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Abstract

The magnetic dipole effect has garnered significant attention in recent years due to its

potential impact on fluid flow phenomena. Researchers have explored its applications in

areas such as microfluidics, nano-fluidics, additive manufacturing, drug delivery

systems, magnetic resonance imaging, and hyperthermia treatments. The objectives of

this research are twofold: first, to investigate the fundamental mechanisms and behaviors

of Jeffery fluid flow under the influence of a magnetic dipole and slip effect; and second, to
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explore heat transport under the influence of melting effect and explore implications of

this effect in various fields. Here we consider two different types of surface of fluid flow

namely melting surface and permeable surface. By using the well-known similarity

transformation, formulated flow equations are converted into OD equations and solved

numerically using R–K 4th order with shooting techniques in Matlab. Graphical

representations are used to show how different physical characteristics affect velocity and

temperature profiles. The findings demonstrate that the velocity profile increases over a

range of Deborah numbers (\(\gamma_{1}\)), whereas the temperature profile exhibits

the opposite behavior. Velocity profile gets cut down for diverse values of ferromagnetic

interaction parameter (\(\beta\)) but on the other hand temperature profile accelerates.

The investigation also revealed that the viscous dissipation parameter λ had

counterintuitive effects on the thermal profile. Deborah numbers \(\gamma_{1}\) on

velocity \(f^{\prime } \left( \eta \right)\), with temperature \(\theta \left( \eta \right)\)

profile. Whenever values \(\gamma_{1}\) get increased the velocity gets enhanced but

alternatively temperature profile gets cut down. In this article, we find the tabulated form

the numerical values of skin friction coefficient, Nusselt number in PST is given for

numerical solution on melting surface case and without melting case for various values of

the physical parameter. The graphically results show that the melting surface influence

more than permeable surface.
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Introduction

Non-Newtonian fluid flow stands up in many divisions of chemical and material

processing engineering. There are various types of non-Newton fluids like Viscoelastic

fluid, couple stress fluid, micropolar fluid power-law fluid, etc. In addition to these, there

is another non-Newtonian model called the Jeffery fluid model.The stress relaxation

feature of non-Newtonian fluids, which the typical viscous fluid model cannot represent,

may be described using the Jeffrey fluid model. The framework of Jeffrey fluid may

adequately explain a type of non-Newtonian fluids with different temporal scales for

memories, also known as the relaxing period. The Couette and Poiseuille flows of a Jeffrey

fluid under slip boundary conditions were the subject of an investigation by Ramesh [1]

into the effects of viscous dissipation and Joule heating. Abbasi et al. [2] explained the

interaction between Jeffrey nanofluid's mixed convection flow, thermal radiation, and

double stratification. Shehzad et al. [3] investigated Jeffrey nanofluid thermally radiative

three-dimensional flow with internal heat generation and field of magneticAccurate

analytical solutions for the transport of heat and flow on a stretching/shrinking sheet

close to the stagnation point in a Jeffrey fluid were provided by Turkyilmazoglu et al. [4].

Ellahi et al. [5, 6] examined the effect Bloodstream of Jeffrey liquid in a catheterized

tightened supply route with the nanomaterials suspended and also investigated the

Peristaltic transport of Jeffrey fluid in a rectangular tube. Hayat et al. [7] investigated the

erratic flow as well as heat transfer of the Jeffrey fluid around a stretched sheet. Ahmed et

al. [8] studied the convective heat transfer of the MHD Jeffrey fluid around a stretched

sheet.

A model of electrically conducting fluids known as magnetohydrodynamics (MHD),

sometimes known as magneto-fluid dynamics or hydromagnetics, considers all

interpenetrating particle species as a single continuous medium. It has supplications in a

deep range of regulations, involving geophysics, astronomy, and engineering, and is

principally focused on the lower-frequency, wide range on the scale, magnetic behavior in

plasmas and liquid metals. Ogulu et al. [9] modeling of pulsatile blood flow in a

homogenous porous bed with a consistent magnetic field with time-varying suction was

conducted. Alam et al. [10] look into the blood flow and the transfer of heat using gold

nanoparticles around a stretched sheet when a magnetic dipole is present. In the situation

of an unstable flow, Seddeek [11] investigated the outcomes of radiation together with

changing viscosity on an MHD-free convection flow across a leveled plate with a semi-

infinite length and an aligned magnetic field. Precise logical solutions for the heat and
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mass transfer of MHD slip flow in nanofluids were discovered by Turkyilmazoglu [12].

