which needs to be
estimated. In comparison to other regression methods, LR
works more like a classifier. The output of the hypothesis
function ranges between 0 and 1. Which can be interpreted
as two classes of a binary classification problem. The
modification in LR lies in the choice of hypothesis function. A
LR employs the sigmoid function, otherwise known as logistic
function.

g(k) =
1

1 + e−k
(5)

Here in equation 5 g(k) denotes a sigmoid function
parameterized in k. A logistic function is based on rule of
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logitboost learning with linear regression function as shown
in equation 6.

g(wTx) =
1

1 + e−wT x
(6)

While this model is more suitable for binary classification. It
can, with little modification, be used as multiclass classifier.
The modification lies in the choice of thresholds (in the range
of 0 to 1). Coefficients can be updated on the basis of loss
minimization. Which is achieved by using a very primitive
optimization tool called gradient descent. The weight update
equation at jth iteration, using gradient descent is given by
equation 7.

wj ← wj + α

m∑
i=1

(y(i) − hw(x
(i)))x

(i)
j (7)

Here, m is the number of training samples. wj is the updated
coefficients. By making use of the coefficient, it translates the
input features into a value that lies between 0 and 1 [21], [22].

4) AdaBoost: The ADB technique is an extension of
boosting classifier which follows the policy of giving more
weightage to incorrectly classified data. All the input features
are given equal weights in the base learner, which is a basic
one level DT as described in equation 8.

wi =
1

n
(8)

While training each tree, the algorithm updates the weight
of each instance in a manner that it focuses learning on a
particular set of features (incorrectly classified) that already
have a significant weight applied to them. At each stage
of the classification process, the learning instance undergoes
re-weighting which is determined by the output. If the
classifier’s output is correct, the weights are decreased;
however, if the classification is incorrect, the weights are
raised. Mathematically, it is implemented using the following
equations 9-10.

αt =
1

2
loge(

1− εt
εt

) (9)

wt+1 =

{
wt × eα if incorrectly classified
wt × e−α if correctly classified

(10)

Here αt is the performance parameter after t iterations and
ε is the total error in that iteration due to the choice of
a particular weight value. wt is the value of weightage
given to a particular instance. At each and every stage, the
level of difficulty is assessed. Level of difficulty is higher
for an incorrect classification. Hence, accurately classifying
occurrences are much frequent, while incorrectly classifying
them is more difficult and less frequent. By following this
strategy, the algorithm is able to produce specialists who will
compete with one another to provide better results. Moreover,
its sequential nature allows for improvement in model. And at
last, ADB gives the averaged model of all base learners like
other boosting models. [23], [24].

5) Naive Bayes: The probabilistic model formulation is
one way to classify given input instance x. For this purpose,
the Maximum aposterior (MAP) estimation is applied on the
data in order to estimate the parameters corresponding to this
classifier [25]. The equation of posterior probability according
to bayes theorem is given by equation 11.

P (y|x) = P (x|y)P (y)

P (x)
(11)

Here P (y|x) is the posterior probability found using
P (x|y), the likelihood P (y), the class prior, and P (x), the
likelihood prior probability. The goal of MAP is to estimate
parameters to maximize the posterior probability. However, the
estimation of P (x|y) is much more complex then it seems, due
to the occurrence of joint probabilities in the calculation. To
ease the complexities, some assumptions are incorporated in
the NB classifier. That assumption being, the independency of
features within a class. So, the likelihood can be re-written as
in equation 12.

P (x|y) =
n∏

i=1

P (xi|y) (12)

During the training period, the NB classifier estimates P (y)
for all the output classes and P (xi|y) for all the input features
in the training dataset. In this activity categorization, we
will be basing our decisions on the classes that have the
highest probability [26], which is obtained following the given
equation 13

.P (y|x) ∝ P (y)

n∏
i=1

P (xi|y) (13)

III. RESULT AND DISCUSSION

This section provides an overview of the experimental
outcomes of classification of sEMG signal obtained from
TE, ME, FME, FMTE, FMRE, and HC finger activity. The
17 features, as discussed in TABLE I, are calculated for
two channels of sEMG signals and provided as input to the
classifiers.

To perform classification, the dataset of extracted features
is divided as follows: 70% of the data is used for training the
classifier, while the remaining 30% is utilized to evaluate the
accuracy of the classifier. Accuracy, Precision, Recall, and F1-
score are the performance metrics that are being measured to
evaluate the classifier. These metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F1− score = 2 ∗ PrecisionRecall

Precision+Recall
(17)

Here,
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(a) AdaBoost (b) Decision Tree (c) Logistic Regression

(d) Naive Bayes (e) Random Forest

Fig. 2: Confusion Matrix of Classifier

• TP (True Positive): The data are classified as true while
they are true.

• TN (True Negative): The data are classified as false while
they are false.

