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4 Analysis of RF and Microwave Transmission 5 
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6 Passive and Active Microwave Devices 10 
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Module No. 4                                                                      

Analysis of RF and Microwave Transmission Lines 



Outline of the Module  

 Microwave Transmission Lines 

 Coaxial Transmission Lines (In this lecture) 

 Rectangular Waveguide 

 Circular Waveguide (In this lecture) 

 Stripline 

 Microstripline 

 



Circular Waveguide 

 A circular waveguide is a tubular, circular 

conductor.  

 A plane wave propagating through a 

circular waveguide results in a transverse 

electric (TE) or transverse magnetic (TM) 

mode.  

 In general terms the behavior is the same as in 

Rectangular waveguide. 

 



 However different geometry means different 

application hence a separate analysis 

 The law governing the propagation of waves 

in waveguides are independent of the cross 

sectional shape and dimensions of the guide. 

 All the parameters and definitions evolved 

for Rectangular waveguide apply to circular 

with minor modification 

 



Solution of Wave equation in 

Cylindrical Coordinates 
A cylindrical coordinate system is as shown 

in figure 



The scalar Helmholtz equation in cylindrical coordinates is 
given by 

 
1

𝑟

𝜕

𝜕𝑟
(r

𝜕𝝭 
𝜕𝑟

 ) + 
1

𝑟2   
𝜕2𝝭 
𝜕∅2 +

𝜕2𝝭 
𝜕𝑧2 =γ2 𝝭 

 

Using the method of separation of variables, the solution is 
assumed in the form of 

 𝞧 = 𝑅 𝑟 ∅ ∅ 𝑍 𝑧  

 

where R (r) = a function of the r coordinate only 

∅ ∅  = a function of the ∅ coordinate only 

Z (z) = a function of the z coordinate only 

 

 

 

 

 



Substitution and division of above gives 
1

𝑟𝑅

𝑑

𝑑𝑟
(r

dR 
𝑑𝑟

 ) + 
1

𝑟2∅

𝑑2∅

𝑑∅2 +
1

𝑍

𝑑2Z 
𝑑𝑧2 =γ2  

 

Since the sum of the three independent terms is a 
constant, each of the three terms must be a constant. 
The third term may be set equal to a constant 

 
𝑑2Z 
𝜕𝑧2 =γg

2 z 

 

The solution of this equation is given in the form 

 

Z= 𝐴𝑒−γg𝑧 + 𝐵𝑒γg𝑧 
 



𝑟

𝑅

𝑑

𝑑𝑟
(r

dR 
𝑑𝑟

 ) + 
1

∅

𝑑2∅

𝑑∅2 −(γ2 − γg
2 )r2 =0 

 

The second term is a function of ∅ only, 

hence equating the second term to a constant 

(− n2 ) 

𝑑2∅

𝑑∅2 =− n2  ∅ 

The solution of this equation is also a 

harmonic function: 

∅=𝐴𝑛Sin(n∅)+𝐵𝑛Cos(n∅) 



Replacing the ∅ term by (− n2 )  and multiplying 
through by R, we have 

𝑟
𝑑

𝑑𝑟
(r

dR 
𝑑𝑟

 ) + [(kc𝑟)2 - n2 ]R=0  

 

This is Bessel's equation of order n in which 

(γg)2= γ2 +(kc)
2 

 

This equation is called the characteristic equation of 
Bessel's equation. For a lossless guide, the characteristic 
equation reduces to 

 

𝛽g= ±   ω2 µЄ − 𝑘𝑐
2 

 



The solutions of Bessel's equation are 

R=𝐶𝑛𝐽𝑛(𝑘𝑐r)+𝐷𝑛𝑁𝑛(𝑘𝑐r) 

 

where 𝐽𝑛(𝑘𝑐r) is the nth-order Bessel function 

of the first kind, representing a standing wave 

of cos (𝑘𝑐r) for r < a  

𝑁𝑛(𝑘𝑐r) is the nth-order Bessel function of 

the second kind, representing a standing wave 

of sin (𝑘𝑐r) for r > a 



Therefore the total solution of the Helmholtz equation in 
cylindrical coordinates is given by 

