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Abstract

Trajectory generation for biped robots is very complex due to the challenge posed by real-

world uneven terrain. To address this complexity, this paper proposes a data-driven Gait

model that can handle continuously changing conditions. Data-driven approaches are

used to incorporate the joint relationships. Therefore, the deep learning methods are

employed to develop seven different data-driven models, namely DNN, LSTM, GRU,

BiLSTM, BiGRU, LSTM+GRU, and BiLSTM+BiGRU. The dataset used for training the Gait

model consists of walking data from 10 able subjects on continuously changing inclines

and speeds. The objective function incorporates the standard error from the inter-subject
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mean trajectory to guide the Gait model to not accurately follow the high variance points

in the gait cycle, which helps in providing a smooth and continuous gait cycle. The results

show that the proposed Gait models outperform the traditional �nite state machine

(FSM) and Basis models in terms of mean and maximum error summary statistics. In

particular, the LSTM+GRU-based Gait model provides the best performance compared to

other data-driven models.
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1 Introduction

Several types of mobile robots have been studied and designed in the literature (Singh et

al., 2021; Kim et al., 2021; Gao et al., 2021; Burman and Kumar, 2021), which can be

categorized by their way of locomotion in different environments and applications: (a)

land-based: legged or wheel-type, (b) water-based, and (c) air-based. The main focus of
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this paper is on land-based mobile robots, and particularly humanoid/bipedal robots that

have recently attracted the attention of researchers and industry professionals. This is not

only due to their human-like shape, but also their ability to provide ef�cient and robust

walking in uneven terrain, jumping, or running (Wang et al., 2014; Aoi and Tsuchiya,

2011). However, the primary focus of research on bipedal robotics is to achieve human-

like walking stability with robustness to disturbances in complex real-world

environments (Hosseinmemar et al., 2019; Kwon and Park, 2009; Yamaguchi and

Takanishi, 1997; Morris et al., 2019; Doerschuk et al., 2002). The locomotion stability of

these robots is hindered by unfavorable conditions such as ground surface inclination or

obstacles in the path (Kim et al., 2021; Hildebrandt et al., 2019; Kuffner et al., 2002),

making it a great challenge to produce a gait that can ensure stable walking. The main

focus of this work is to deal with the generation of a kinematic trajectory for walking on

varied ground slopes at multiple speeds.

In the literature, several successful strategies have been developed for trajectory

generation, such as the inverted pendulum (Kim et al., 2020; Razavi et al., 2019; Liu et al.,

2021; Sun et al., 2021; Kormushev et al., 2019), the linear inverted pendulum (Huang and

Yeh, 2019; Kim et al., 2018; Li et al., 2013; Lee et al., 2016), LSTM pattern generation (Li et

al., 2020), multi-objective meta-heuristic optimization (Juang and Yeh, 2017), and fuzzy

control (Li et al., 2010). However, these generated trajectories are only applicable to

laboratory environments due to issues such as high energy consumption, robustness

issues in the presence of disturbances, and dif�culty in �nding new trajectories in

emergency situations. Some authors have applied the learning-based algorithms to

generate reference trajectories that have been successfully tested in real-world

environments, demonstrating good adaptability to disturbances and irregular terrains

(Castillo et al., 2022; Siekmann et al.., 2021).

According to the literature, some researchers have used real human locomotion

kinematic datasets collected under different conditions as reference trajectories (Holgate

et al.., 2009; Wang et al., 2021; Liu et al., 2020; Wang et al., 2018; Zhou et al., 2017). This is

because human trajectories are optimal and stable in nature. A common strategy from

gait analysis, known as a �nite state machine (FSM), has been employed to approximate

the continuation of multiple tasks and phases (Simon et al., 2014). The strategy is based

on dividing the gait cycle into multiple phases and designing separate controllers for each

phase. A high-level topology then selects the suitable controller from the set based on the

classi�er algorithm output, which indicates the phase of the gait cycle. However, as the
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number of activities increases, so does the requirement for controllers, which requires a

lot of expertise that is hard to �nd. Therefore, authors have used the Discrete Fourier

Transform (DFT)-based Gait model to parametrize the continuous kinematic trajectory

as a function of the phase variable and tasks (Quintero et al., 2018; Embry et al., 2018).