The outcomes of heat radiation, suction/blowing, and slide-on boundary layer flow of

magnetohydrodynamics across an exponentially stretched sheet were looked over by

Mukhopadhyay [13]. Raptis et al. [14] describe the outcomes of heat radiation on MHD

flow. Iyoko et al. [15] Investigation of magnetic dipole and thermal radiation effects on

Jeffery flow/heat transfer across a strain plate by suction/injection.

The procedure of melting is commonly utilized in machinery such as metal casting, laser

manufacturing, wandering freezing, soil melting, rivers and lakes, etc. Singh et al. [16]

looked into the effects of melting heat transfer in boundary layer stagnation point flow of

MHD micro-polar fluid towards a stretching/shrinking surface. By employing carbon

nanotubes, Hayat et al. [17] inspected the numerical analysis for melting heat

transmission and homogeneous heterogeneous reactions in flow. Melting heat transfer in

continuous laminar flow across a flat plate was given by Epstein et al. [18]. Melting heat

transfer in constant laminar flow around a moving surface was given by Ishak et al. [19].

In a micropolar fluid, Yacob et al. [20] investigated the impression of melting heat

transfer in boundary layer stagnation-point flow in the direction of a

stretching/shrinking sheet. Olkha and Dadheech [21, 22] discussed entropy analysis for

MHD flow for different non-Newtonian fluids caused by a stretching sheet with melting

and slip effects. Dadheech et al. [23] investigated MHD flow for Casson fluid caused by a

stretching sheet with melting and slip effects. Dadheech et al. [24] discussed entropy

analysis for Williamson fluid caused by a vertical plate with Cattaneo-Christov heat flux

and slip effect.

Although a fluid typically sticks to solid boundaries (has no slip), there are several

circumstances in which this is not the case. For instance, suspensions, polymer melts,

emulsions, and many other non-Newtonian fluids frequently show macroscopic wall

slips. These fluids with boundary slip have uses in cleaning interior cavities, prosthetic

heart valves, and several other technical operations. The slip effect on non-Newtonian

fluid flows was investigated byLabropulu et al. [25]. Ali et al. [26] inspected slip effects in

viscoelastic fluid flow caused by an oscillatory stretched sheet through a porous medium.

Govindarajan et al. [27] discussed slip as well as mass transport effects in a vertical

channel under consideration of heat source and radiation. The slip flow of Maxwell fluid

past a non-linearly stretchy surface was examined by Dawar et al. [28]. Similar work has

been studied by Dadheech et al. [29], Olkha et al. [30].
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In light of the provided literature research, we have noted that there are just a few

investigations on Jeffery fluid flow with magnetic dipole effect. The main objective of the

current study is to determine flow behavior and heat transfer of Jeffery fluid flow with

magnetic dipole effect. The novelty of the presented work is increased by substantial

validating slip effects with radiation and heat source effects. The examinations furnished

in the given article can be further utilized to make investigations in microfluidics,

biomedical engineering, industrial processes (e.g., polymer manufacturing), and

geophysics/astrophysics. It helps in the manipulation of micro-objects, drug delivery

systems, process optimization, and understanding of magnetized fluids in Earth's core

and stellar interiors. The work provided in the study has not yet been disseminated, to the

best of the author's knowledge.

Mathematical Formulation

Jeffery flow with the magnetic dipole field, magnetic scalar potential is taken as

Here \(\gamma\) is the magnetic field strength, the component of x and y axis direction

of the magnetic field are \(H_{x}\) and \(H_{y}\).