 
𝝭 = (𝐶𝑛𝐽𝑛(𝑘𝑐r)+𝐷𝑛𝑁𝑛(𝑘𝑐r))(𝐴𝑛Sin(n∅)+𝐵𝑛Cos(n∅))𝑒±𝑗β𝑔𝑧 

 

From the Bessel functions graphs,  at r = 0, however, 
𝑘𝑐r = 0, then the function N. approaches infinity, so 
𝐷𝑛= 0. Also, by use of trigonometric manipulations, 
the two sinusoidal terms become combined  

Finally, the solution of the Helmholtz equation is 
reduced to 

 

𝝭 = 𝝭0(𝐽𝑛(𝑘𝑐r))Cos(n∅)𝑒−𝑗β𝑔𝑧 



TE mode in Circular Waveguide 

The TE modes in a circular waveguide are 

characterized by 𝐸𝑧 = 0. In other words, the z 

component of the magnetic field, 𝐻𝑧, must exist 

in order to have energy transmission in the guide. 

Consequently, from a given Helmholtz equation, 

𝐻𝑧 is not equal to zero, so: 

𝜵𝟐𝑯𝒛 = 𝜸𝟐 𝑯𝒛 

Its solution is of the form 

𝑯𝑧 = 𝑯0𝑧(𝐽𝑛(𝑘𝑐r))Cos(n∅)𝑒−𝑗β𝑔𝑧 



The Maxwell equations for a lossless dielectric 
medium becomes in frequency domain as: 

 
𝛁𝐗𝐄 = −𝐣ω µH 

𝛁𝐗𝐇 = jωεE 

 
Suppose, i,j,k are unit vectors along X, Y and Z 
directions 

Electric field Vector E= 𝐸𝑥 i + 𝐸𝑦 j + 𝐸𝑧 k 

Magnetic field Vector H= 𝐻𝑥 i + 𝐻𝑦 j + 𝐻𝑧 k 

We expand the curl equations in cylindrical 
coordinates 

 



The boundary conditions require that the ∅ 

component of the electric field 𝐸∅, which is 

tangential to the inner surface of the circular 

waveguide at r = a, must vanish or that the r 

component of the magnetic field 𝐻𝑟, which is 

normal to the inner surface of r = a, must 

vanish. Consequently 



 𝐸∅= 0, at r=a,  then 
𝜕Hz

𝜕𝑟
 = 0 at r=a 

 

𝑯0𝑧(𝐽𝑛
′ (𝑘𝑐a))Sin(n∅)𝑒−𝑗β𝑔𝑧=0 

 

𝐽𝑛
′ (𝑘𝑐a)=0 

The permissible values are  

𝑘𝑐 =
𝑋𝑛𝑝

′

𝑎
 

 



 𝐸𝑟  =E0r  𝐽𝑛(
𝑋𝑛𝑝

′ 𝑟

𝑎
)Sin(n∅)e−jβgz 

 

 𝐸∅ = 𝐸0∅  𝐽𝑛
′ 𝑋𝑛𝑝

′ 𝑟

𝑎
Cos(n∅)e−jβgz 

 

 𝐸𝑧 =0 

 

 
 



 𝐻𝑟  = 𝐻0𝑟  𝐽𝑛
𝑋𝑛𝑝

′ 𝑟

𝑎
Cos(n∅)e−jβgz 

 

 𝐻∅=𝐻0∅  𝐽𝑛
𝑋𝑛𝑝

′ 𝑟

𝑎
Sin(n∅)e−jβgz 

 

 𝐻𝑧 = 𝐻0𝑧  𝐽𝑛
𝑋𝑛𝑝

′ 𝑟

𝑎
Cos(n∅)e−jβgz 



n=0,1,2,3 and p=1,2,3,4 

The first subscript n represents the number of 

full cycles of field variation in one revolution 

through 2π rad of ∅. The second subscript p 

indicates the number of zeros of 𝐸∅,-that is, 

𝐽𝑛
𝑋𝑛𝑝

′ 𝑟

𝑎
 along the radial of a guide, but the 

zero on the axis is excluded if it exists. 