Likewise, authors have developed the Basis model, where the phase variable plays an

important role (Embry et al., 2016). The phase variable is a special signal that

monotonically increases with the gait cycle, and Tasks is a stacked vector that consists of

ground slope and speed. This Gait model helps in predicting the joint kinematic angle

with many combinations of speed and incline (Embry et al., 2016). However, the

presented model could not capture the relationship between the joints (knee, hip, and

ankle), as it has three separate setups for predicting each joint angle individually. Since

there is a strong relationship between the joints (Huang et al., 2021), it is necessary to

develop a coupled model that can predict the joint trajectory simultaneously while taking

the joint relationships into account.

Data-driven models such as deep neural networks, long short-term memory, gated

recurrent neural networks, etc., can be employed to �nd the relationship between the

features (Yang et al., 2021; Shrestha and Mahmood, 2019). In our case, the features are

the joint knee, ankle and, hip angle. In previous works (Singh et al., 2021, 2022), authors

have developed machine learning and deep learning models to capture the important

relationship between the joints. However, the developed models were con�ned only to �at

ground with one speed. Additionally, the choice of the objective function for training the

data-driven model is not straightforward because it deeply impacts the prediction

performance. It has been shown in the literature that mean absolute error outperforms

mean squared error for the prediction ability of deep neural networks (Qi et al., 2020).

Therefore, a new objective has been developed, taking inspiration from previous studies

in the literature (Embry et al., 2016; Qi et al., 2020).

This study proposes using data-driven deep learning approaches to model the kinematics

of joint trajectories by using continuously changing inclines and speeds of locomotion

data. The dataset consists of locomotion data from 10 able-bodied individuals with

continuously changing inclines (-10 to +10 degrees) and speeds (0.8 to 1.2 m/s). A new

objective function is also proposed that incorporates the effect of the standard error from

the mean trajectory that needs to be followed. This incorporation helps the model avoid

high variance points in the dataset. This loss function is used to train the data-driven

models. The impact of changing speed with continuously varying inclines with
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monotonically increasing phase variables is also studied by developing the wireframes.

Overall, the major contribution of this study is:

– Data-driven based Gait models are proposed for continuous parametrization of

kinematic trajectory as a function of stack tasks vector and monotonically

increasing phase variable.

– A new objective function is designed, which incorporates the information of

standard error of inter-subject mean trajectory from data, for the training of

proposed Gait models.

– Comparative analysis of developed Gait models, based on the mean and maximum

error statistics obtained from prediction, for two different cases are brie�y

discussed.

– Impact of changing inclines with phase variable are studied in detail.

– Wire-frames are also presented from the proposed gait models to �nd the suitable

model for biped robot gait trajectory generation.

This research work is organized as follows: Sect. 2 presents the proposed methodology,

which includes the data description, gait model, and objective function. Then, Sect. 3

explains the results and discussion, which includes the model parameter settings,

performance evaluation index, prediction analysis, and the impact of the objective

function on the performance of the proposed model. Finally, Sect. 4 concludes the work.

2 Proposed methodology

This section discusses the proposed methodology to design the data-driven Gait model

for predicting the joint kinematic trajectory angle on continuously varying ground slope

and speed. The proposed methodology has three components: (a) data description and

preprocessing, (b) development of the data-driven model, and (c) implementation of

predicted trajectory wire-frame surfaces to the policy for the control of a biped

robot/prosthetic leg. The main focus of this section is on component (b). A schematic �ow

chart of the proposed methodology is presented in Fig. 1

Fig. 1
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Schematic �ow chart of proposed methodology

2.1 Data formulation and pre-processing

The kinematic locomotion dataset used in this paper was obtained from the IEEE data

port provided by Embry et al. Embry et al. (2018). The dataset was produced by capturing

the walking patterns of ten subjects using a ten-camera motion system at 100 Hz. Each

subject was asked to walk for twenty-seven combinations of speed and incline (known as

tasks and denoted by \(\theta _{j}\) with \(j=1,2,\dots ,27\)), varying at regular intervals

of 0.2 m/s and 2.5 degrees between the range of 0.8 m/s to 1.2 m/s and -10 degrees to +10

degrees, respectively. Each gait cycle consists of 150 time steps for each of the twenty-

seven combinations. The obtained dataset was then �ltered using a 10th order Weltering