The resultant magnitude H of the magnetic field intensity is

$$ \phi = \frac{\gamma }{2\pi }\left( {\frac{x}{{x^{2} + (y + a)^{2} }}} \right)\,, $$

(1)

$$ H_{x} = - \frac{\partial \phi }{{\partial x}} = \frac{\gamma }{2\pi }\left(

{\frac{{x^{2} - (y + a)^{2} }}{{(x^{2} + (y + a)^{2} )^{2} }}} \right)\,, $$

(2)

$$ H_{y} = - \frac{\partial \phi }{{\partial y}} = \frac{\gamma }{2\pi }\left( {\frac{2x(y

+ a)}{{(x^{2} + (y + a)^{2} )^{2} }}} \right)\,, $$

(3)

$$ H_{y} = \left[ {\left( {\frac{\partial \phi }{{\partial x}}} \right)^{2} + \left(

{\frac{\partial \phi }{{\partial y}}} \right)^{2} } \right]^{\frac{1}{2}} \,, $$
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Magnetization M could be a "linear function of temperature”,

Let us assume the steady 2-D flow passing through a stretchy surface shown

schematically in Fig. 1. By applying two equal and opposite forces along the x-axis, the

sheet being stretched is related to how far it is from the fixed origin at x = 0. Thus, only

the moving sheet is responsible for the resultant motion of the otherwise quiescent fluid.

A magnetic dipole is found some distance below the surface, while an incompressible,

viscous, and electrically non-conducting ferrofluid is limited to the half-space y > 0 over

the sheet. The dipole, whose center lies on the y-axis a distance below the x-axis and

whose magnetic field points in the positive x-direction, rises to a magnetic area of

sufficient strength to saturate the ferrofluid. The stretching sheet is kept at a constant

temperature \(T_{w}\) lower than the Curie temperature \(T_{c}\), while the fluid

components are far off from the surface which is presumed to be at temperature \

(T_{\infty } = T_{c}\) and, hence, it is powerlessto be magnetized until they start to cool

upon entering the thermal boundary layer closest to the surface.

Fig. 1

(4)

$$ \frac{\partial H}{{\partial x}} = - \frac{\gamma }{2\pi }\left( {\frac{2x}{{(y + a)^{4}

}}} \right)\,, $$

(5)

$$ \frac{\partial H}{{\partial y}} = - \frac{\gamma }{2\pi }\left( {\frac{ - 2}{{(y +

a)^{3} }} + \frac{{4x^{2} }}{{(y + a)^{5} }}} \right)\,, $$

(6)

$$ M = K^{*} \left[ {T_{c} - T} \right]\,\,, $$
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The geometry of the problem

The required equations for the Jeffrey model are written as

“Cauchy stress tensor:\(\tau\),extra stress tensor:\(\kappa\), and the following terms are

defined above paragraph.

Using the continuity, momentum, temperature equations, and the boundary conditions”

$$ \tau = pI + \kappa $$

(7)

$$ \kappa = \frac{\mu }{{1 + \lambda_{1} }}\left[ {R_{1} + \lambda_{1} \left(

{\frac{{\partial R_{1} }}{\partial t} + V.\nabla } \right)R_{1} } \right] $$

(8)

$$ R_{1} = (\nabla V) + (\nabla V)^{\prime } $$

(9)
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where \(u(x,y)\) and \(v(x,y)\) are the “horizontal and vertical velocity components.”

Following Rosselandestimate \(q_{r}\), the radiation heat flux is given \(q_{r} = - \left(

{\frac{4\sigma }{{3k^{*} }}} \right)\frac{{\partial T^{4} }}{\partial y}\), expanding T4,

in a Taylor series about \(T_{\infty }\),on neglecting higher order term and \(k*\):

thermal radiation parameter, we get

$$ \frac{\partial u}{{\partial x}} + \frac{\partial u}{{\partial y}} = 0 $$

(10)

$$ u\frac{\partial u}{{\partial x}} + v\frac{\partial u}{{\partial y}} = \frac{{\mu_{0} }}

{\rho }M\frac{\partial H}{{\partial x}} + \frac{\nu }{{1 + \lambda_{2} }}\left[

{\frac{{\partial^{2} u}}{{\partial y^{2} }} + \lambda_{1} \left( {u\frac{{\partial^{2} u}}