Mode propagation constant 

𝛽g=    ω2 µЄ − (
𝑋𝑛𝑝

′

𝑎 )2 

The cutoff wave number of a mode is that for 
which the mode propagation constant vanishes. 
Hence 

𝑘𝑐 =
𝑋𝑛𝑝

′

𝑎
=𝜔𝑐 µЄ 

The cutoff frequency for TE modes in a circular 
guide is then given by 

𝑓𝑐 =
𝑋𝑛𝑝

′

2π𝑎 µЄ
 

 



𝑣𝑝 =
𝜔

𝛽𝑔
 (Phase velocity) 

 

 𝑣𝑝 =
𝑐

1−
𝑓𝑐

𝑓

2
 

 𝜆𝑔 =
𝜆

1−
𝑓𝑐
𝑓

2
 

 𝑧𝑔 =
𝜔µ

𝛽𝑔
=

𝜂

1−
𝑓𝑐
𝑓

2
 



TM modes in Circular Waveguide 

The TM modes in a circular waveguide are 

characterized by 𝐻𝑧 = 0. In other words, the z 

component of the electric field, 𝐸𝑧, must exist in 

order to have energy transmission in the guide. 

Consequently, from a given Helmholtz equation, 

𝐻𝑧 is not equal to zero, so: 

𝜵𝟐𝑬𝒛 = 𝜸𝟐 𝑬𝒛 

Its solution is of the form 

𝑬𝑧 = 𝑬0𝑧(𝐽𝑛(𝑘𝑐r))Cos(n∅)𝑒−𝑗β𝑔𝑧 



The boundary condition requires that the 

tangential component of electric field 𝐸𝑧 at r 

= a vanishes. Consequently, 

 

𝐽𝑛(𝑘𝑐a)=0 



The Maxwell equations for a lossless dielectric medium 
becomes in frequency domain as: 

 
𝛁𝐗𝐄 = −𝐣ω µH 

𝛁𝐗𝐇 = jω ε E 

 
Suppose, i,j,k are unit vectors along X, Y and Z 
directions 

Electric field Vector E= 𝐸𝑥 i + 𝐸𝑦 j + 𝐸𝑧 k 

Magnetic field Vector H= 𝐻𝑥 i + 𝐻𝑦 j + 𝐻𝑧 k 

We expand the curl equations in cylindrical coordinates 

 



 𝐸𝑟 =E0r 𝐽𝑛
′ 𝑋𝑛𝑝𝑟

𝑎
Cos(n∅)e−jβgz 

 

 𝐸∅ = 𝐸0∅ 𝐽𝑛
𝑋𝑛𝑝𝑟

𝑎
Sin(n∅)e−jβgz 

 

 𝐸𝑧 = 𝐸0𝑧  𝐽𝑛
𝑋𝑛𝑝𝑟

𝑎
Cos(n∅)e−jβgz 

 



 𝐻𝑟  = 𝐻0𝑟𝐽𝑛
𝑋𝑛𝑝𝑟

𝑎
Sin(n∅)e−jβgz 

 

 𝐻∅=𝐻0∅  𝐽𝑛
′ 𝑋𝑛𝑝𝑟

𝑎
Cos(n∅)e−jβgz 

 

 𝐻𝑧 =0 

 



Mode propagation constant 

𝛽g=    ω2 µЄ − (
𝑋𝑛𝑝

𝑎 )2 

The cutoff wave number of a mode is that for 
which the mode propagation constant vanishes. 
Hence 

𝑘𝑐 =
𝑋𝑛𝑝

𝑎
=𝜔𝑐 µЄ 

The cutoff frequency for TE modes in a circular 
guide is then given by 

𝑓𝑐 =
𝑋𝑛𝑝

2π𝑎 µЄ
 

 