�lter to produce smooth gait cycle trajectories. Afterward, the dynamic plug-in model

based on the Newington-Helen Hayes model was applied to the �ltered gait cycle. The

resulting output is the kinematic and kinetic dataset [45]. Here, a plug-in gait lower body

model is used to calculate the joint angles. The output angles from the model for all joint

angles are evaluated from the YXZ Cardan angles. Cardan angles are evaluated by

comparing the relative orientations of segments based on the parent and child to the joint.

For example, the knee angle is evaluated using the femur and untorsioned tibia segments.

The resulting joint angles are relative to each other, such as the ankle angle is relative to

the knee angle, the knee angle is relative to the hip angle, and the hip angle is relative to

the pelvis angle (it is absolute with respect to the laboratory coordinates). Outliers are

removed if they were more than three standard deviations away from the mean trajectory

\(\overline{X}_{\phi _i,\theta _j}\) at every instant i \(\in \) (1, 150) in each stride.
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2.2 Gait model designing

This section discusses the procedure for designing the Gait model and loss function. The

Gait model \(q(\phi _i,\theta _j)\) is essentially a parametrization function of a

normalized gait cycle \(\phi _i\) for i \(\in \) (0, 1) with task \(\theta _{j}\). The key

assumption is that the dataset obtained from the previous step is continuous and periodic,

which smoothly changes with tasks (Macaluso et al., 2021). The proposed Gait model is

developed using data-driven approaches. In this study, seven data-driven models have

been used to develop the Gait model for predicting kinematic joint trajectories. These

models are: (a) Deep Neural Network (DNN), (b) Long-Short Term Memory (LSTM), (c)

Gated Recurrent Units (GRU), (d) Bidirectional LSTM (BiLSTM), (e) Bidirectional GRU

(BiGRU), (f) LSTM+GRU, and (g) BiLSTM+BiGRU.

2.2.1 Data-driven models

Deep Neural Network (DNN) (Canziani et al., 2016) is a type of neural network with

multiple hidden layers between the input and output layers. This type of neural network

is inspired by the human brain and requires more data to train itself to provide better

accuracy. It establishes a non-linear relationship between inputs and outputs by

processing the training dataset. The number of layers helps in deriving better high-level

logic from the given inputs. A DNN consists of interconnected neural units that are

stacked on top of each other, creating a complex structure. It uses fewer parameters to

tune manually, making it easier to generate better logic. Therefore, the network has

reusable codes that help in generating better results. The prediction model for the DNN is

given by (1),

where, \(R_n\), \(W^n\), and \(b_n\) is function, weights, and bias for n layer

respectively.

Long-Short Term Memory (LSTM) (Greff et al., 2016) is a type of RNN but with three

additional gates: input, forget, and output. These gates control the �ow of information

within the model. The input gate controls the input values that enter the memory cell,

$$\begin{aligned} q(\phi _i,\theta _j) = R_n(...R_2(W^{(2)}R_1(W^{(1)}[\phi _i, \theta

_j] + b_1) + b_2)...) \end{aligned}$$

(1)
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while the forget gate �lters the important values from the memory cell. The output gate

controls the output value from the memory cell. LSTM can memorize the time

dependency of data by looking back at past values in the long run, which helps build

better predictive logic. It also controls the addition of new information into the memory

cells. LSTM has an additional advantage because it helps in dealing with the vanishing

and exploding gradient problem that exists in RNNs. The mathematical expression for

prediction model using LSTM is presented by (2),

where, \(R_n\), \(W_n\), and \(b_n\) are function, weight, and bias for n layer

respectively, \(O_g\), \(I_g\), and \(F_g\) are output gate, input gate, and forget gate

respectively, \(h_{t-1}\) is input value from previous hidden layer, relu and tanh are

activation function.