{\partial x\partial y} + v\frac{{\partial^{3} u}}{{\partial y^{3} }} - \frac{\partial u}

{{\partial x}}\frac{{\partial^{2} u}}{{\partial y^{2} }} + \frac{\partial u}{{\partial

y}}\frac{{\partial^{2} u}}{\partial x\partial y}} \right)} \right] + g\beta^{*} (T_{c} - T)

$$

(11)

$$ u\frac{\partial T}{{\partial x}} + v\frac{\partial T}{{\partial y}} + \frac{{\mu_{0} }}

{{\rho C_{p} }}T\frac{\partial H}{{\partial T}} = \frac{k}{{\rho C_{p}

}}\frac{{\partial^{2} T}}{{\partial y^{2} }} + \frac{\mu }{{\rho C_{p} }}\left(

{\frac{\partial u}{{\partial y}}} \right)^{2} + \frac{2\mu }{{\rho C_{p} }}\left(

{\frac{\partial v}{{\partial y}}} \right)^{2} - \frac{1}{{\rho C_{p} }}\frac{{\partial q_{r}

}}{\partial y} + \frac{{Q*(T_{c} - T)}}{{\rho C_{p} }} $$

(12)

$$ \begin{aligned} T^{4} & \approx T_{\infty }^{4} + 4T_{\infty }^{3} T - 4T_{\infty

}^{3} T_{\infty } \\ \frac{{\partial q_{r} }}{\partial y} & = \frac{\partial }{\partial

y}\left( {\frac{ - 4\sigma }{{3k^{*} }}\frac{{\partial T^{4} }}{\partial y}} \right) =

\frac{\partial }{\partial y}\left( {\frac{ - 4\sigma }{{3k^{*} }}\frac{{\partial (T_{\infty

}^{4} + 4T_{\infty }^{3} T - 4T_{\infty }^{3} T_{\infty } )}}{\partial y}} \right) =
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Following boundary conditions for PST and PHF cases are given below:

Solution

The similarity conversions and dimensional variables which is utilized to change

Eq. (11)– (13) in the set of ODE are considered byMajeed et al. [6] and Wang et al.

[31,32,33,34,35,36].

where in perspective of Eq. (14), the Eqs. (11)–(13) and the boundary conditions are

converted to

\frac{{ - 16\sigma T_{\infty }^{3} }}{{3k^{*} }}\frac{{\partial^{2} T}}{{\partial y^{2}

}} \\ \end{aligned} $$

$$ \begin{aligned} & u = (u_{w} = cx) + L_{1} \frac{\partial u}{{\partial y}},\quad v = -

v_{w} + \frac{k}{{\rho \left[ {\beta + c_{s} (T_{m} - T_{0} )} \right]}}\frac{\partial T}

{{\partial y}}\quad {\text{at}}\quad y = 0 \\ & u \to 0,\quad \frac{\partial u}{{\partial

y}} \to 0\quad {\text{at}}\quad y = \infty \\ \end{aligned} $$

$$ \begin{array}{*{20}l} {T = T_{w} = T_{c} - A\left( \frac{x}{l} \right)^{2} \;for\;PST}

\hfill & {at\;y = 0} \hfill \\ {T \to T_{c} } \hfill & {at\;y = \infty } \hfill \\ \end{array} $$

(13)

$$ \begin{aligned} \eta & = \sqrt {\frac{c}{\nu }} y,\quad \xi = \sqrt {\frac{c}{\nu }}

x,\quad u = cxf^{\prime } (\eta ),\quad v = - \sqrt {cv} f(\eta ) \\ \theta (\eta ) & =

\frac{{T - T_{\infty } }}{{T_{w} - T_{\infty } }} = \theta_{1} (\eta ) + \xi^{2} \theta_{2}

(\eta ) \\ \end{aligned} $$

(14)

$$ f^{\prime \prime \prime \prime } - (1 + \lambda_{2} )(f^{\prime 2} - ff^{\prime