• FP (False Positive): The data are classified as true while
they are false.

• FN (False Negative): The data are classified as false while
they are true.

TABLE II: Performance analysis of classifier in (%)

Classifier Accuracy Precision Recall F1-score

Random Forest 78.49 80.06 78.49 78.55
Logistic Regression 76.61 77.68 76.61 76.48
Decision Tree 76.34 77.31 76.34 75.79
AdaBoost 73.38 74.97 73.66 73.09
Naı̈ve bayes 67.20 69.68 67.20 67.01

This article makes use of five different classifier model,
RF, LR, DT, ADB, and NB. TABLE II gives a comparison
between the employed ML classifiers on the basis of the four
performance parameters. From the TABLE II it is clear that,
the RF gives the highest accuracy, of about 78.49%. Next
to RF, LR, and DT attain high levels of accuracy. It can
be inferred that RF performed better for our dataset. Apart
from accuracy, it also has the highest F1-score, precision and
recall (78.55%, 80.06%, and 78.49%, respectively) among all
classifiers that are considered during the study. Next to RF,
LR and DT produce higher F1-score precision and recall than
other classifiers. In this case, NB has the lowest performance
metrics of all. As a result, it is observed that on this data NB
does not permit multiclass interaction.

TABLE III highlights the classwise accuracy for the five
ML classifiers employed in this work for identifying six finger
activity. ADB is the highly accurate classifier for TE activity
with 85.48%. DT dominated the ME and FME activity with
95.16% and 87.10% accuracy. The leading classifier for FMTE
activity is RF with 69.35% accurate. LR classify FMRE
activity with 62.90%. Within HC activity, all the classifiers
gives equal accuracy of hundred percent correctness rate. This
action is known as the rest posture.

TABLE III: Classwise comparision of classifier in (%)

Classifier TE ME FME FMTE FMRE HC

Random Forest 77.41 87.09 75.80 69.35 61.29 100.00
Logistic Regression 75.81 85.48 79.03 56.45 62.90 100.00
Decision Tree 72.58 95.16 87.10 48.39 54.84 100.00
AdaBoost 85.48 90.32 70.96 38.70 53.22 100.00
Naı̈ve bayes 58.06 83.87 64.52 53.23 43.55 100.00

Another performance evaluation of classifiers, has been
done with the help of a confusion matrix. It contains
information about the actual and expected labels that a model
predicts. A confusion matrix for all the classifiers has been
shown in the Fig. 2. In the confusion matrix, the diagonal
element represents the number of test instances that has
been correctly classified whereas off diagonal represents the
incorrect classified. Accuracy is the sum of the diagonal
components of the confusion matrix divided by sum of all
the components in the matrix. Therefore, by intuition, if the
diagonal components in the confusion matrix have a large
value, compared to the remaining values in the matrix, then
model is a good classifier. And it can be seen in Fig. 2(e)
that, RF matrix is most remarkable and has a greater value
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than any other classifier model on the diagonal position of the
confusion matrix as shown in Fig. 2.

According to Fig.2(e), 48 samples of TE class, 54 samples
of ME class, 47 samples of FME class, 43 samples of FMTE
class, 38 samples of FMRE class, and 62 samples of HC class
are correctly classified, whereas 14 samples of TE class, 8
samples of ME class, 15 samples of FME class, 19 samples
of FMTE class, 24 samples of FMRE class, and zero samples
of HC class are incorrectly classified. Similarly, the confusion
matrix of the remaining ML classifiers can be inferred from
Fig. 2(a)-(d).

IV. CONCLUSION AND FUTURE WORK

sEMG based signal of a single subject performing six finger
based activities has been acquired using two channels. The
activities include: TE, ME, FME, FMTE, FMRE, HC. On
the acquired signal overlapping windowing approach has been
used to segment the signal and extract seventeen time and
frequency domain features from each segment. The extracted
feature has been used as input to ML classifiers. Five different
ML classifiers are used. Among all classifiers, RF is the best of
all the classifiers based on performance metrics, on the basis of
which classifiers are evaluated. The reason for such robustness
of the RF classifier is the employment of several DTs and
usage of voting mechanism to finalize on a particular output
of classifier which can tackle the problem of outliers and noise
relatively much better than others. Next to RF, LR, and DT
have comparable accuracy and competitive performance. NB
has the worst classification outcomes on this dataset.

It’s possible, in future, to implement more ML classifiers
to obtain even better degree of accuracy. Perhaps, using
optimization techniques features can be optimally chosen
to obtain even better classification performance metrics
considering lower number of features, which will reduce time
and calculation complexity of trained model. Deep Learning is
another budding domain in the field of classification of signals,
which can be implemented instead of weak classifiers, and
which can enable, maybe, even better accuracy. This work can
be extended to benefit real life hand amputees by stimulating
robotic arms and fingers.
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