Gated Recurrent Units (GRU) (Dey et al., 2017) have an LSTM unit with two additional

gates: the reset and update gates. The reset gate controls the �ow of information, while

the update gate controls the update in values of weight and bias. GRU has a hidden state

for controlling the �ow of information. Essentially, it has an uncontrolled exposure of

content of memory cells from the previous step, while LSTM has control over the

exposure of content. GRU controls the output values of the layer but doesn’t control the

addition of new knowledge in the memory cells. The major advantage of GRU is that it

takes less training time compared to LSTM. It can easily capture different time

dependencies for short times. Therefore, the performance of GRU is better than LSTM if

long text and short data in sequence are available, and vice versa. Expression for

prediction model is presented by (3),

$$\begin{aligned} \begin{aligned} q(\phi _i,\theta _j)&= R_n..(O_g.relu(F_g(R_{n-

1})\\&\quad + I_g(tanh(w_n[h_{t-1}, [\phi _i, \theta _j]] + b_n)))) \end{aligned}

\end{aligned}$$

(2)

$$\begin{aligned} \begin{aligned} q(\phi _i,\theta _j)&= R_n..(relu(F_g(R_{n-1}) +

I_g(tanh(w_n[h_{t-1},\\&\quad [\phi _i, \theta _j]] + b_n)))) \end{aligned}

\end{aligned}$$

(3)
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where, \(R_n\), \(W_n\), and \(b_n\) are function, weight, and bias for n layer

respectively, \(I_g\), and \(F_g\) are input gate, and forget gate respectively, \(h_{t-1}\) is

input value from previous hidden layer, relu and tanh are activation function.

Bidirectional LSTM (BiLSTM) (Huang et al., 2015) is an update to LSTM with an additional

bidirectional layer. Due to its bidirectional nature, the weights and biases are trained

using both forward and backward propagation, with the training data �owing

alternatively in both directions. This layer captures the relationship between different

features available in the dataset. This is an improvement over traditional LSTM, which

uses only forward propagation for logic building. The mathematical expression is

presented by (4),

Bidirectional GRU (BiGRU) (Dong, 2018) is a GRU layer with an additional Bidirectional

layer. It is a sequence processing model that takes input through forward and backward

propagation alternatively. BiGRU is better than normal GRU because it has feed-forward

and back-propagation for better logic creation regarding the relationship between the

features. It has only input and forget gates similar to GRU. Thus, the forward and

backward feeding of inputs helps it to produce better weight and bias values for each

input feature. Mathematically, it is given by (5),

A combination of LSTM and GRU models yields the LSTM+GRU model. It captures the

advantage of LSTM’s ability to capture the relationship of long dataset with short text and

GRU’s capability of �nding the relationship of short dataset with long text. Therefore, it

performs better for both types of datasets. It averages the predicted values of LSTM and

$$\begin{aligned} q(\phi _i,\theta _j)&= \Big [ LSTM ([\phi _i, \theta _j],

\overrightarrow{h}_{t-1}), \nonumber \\&\quad \times LSTM ([\phi _i, \theta _j],

\overleftarrow{h}_{t-1})\Big ] \end{aligned}$$

(4)

$$\begin{aligned} q(\phi _i,\theta _j) = \left[ GRU ([\phi _i, \theta _j],

\overrightarrow{h}_{t-1}), GRU ([\phi _i, \theta _j], \overleftarrow{h}_{t-1}) \right]

\end{aligned}$$

(5)
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GRU models. Similarly, a combination of BiLSTM and BiGRU yields the BiLSTM+BiGRU

model, which leverages the bidirectional nature and LSTM+GRU property to predict the

output. It also yields the average of predicted values obtained from respective models.

However, the BiLSTM+BiGRU performs better than the LSTM+GRU if the availability of

training dataset is more. Both of these models combine the advantage of memory element

and conventional method, which is clearly evident in the results and discussion section.

2.2.2 Objective function

This section discusses about the comparative analysis between mean squared error and

mean absolute error function with their mathematical expression, which is employed in

literature for training of models based on multi-variate regression. Afterward, the

authors discuss about the rationale behind choosing the new loss function for training of

the data-driven model.