\prime } ) + \gamma_{1} (f^{\prime \prime 2} - ff^{iv} ) - (1 + \lambda_{2}

)\frac{{2\beta \theta_{1} }}{{(\eta + \alpha_{1} )^{4} }} + (1 + \lambda_{2} )\theta_{1}

Gr = 0 $$

(15)
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The boundary conditions (B.C.) are:

“The skin friction coefficient \(Cf\),local Nusselt number \(Nu_{x}\) and local Sherwood

number \(Sh\)” are defined as

Here

$$ \theta_{1}^{\prime \prime } \left( {1 + \frac{4}{3}R} \right) + \Pr

(f\theta_{1}^{\prime } - 2f^{\prime } \theta_{1} ) + \frac{{2\lambda \beta (\theta_{1} -

\varepsilon )f}}{{(\eta + \alpha_{1} )^{3} }} - 2\lambda f^{\prime 2} - Q\theta_{1} = 0

$$

(16)

$$ \theta_{2}^{\prime \prime } \left( {1 + \frac{4}{3}R} \right) + \Pr

(f\theta_{2}^{\prime } - 4f^{\prime } \theta_{1} ) - 2\lambda \beta (\theta_{1} -

\varepsilon )\left[ {\frac{{f^{\prime } }}{{(\eta + \alpha_{1} )^{4} }} + \frac{f}{{(\eta +

\alpha_{1} )^{5} }}} \right] + \frac{{2\lambda \beta \theta_{2} f}}{{(\eta + \alpha_{1}

)^{3} }} - \lambda f^{\prime \prime 2} - Q\theta_{2} = 0 $$

(17)

$$ \begin{aligned} & at\quad \eta = 0\quad \left\{ {f(\eta ) = S - \,\frac{Me}{{\Pr

}}\,\theta^{\prime } (\eta ),\quad f^{\prime } (\eta ) = 1 + Slip_{1} f^{\prime \prime }

(\eta )} \right. \\ & at\quad \eta \to \infty \quad \left\{ {f \to 0,\quad f^{\prime \prime }

\to 0} \right. \\ \end{aligned} $$

$$ \left\{ {\begin{array}{*{20}l} {\theta_{1} = 1,\quad \theta_{2} = 0\;for\;PST\;at\;\eta

= 0} \hfill \\ {\theta_{1} \to 0,\quad \theta_{2} \to 0\;at\;\eta \to \infty } \hfill \\

\end{array} } \right. $$

(18)

$$ C_{f} = \frac{{ - 2\tau_{w} }}{{\rho u_{w}^{2} }},\;Nu_{x} = q_{r} - \frac{{xq_{w}

}}{{k(T_{c} - T_{w} )}} $$

(19)
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On substituting value from Eq. (20) in to Eq. (19), we get thefollowing dimensionless

expressions for skin friction coefficient, localNusselt number and local Sherwood number

as given below:

\(Sh/\sqrt {\text{Re}} = - \phi^{\prime } (0),\) where \({\text{Re}} = ax^{2} /v\) local

Reynolds number.

Result Discussion

In the current work, approximate solutions for the melting and permeable flows of a

Jeffrey fluid over a linearly slip stretchysurface have been obtained by using R-K 4thorder

shooting techniques. The motive of this object was to examine heat transfer and first-

order slipy Jeffery fluid flow with magnetic dipole effect. We also investigated radiation

with heat sources affecting past permeable linearly stretching or melting sheet. Various

sets of the numerical solution have been accepted out for different mixtures of pertinent

parameters namely, Various physical characteristics' effects ferromagnetic interaction

parameter (\(\beta\)), Deborah number (\(\gamma\)), Radiation parameter (\(R\)), Heat

sources parameter (\(Q\)),Prandtl number (\(\Pr\)), suction/injection parameter (\(S\)),

ratio of relaxation to retardation times (\(\lambda_{2}\)) on velocity and temperature

$$ \tau_{w} = \left. {\left[ {\mu \left( {\frac{\partial u}{{\partial y}}} \right)} \right]}