Lipschitz continuity (Mangasarian and Shiau, 1987; Gouk et al., 2021): A function g is said

to be \(\alpha \)-Lipschitz for all variables x, y \(\in \) \(\mathbb {R}^n\), if it satisfy (6)

\(\forall \) h \(\ge \) 1,

Mean absolute error (Coyle and Lin, 1988): It quanti�es the mean absolute difference

between the actual and M prediction vectors A \(=\) \(\{x_1, x_2,..... x_M\}\) and \(A^*\) \

(=\) \(\{y_1, y_2,..... y_M\}\) respectively, mathematically it is represented by (7),

where, \(||.||_1\) is the \(L_1\) norm.

Mean squared error (Allen, 1971; Chai and Draxler, 2014): It quanti�es the quadratic rule

based difference between the actual M prediction vectors A \(=\) \(\{x_1, x_2,..... x_M\}\)

$$\begin{aligned} ||g(x) - g(y)||_h \le \alpha ||x-y||_h \end{aligned}$$

(6)

$$\begin{aligned} L_{MAE}(A,A^*) = \frac{1}{M} \sum _{j=1}^M ||x_j-y_j||_1

\end{aligned}$$

(7)
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and \(A^*\) \(=\) \(\{y_1, y_2,..... y_M\}\) respectively, mathematically it is represented

by (8),

where, \(||.||_2\) is the \(L_2\) norm.

Based on the Lipschitz continuity equation (1), it can be easily proved that the MAE and

MSE loss function are 1-Lipschitz and not Lipschitz continuous respectively. It is proved

in literature, that if function is Lipschitz continuous then it can upper bound the

estimated regressor error from the Empirical Rademacher Complexity (Qi et al., 2020). It

is suggested that the Laplacian distribution based loss function which relates to MAE can

provide the better prediction then the Gaussian based loss function which relates to MSE.

It is true only if the variance related term are same in both expression (Chai et al., 2019).

Mathematical expression of MAE in terms of variance at every-point in stride is (9),

Mathematical expression of MSE in terms of variance at every-point in stride is (10),

As per literature, MSE loss function can outperform the MAE based loss function if the

expected error satisfy the Gaussian distribution with enough samples available for

$$\begin{aligned} L_{MSE}(A,A^*) = \frac{1}{M} \sum _{j=1}^M ||x_j-y_j||_2^2

\end{aligned}$$

(8)

$$\begin{aligned} L_{MAE}(A,A^*) = \frac{1}{M} \sum _{i=1}^M \Bigg \

{\frac{(\overline{X}_{\phi _i,\theta _j}-q(\phi _i,\theta _j))}{SE(x_{\phi _i,\theta

_j})}\Bigg \} \end{aligned}$$

(9)

$$\begin{aligned} L_{MSE}(A,A^*) = \frac{1}{M} \sum _{i=1}^M \Bigg \

{\frac{(\overline{X}_{\phi _i,\theta _j}-q(\phi _i,\theta _j))^2}{(SE(x_{\phi _i,\theta

_j}))^2}\Bigg \} \end{aligned}$$

(10)
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training purpose (Chai and Draxler, 2014). In this paper, authors have less training

samples. Thereby, authors have modi�es the loss function by integrating the MAE and

MSE. It is used for tuning of the weights for data-driven model. The objective function is

the square of error between actual and predicted value divided by the standard error in

real values at every stride. Since, impact of error is very different in each point of stride,

which is incorporated in terms of SE term in expression. Mathematically, it is de�ned by

(11),

It provides better precision against the two other loss functions which are validated in

Sect. 3. Additionally, it also help in deciding to not follow the values with a high variance

error in training dataset, which is our assumption for providing the smooth and

continuous trajectory, as shown in Fig. 2.

Fig. 2

$$\begin{aligned} g_j = \frac{1}{M} \sum _{i=1}^M \Bigg \{\frac{(\overline{X}_{\phi

_i,\theta _j}-q(\phi _i,\theta _j))^2}{SE(x_{\phi _i,\theta _j})}\Bigg \} \end{aligned}$$

(11)
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1.

2.

3.

4.

5.