\right|_{y = 0} ,\;q_{w} = \left. { - \left( {\frac{\partial T}{{\partial y}}} \right)}

\right|_{y = 0} ;\;{\text{surface}}\;{\text{heat}}\;{\text{flux}} $$

(20)

$$ c_{f} {\text{Re}}_{x}^{\frac{1}{2}} = - 2f^{\prime \prime } $$

(21)

$$ \begin{aligned} Nu{\text{Re}}_{x}^{{\frac{ - 1}{2}}} & = - \left( {1 + \frac{4}{3}R}

\right)(\theta_{1}^{\prime } (0) + \xi^{2} \theta_{1}^{\prime } (0))\quad for\quad PST

\\ Nu{\text{Re}}_{x}^{{\frac{ - 1}{2}}} & = - \left( {1 + \frac{4}{3}R} \right)\frac{1}

{{\left( {\theta_{1} (0) + \xi^{2} \theta_{1} (0)} \right)}}\quad for\quad PHF \\

\end{aligned} $$

(22)
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profiles is illustrated graphically with condition prescribed surface temperature (PST). It

is also noted that Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 show that velocity as well as

temperature profile with PST condition. By using the figures and tables, the impression of

many relevant parameters is explored. The default parameter values for current work are

considered as \(\lambda = 0.5\), \(\rho_{1} = 0.2\),\(\lambda_{2} = 0.1\),\(\Pr =

2,\,\,\beta = 0.2,\,\,\alpha_{1} = 1,\,\,\varepsilon = 2\),\(R = 1,\,\,Q = 1,\,\,Gr = 1,\,\,S =

0.5,\,\,Me = 0.5,\,\,Slip_{1} = 0.5\). By comparison of the numerical criterion of the

Nusselt number by changing Pr in Table 1, the modified approach is proven to be accurate.

The capability of the improved method is confirmed by this table. The absolute result of

skin friction coefficient, Nusselt number in PST is given for numerical solution on

permeable andmelting case for different data of physical parameter presented in Tables 2

and 3.

Fig. 2
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The influence of \(\lambda\) parameter on velocity

Fig. 3

The influence of \(\lambda\) parameter on temperature

Fig. 4
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The influence of \(\gamma_{1}\) parameter on velocity

Fig. 5
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The influence of \(\gamma_{1}\) parameter on temperature

Fig. 6
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The influence of \(\lambda_{2}\) parameter on velocity

Fig. 7
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The influence of \(\lambda_{2}\) parameter on temperature

Fig. 8

12/21/24, 10:25 AM Jeffery Slip Fluid Flow with the Magnetic Dipole Effect Over a Melting or Permeable Linearly Stretching Sheet | International …

https://link.springer.com/article/10.1007/s40819-023-01629-w 17/36

https://link.springer.com/article/10.1007/s40819-023-01629-w/figures/7


The influence of Pr parameter on velocity

Fig. 9

12/21/24, 10:25 AM Jeffery Slip Fluid Flow with the Magnetic Dipole Effect Over a Melting or Permeable Linearly Stretching Sheet | International …

https://link.springer.com/article/10.1007/s40819-023-01629-w 18/36

https://link.springer.com/article/10.1007/s40819-023-01629-w/figures/8


The influence of Pr parameter on temperature

Fig. 10
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The influence of \(\beta\) parameter on velocity

Fig. 11
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The influence of \(\beta\) parameter on temperature.

Fig. 12
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The influence of R parameter on velocity

Fig. 13
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The influence of R parameter on temperature

Table 1 Comparison of Nusselt number \(- \theta_{1}{\prime} (0)\) for the value of \
(\beta\) = 0, \(\lambda\) = 0, \(\lambda_{2}\) = 0, \(R\) = 0, \(\gamma_{1} = S = Q = Gr

= 0\)