Sample trajectory from data-set at speed 1 m/s and incline \(0^o\) (blue color trajectory show the

mean trajectory \(\overline{X}_{\phi _i,\theta _j}\); red color represent the distance of standard

error SE from the mean trajectory \(SE(x_{\phi _i,\theta _j})\))

2.2.3 Bayesian optimizer

Bayesian optimization is a powerful technique to �nd the global optimum solution in a

smaller number of steps (Pon and KK, 2021). Basically, it includes the prior belief about

the objective function and updates its belief by sampling process to get the posterior belief

that is better than the previous belief. The model used for approximating the objective

function is known as the surrogate model. In our case, the Gaussian process regressor is

used as the surrogate model. The sampling area is determined using the acquisition

function, which helps in improvement in current estimates by reducing the variance in

observation. The basic steps for Bayesian optimization using the Keras tuner are

presented as:

Build the surrogate model that minimizes the objective function, the mean square

error is chosen as the objective function that directly relates to the hyper-

parameters.

Different hyper-parameters are sampled based on variance.

Evaluate the true objective using the hyper-parameters sampled from step 2.

Update the surrogate model based on the minimum error.

Steps 2 to 4 are repeated till the optimum solution is obtained.

3 Results and discussion

This section includes the performance evaluation of proposed models using the mean and

maximum error statistic indices. In this study, the models are trained and tested using the

human locomotion dataset which is derived from the walking data on a different

combination of speed and incline. Firstly, the reasoning behind the single multiple output

model, parameter settings, and prediction evaluation methods are brie�y discussed.

Afterward, the prediction analysis of the developed models for two cases is discussed.

Lastly, the signi�cant �nding has been provided which includes the impact of losses on

model performance, dispersion of error in both cases, and wire-frame prediction analysis.

12/21/24, 10:47 AM Data-driven gait model for bipedal locomotion over continuous changing speeds and inclines | Autonomous Robots

https://link.springer.com/article/10.1007/s10514-023-10108-6 13/36



3.1 Model’s performance settings

In this study, it is considered that the proposed models contain the three inputs and three

outputs con�guration. Two rationales behind using this con�guration are: (a) the

relationship between knee, hip, and ankle joint trajectory is captured ef�ciently. (b) the

input features such as the speed and incline are constant for one complete gait cycle while

the time is increasing at each step during that gait cycle. The model will not be able to

predict the output if the output con�guration does not have the three output

con�gurations. Since it confuses the model in making the appropriate relationship

between three inputs and one output. The model predicts a sloppy gait cycle which is

increasing with the values of the time. Whereas, when the model was given three outputs

for three input values, the model was able to deduce a good relationship between inputs

and outputs. It allows the training algorithm to capture the relationship between the

three joints i.e., hip, knee, and ankle effectively. This makes the use of a single model to

predict all the gait cycle trajectories at the knee, hip, and ankle.

The dataset consists of a combination of twenty-seven tasks for various values of speed

and time. The values of all three inputs speed, hip, and ankle were normalized between 0

and 1. Then, the dataset is split into training and testing sets of two different sizes and

additionally, the two cases are also formed. The sizes and combinations of training and

testing for both cases are explained in further sections. The input shape for models other

than the DNN model is reshaped into a 3-D array. The normalization formula for the

speed, incline, and time is given by (12),

Table 1 Training dataset for Case 1 (denoted by \(\checkmark \))

Table 2 Training dataset for Case 2 (denoted by \(\checkmark \))

$$\begin{aligned} \phi = \frac{t}{T}, \ \ \ \theta = \frac{i}{I},\ \ \ S= \frac{v}{V}

\end{aligned}$$

(12)
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Table 3 Maximum error statistic: Case 1

Table 4 Maximum error statistic: Case 2

Table 5 Summary statistic for Case 1

Here the \(\phi \) is normalised Gait, \(\theta \) is normalised incline, S is normalised

speed, t is time step, T is total time, i is incline in range (-10 to +10), I is total incline gap,

v is walking speed in range (0.6 to 1.4), and V is total speed gap.

The layer con�guration applied to all the models is (3, 3, [128, 512, 16]). The activation

function used for hidden layers is relu while linear is used for the output layer. The

hyperparameters were tuned using the Bayesian Optimizer. The optimizer gave 500, \(1e-

2\), and 10 as optimized values for a number of epochs, learning rate, and batch size

respectively. In order to quantify the performance of the proposed models, performance

indices inspired from Embry et al. (2016) are chosen. It measures how closely the model

can predict the untrained tasks. The error between the real value of mean trajectory found

using the experiments, \(_{\phi _i,\theta _j}\) and predicted kinematic trajectory \(q(\phi

_i,\theta _j)\) for tasks \(\theta _j\) is de�ned by (13),

For every tasks maximum is evaluated by taking the largest error encountered in a gait

cycle. Then, the mean and maximum of above evaluated maximum error for all tasks is

calculated, which is used to quantify the model performance.

$$\begin{aligned} g_j = max_i \Bigg \{\frac{\overline{X}_{\phi _i,\theta _j}-q(\phi

_i,\theta _j)}{SE(x_{\phi _i,\theta _j})}\Bigg \} \end{aligned}$$

(13)
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Table 6 Summary statistic for Case 2

3.2 Prediction analysis

3.2.1 Case 1

The dataset is split into 52:48 ratio for training and testing sets. Overall fourteen and

thirteen tasks combination are selected for training and testing purpose. Tables 1, 2

presents the training dataset for all data-driven model denoted by the \(\checkmark \)

and other blank are used for testing purpose.

Table 3 presents the maximum error obtained from all proposed models for knee, hip,

and ankle joint trajectories. Every entry shows the maximum error encountered in the

predicted gait cycle. Here, the bold value represent the combination used for the testing

purpose whereas the normal value for training purpose. Tables 4, 5 present the mean and

maximum error statistic for proposed model, which is extracted from the Table 3. LSTM

and GRU obtaithe ned approximate 40% less error than the DNN model. Even both

models outperform the BiLSTM as well. And, also on testing dataset, LSTM and GRU

outperform the BiGRU. However, LSTM+GRU provide better statistic than the LSTM and

GRU individually for both in training and testing. It is because, the LSTM+GRU is

suiareble for all type of dataset as discussed in Sect. 2. Due to the lack of data availability,

BiLSTM+BiGRU could not perform better than the LSTM+GRU model.

It is inferred from above discussion, precision of all models is comparable for our dataset.

The performance of LSTM+GRU suggests that this is the best option to be used for the

generation of gait cycle trajectory as compared to other models. It works best in capturing

the main relationship between input and output of time series dataset.

3.2.2 Case 2

From Table 2, it can infer that two combinations of speed 0.8 m/s and 1 m/s and incline at

\(7.5^o\) and \(10^o\) respectively, provide the highest maximum error which were

affecting the precision of all data-driven models. To increase the precision, these two

combinations of speed and incline is included into training dataset. Thus, the overall

training and testing dataset is in ratio of 60:40. Overall Sixteen and eleven tasks
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combination are selected for training and testing purpose. Table 2 presents the training

dataset for all data-driven model denoted by the \(\checkmark \) and other blank are used

for testing purpose.

Table 4 discussed the maximum error obtained by the predicted trajectories from each

model for twenty-seven combination of speed and incline. The normal values represent

the error obtained for prediction on the training dataset and the bold values present the

prediction on testing dataset. Every value in table present the maximum error

encountered in the predicted gait cycle from the data-driven model.

Table 4 is summarized in Table 6, which discussed the overall statistic of mean and

maximum error obtained from all proposed models for all tasks. It presents that the

performance of all models is signi�cantly improved by introducing the worst performer

tasks combination of case 1 into case 2. In most cases, the LSTM+GRU outperforms all

other models in this case well. All models are also compared with the previous work in

literature i.e., basis and FSM model (Embry et al., 2016). Chosen parameter settings are

the same for both models as in this study. It shows that the proposed model in this study

outperforms the basis and FSM model approximately in the range of 20–50 \(\%\) for all

knee, hip, and ankle trajectories for both training and testing datasets. It is inferred from

the above result that the LSTM + GRU model provides high precision as compared to all

other models. Therefore, it is recommended to use the LSTM+GRU for providing the

reference trajectories.

3.3 Discussion

Figures 3 and 4 presents the sample trajectory prediction of knee, hip, and ankle joint

angle for both cases at 1 m/s speed for \(0^o\) incline, for all data-driven models. It shows

that the LSTM+GRU model provides a smooth trajectory as well as accurately follows the

actual gait cycle. Therefore, it is recommended to use the combo of LSTM and GRU for gait

generation in real-time for providing references to biped robot.