Table 2 The numerical values of skin friction coefficient (\(Cf\)), Nusselt number (\
(Nu\)) in PST surface temperature is given for numerical solution on permeable surface

case for various values of the physical parameter
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Table 3 The numerical values of skin friction coefficient, Nusselt number in PST is given
for numerical solution on melting surface case for various values of the physical

parameter

The impression of the viscous dissipation parameter(\(\lambda\)) on temperature

distribution as well as velocitycan be discovered in Figs. 2 and 3. It is noticed that velocity

and temperature profiles get lower with the growth in the result \(\lambda\). Physically,

viscous dissipation occurs because the Jeffery fluid exhibits viscoelastic behavior,

meaning that it possesses both viscous and elastic properties. As the fluid flows, the shear

forces between adjacent layers cause energy to be transferred from the macroscopic

motion of the fluid to the microscopic motion of its molecules. This energy is then

dissolute as heat.The dissipation of energy results in a loss of kinetic energy within the

fluid, leading to a decrement in velocity. Additionally, as energy is converted to heat, the

fluid temperature increases. Consequently, both the velocity together with temperature

profiles decrease as a conclusion of viscous dissipation.

Figures 4 and 5 exemplify the outcomes of Deborah's numbers \(\gamma_{1}\) on

velocity \(f^{\prime } \left( \eta \right)\), with temperature \(\theta \left( \eta \right)\)

profile. Whenever values of \(\gamma_{1}\) gets increased the velocity gets enhanced but

alternatively temperature profile gets cut down. Physically, when a Jeffery fluid flows, it

experiences viscous dissipation, which leads to the transformation of mechanical energy

into heat due to internal friction within the fluid. This dissipation is more prominent at

higher Deborah numbers when the elastic effects become significant. The fluid exhibits

an increasingly noticeable elastic behavior as the Deborah number rises. This elastic

behavior is associated with energy storage and release within the fluid, causing the

temperature to be lower.

Figures 6 and 7 exhibit consequences of porosity parameter (\(\lambda_{2}\)) on velocity

\(f^{\prime } \left( \eta \right)\), with temperature \(\theta \left( \eta \right)\) profile.

Figure 6 showsflow stream reduces with improving meritsof the (\

(\lambda_{2}\))parameter and on the other side effect seenon the temperature profile.

Physically, the fluid flow is significantly announced with a growth in relaxation time (or

decrease in retardation time) because growth in \(\lambda_{2}\) leads to rise in
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relaxation time; it means particles need much time to come back from the perturbed

system to equilibrium system in which subsequently fluid velocity get lower.

Figures 8 and 9 show the impression of Prandtl number (\(\Pr\)) on velocity and

temperature profiles. Increase the \(\Pr\), and suppress the fluid velocity and thermal

energy boundary layer thickness.\(\Pr\) isthe ratio of momentum diffusivity to thermal

diffusivity.Heat will diffuse from the sheet more quickly from fluids with lower inPr

because they have high-level thermal conductivities.\(\Pr\) may speed up the cooling

process in conducting flows. The velocity together with the temperature profile plotted

against the similarity variable (\(\eta\)) for distinct characteristics of the ferromagnetic

interaction parameter(\(\beta\)) parameter is shown in Figs. 10 and 11. The figures

indicate that with the rise in the parameter, the thickness of the momentum boundary

layer decreases, while the temperature shows the opposite impact.

Figures 12 and 13 exemplify the significanceof radiation parameter (\(R\)) on velocity and

temperature profile.From thesegraphs, it is noticeable that the momentum and thermal

boundary layer thickness grows up with growth in the results of \(R\). In general, as

increases, the mean absorption coefficient falls, which causes the radiative heat flux to

diverge. Resultant, the range of radiative heat transfer to the fluid rises, raising the fluid's

temperature.