Table 7 shows that the overall statistic of prediction accuracy for all models. It tells that

mean and max of error in case II from all models is less than the case I. It is because the

training data-set used for case II includes the worst performer incline and speed data (i.e.

\(7.5^o\) incline at speed 0.8 m/s and \(10^o\) incline at speed 0.8 m/s) of case I.
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Table 8 shows the impact of different loss function in term of mean and max error

statistic for DNN model only. It shows that the our proposed loss function outperform

DNN-MAE by more than approximate 20% in most cases. And also, DNN-proposed model

based on the proposed loss outperforms the DNN-MSE by large margins. It validate the

theoretical background developed in objective function section.

Fig. 3

Comparative analysis of all models for case 1 at speed 1 m/s and \(0^o\) incline

Fig. 4

Comparative analysis of all models for case 2 at speed 1 m/s and \(0^o\) incline

Table 7 Summary statistic for case 1 and case 2 (at speed 1 m/s and incline \(0^o\))
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Table 8 Impact of Loss function on model performance

Fig. 5
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Comparative analysis of data-driven models at 1 m/s speed

Fig. 6

Comparative analysis of combine data-driven models at 1 m/s speed

Comparative analysis of trajectory prediction for all developed models is shown in Figs. 5

and  6. One-hundred-�fty points of the normalized incline and gait are used to make the

wire-frame plots. Trajectories are predicted for 1 m/s speed. In basic models (DNN, LSTM,

GRU, BiLSTM, and BiGRU) as shown in Fig. 5, the BiLSTM model is performing well

because it captures the relationship of speed and incline as compared to all other models.

The predicted trajectory from the model smoothly changes from the +\(10^o\) to -\
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(10^o\). Firstly, the magnitude of the angle decreases from the +\(10^o\) to \(0^o\) and

then increases from +\(0^o\) to -\(10^o\) incline. As per Fig. 6, the combination of

LSTM+GRU provides smooth trajectory prediction. And, also the combo LSTM+GRU

outperforms the BiLSTM model as well in smooth prediction for all joint angles. The

performance of the LSTM+GRU model is better than other models because it can

memorize the directionality variations in the inclination slope more accurately. The

combined structure of LSTM+GRU helps in capturing the changes in training joint angle

trajectory data because of speed and incline variation.

4 Conclusion

This work presented the parametrization of the kinematic dataset using data-driven

models. The dataset employed for training purposes includes the walking data of 10-able

subjects on treadmill with varying speeds and inclines. The novel loss function is

proposed for tuning the weights of data-driven models. The loss function incorporated

the standard error of the inter-subject mean trajectory and squared difference of actual

and predicted value at each point in the gait cycle. The hyper-parameter of the model is

optimized using the Bayesian optimizer (given in the Keras tuner library). Also, the

superiority of the proposed loss function is proved by comparing it with the other two

standard loss functions i.e., mean absolute error (MAE) and mean squared error (MSE).

Afterward, the proposed model performance is validated based on the two cases. Overall,

the combo of LSTM and GRU outperforms all other models in terms of statistical mean

and max error indices. And, the wire-frame is also predicted for both the untrained and

trained tasks over 150 \(\times \) 150-time points. Finally, the impact of the varying

speeds with inclines is also discussed. It is recommended to use the LSTM+GRU model for

predicting the smooth joint trajectories for the biped robot or prosthetic leg.

As a future scope, authors will apply the meta-heuristic optimization approaches for the

tuning of parameters of the model, and reinforcement learning will be applied to deal

with the issue of non-periodic walking. Additionally, inputs such as ground slopes which

are based on the external sensor can have uncertainty in their measurement. It can badly

impact the predictions from the model, which is subjected to further investigation in

future research.

Code availability

Not applicable.
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DNN:

LSTM:

GRU:

BiLSTM:

BiGRU:

COMBO BI:

FSM:

MAE:

MSE:

SE:

Abbreviations

Deep neural network

Long short term memory

Gated recurrent units

Bidirectional LSTM

Bidirectional GRU

BiLSTM + BiGRU

Finite state machine

Mean absolute error

Mean squared error

Standard error
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