Conclusion

In the latest work, by utilizing R–K 4th order techniques approximate numerical results

for the melting and permeable flow of Jeffrey fluid aroundstretchysurfaces have been

derived. The motive of the research was to examineheat-transfer and first-order slipy

Jeffery fluid flow with magnetic dipole effect. The investigation also revealed that the

viscous dissipation parameter \(\lambda\) had counterintuitive effects on the thermal

profile. Deborah numbers \(\gamma_{1}\) on velocity \(f^{\prime } \left( \eta \right)\),

with temperature \(\theta \left( \eta \right)\) profile. Whenever values of \(\gamma_{1}\)

gets increased the velocity gets enhanced but alternatively temperature profile gets cut

down. In this article we find the tabulated form the numerical values of skin friction

coefficient, Nusselt number in PST is given for numerical solution on melting surface case

and without melting case for various values of the physical parameter. The two terms of

flow have been explored. The impression of abundant quantities on velocity with

temperature distribution is outlined as follows:
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a:

c:

\(C_{p}\) :

\(C_{f}\) :

\(f\) :

\(H\) :

\(k\) :

\(K^{*}\) :

The velocity \(f^{\prime } \left( \eta \right)\) together with temperature \(\theta

\left( \eta \right)\), it noticed to rise with increasing amount of \(\lambda \,\) and \

(\Pr\).

The velocity \(f^{\prime } \left( \eta \right)\) together with temperature \(\theta

\left( \eta \right)\) profile is higher for the melting boundary condition than

permeable boundary condition.

Meganetic field parameter and porosity parameter have propensity to reduce the

skin friction coefficient (\(Cf\)) and local Nusselt number (\(Nu\)).

Radiation parameter (\(R\)) has propensity to stand up the skin friction coefficient

and local Nusselt number.
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Abbreviations

Distance

Stretching rate \(({\text{s}}^{ - 1} )\)

Specific heat at constant pressure

Skin friction coefficient

Dimensionless stream function

Magnetic field \(({\text{A}}/{\text{m}})\)

Thermal conductivity

Pyro magnetic coefficient
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\(M\) :

\(\kappa\) :

\(N_{ux}\) :

\(\Pr = \frac{{\mu C_{p} }}{k}\) :

Gr:

\(\theta\) :

\({\text{Re}}_{x} = \frac{{u_{w} x}}{v}\) :

\({\text{R}}_{1}\) :

\(S = \frac{{ - V_{w} }}{{\sqrt {cv} }}\) :

\(R = \frac{{4\sigma T_{\infty }^{3} }}{3kk*}\) :

T:

\(Q = \frac{Q*}{{c\rho C_{p} }}\) :

\(T_{c}\) :

\((u,v)\) :

\((x,y)\) :

\(\mu\) :

\(\mu_{0}\) :

Magnetization \(({\text{A}}/{\text{m}})\)

Extra stress tensor

Local Nusselt number

Prandtl number

Grashof number

Dimensionless temperature

Local Reynolds number

Rivlin–Ericksen tensor

Suction/injection parameter

Radiation parameter

Temperature (K)

Heat sources

Curie temperature (K)

Velocity components \(({\text{ms}}^{ - 1} )\)

Coordinates along and normal to the sheet \(({\text{m}})\)

Dynamic viscosity \(({\text{N}}\,{\text{ms}}^{ - 1} )\)

Magnetic permeability
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\(\alpha = a\sqrt{\frac{c}{v}} \) :

\(\beta = \frac{\gamma \rho }{{2\pi \mu^{2} }}\mu_{0} K^{*} (T_{c} - T_{w} )\) :

\(\gamma\) :

\(\gamma_{1} = \lambda_{1} c\) :

\(\rho\) :

\(\varepsilon = \frac{{T_{c} }}{{(T_{c} - T_{w} )}}\) :

\((\xi ,\eta )\) :

\(\psi\) :

\(\phi\) :

\(\tau\) :

\(\lambda = \frac{{c\mu^{2} }}{{\rho k(T_{c} - T_{w} )}}\) :

\(\lambda_{1} \,,\lambda_{2}\) :

Dimensionless distance

Ferro

magnetic interaction parameter

Magnetic field strength \(({\text{A}}/{\text{m}})\)

Deborah numbers

Density \(({\text{kg}}\;{\text{m}}^{ - 3} )\)

Dimensionless curie temperature

Dimensionless coordinate

Stream function \(({\text{m}}^{2} \;{\text{s}}^{ - 1} )\)

Magnetic potential

Cauchy stress tensor

Viscous dissipation

parameter

Material parameters of Jeffrey's fluid
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