𝑣𝑝 =
𝜔

𝛽𝑔
 (Phase velocity) 

 

 𝑣𝑝 =
𝑐

1−
𝑓𝑐

𝑓

2
 

 𝜆𝑔 =
𝜆

1−
𝑓𝑐
𝑓

2
 

z𝑔 =
𝛽𝑔

𝜔Є
 =𝜂 1 −

𝑓𝑐

𝑓

2

 



It should be noted that the dominant mode, 

or the mode of lowest cutoff frequency in a 

circular waveguide, is the mode of TE11 that 

has the smallest value of the product, 𝑘𝑐a = 

1. 841 



TEM mode in circular waveguide 

 TEM modes are characterized by both 𝐸𝑧 
and 𝐻𝑧 as zero 

 This means that the electric and magnetic 
fields are completely transverse to the 
direction of wave propagation.  

 This mode cannot exist in hollow 
waveguides, since it requires two 
conductors, such as the coaxial 
transmission line and two-open-wire line. 

 



Summary of the lecture 
 In this lecture, we covered mathematical  analysis of Circular 

Waveguides, it is somewhat similar to that of rectangular 
waveguides, with calculations in cylindrical coordinate 
sytem make mathematics more complex 

 In the next lecture, we will start with analysis of 
Microstriplines and Striplines 
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Waveguide Analysis

1



Solution of Wave Equations in 

Rectangular Coordinates
The process of analyzing the waveguide involves
following steps:

 The desired wave equations are written in the
form of either rectangular or cylindrical
coordinate systems as required

 The boundary conditions are then applied to the
wave equations

 The resultant equations are in the form of partial
differential equations which can be solved by
using the proper method



A rectangular coordinate system is as shown in figure, with a

rectangular waveguide having wave propagation along -z

direction



As per the Helmholtz equation:

𝛁𝟐𝝭 = 𝛄𝟐𝝭

Where the function 𝝭 can be written as a function of x, 

y and z as: 

𝝭 = X x Y y Z(z)

by using separation of variables

Gamma is propagation constant as discussed

previously

γ = ( jω µ σ + jω Є )



Helmholtz equation in rectangular coordinates is given by:

𝜕2𝝭

𝜕x2
+
𝜕2𝝭

𝜕y2
+
𝜕2𝝭

𝜕z2
= γ2𝝭

Substitution of 𝝭 = 𝐗 𝐱 𝐘 𝐲 𝐙(𝐳)

Gives

1

𝑋

d2𝑋

d𝑥2
+

1

𝑌

d2𝑌

d𝑦2
+

1

𝑍

d2𝑍

d𝑧2
=γ2

Since the sum of the three terms on the left-hand side is a

constant and each term is independently variable, it follows that

each term must be equal to a constant.

Let the three terms be 𝑘𝑥
2 , 𝑘𝑦

2 , 𝑘𝑧
2 , respectively, then the

separation equation becomes



-𝑘𝑥
2 − 𝑘𝑦

2 − 𝑘𝑧
2 = γ2

where

-𝑘𝑥
2 =

1

𝑋

𝑑2𝑋

𝑑𝑥2

-𝑘𝑦
2 =

1

𝑌

𝑑2𝑌

𝑑𝑦2

-𝑘𝑧
2 =

1

𝑍

𝑑2𝑍

𝑑𝑧2

The general solution of equation will be:

X=A Sin(kx x)+ B Cos(kxx)
Y=C Sin(ky y)+ D Cos(kyy)
Z=E Sin(kz z)+ F Cos(kzz)



The total solution of the Helmholtz equation in

rectangular coordinates is:

𝝭 = (A Sin(𝑘𝑥x)+ B Cos(𝑘𝑥x))(C Sin(kyy)+ D 
Cos(kyy))(E Sin(kz z)+ F Cos(kzz))

The propagation of the wave in the guide is assumed in

the z direction, the propagation constant γg in the guide

differs from the intrinsic propagation constant γ of the

dielectric as:

(γg)2=γ2 +(kx)2+(ky)2= γ2 +(kc)
2



where

kc = 𝑘𝑥
2 + 𝑘𝑦

2

is called cut off wave number

For a lossless dielectric, 𝜎=0,  So,

γ2 = −𝜔2 µЄ
Therefore,

γg= ± −𝜔2 µЄ + (kc)
2

There are three cases for the propagation constant γg in 
the waveguide



Case I (Cut off case)

 ω2 µЄ = 𝑘𝑐
2

 γg= 0

No propagation, the cut off frequency in this case is 

given as:

 ω𝑐 =
1

µЄ
𝑘𝑥
2 + 𝑘𝑦

2

 𝑓𝑐 =
1

2𝜋 µЄ
𝑘𝑥
2 + 𝑘𝑦

2



Case II (Propagation Case)

 𝜔2 µЄ > 𝑘𝑐
2

 𝛾g = ± j 𝜔 µЄ 1 −
𝑓𝑐

𝑓

2

 𝛾g = ± j𝛽g= ± j 𝜔 µЄ 1 −
𝑓𝑐

𝑓

2

Here, the attenuation is zero and wave will propagate if:

 f > 𝑓𝑐



Case III (Attenuation Case)

 𝜔2 µЄ < 𝑘𝑐
2

 𝛾g = ± 𝜔 µЄ
𝑓𝑐

𝑓

2

− 1

 𝛾g = ± 𝛼g = ±𝜔 µЄ
𝑓𝑐

𝑓

2

− 1

Here, the attenuation is non zero but phase constant is 
zero so wave will not propagate if:

 f < 𝑓𝑐



So, considering the previous equation

-𝑘𝑧
2 =

1

𝑍

𝑑2𝑍

𝑑𝑧2

Its solution can also be written in the form as:

Z= 𝑒−𝑗𝑘𝑧𝑧

as the wave is propagating in -z direction also, 𝑘𝑧 is 
replaced by β𝑔
and the solution of 𝞧 becomes

𝝭 = (A Sin(𝑘𝑥x)+ B Cos(𝑘𝑥x))(C Sin(kyy)+ 
D Cos(kyy)) 𝑒−𝑗β𝑔𝑧



Representation of Modes
The variables 𝑘𝑥 and 𝑘𝑦 can be written as :

𝑘𝑥 =
𝑚𝜋

𝑎

𝑘𝑦 =
𝑛𝜋

𝑏
The general symbol of representation will be TE m, n or TM m,
n where: where m,n are integers as 0,1,2……
the subscript ‘m’ indicates the number of half wave variations of
the electric field intensity along the a (wide) dimension of the
waveguide., the second subscript ‘n’ indicates the number of half
wave variations of the electric field in the b (narrow) dimension
of the guide.
The TE10 mode has the longest operating wavelength and is
designated as the dominant mode. It is the mode for which the
lowest frequency that can be propagated in a waveguide.



Phase Velocity and Group Velocity

𝛽g= 𝜔 µЄ 1 −
𝑓𝑐

𝑓

2

𝑣𝑝 =
𝜔

𝛽𝑔

𝑣𝑔 =
𝑑𝜔

d𝛽𝑔



𝑣𝑝 =
𝑐

1 −
𝑓𝑐
𝑓

2

𝑣𝑔= 𝑐 1 −
𝑓𝑐

𝑓

2



Relation between Wavelengths

𝛽g= 𝜔 µЄ 1 −
𝑓𝑐

𝑓

2

𝛽g = 
2𝜋

𝜆𝑔
= 2𝜋 f µЄ 1 −

𝑓𝑐

𝑓

2



1

𝜆 2
=

1

𝜆𝑔 2
+

1

𝜆𝑐 2

𝜆 is the free space wavelength

𝜆𝑔 is the guided wavelength

𝜆𝑐 is the cut off wavelength
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TE and TM modes in rectangular waveguides 

1 



Rectangular Waveguides 

TE Modes: 

The TE modes in a rectangular waveguide are 

characterized by 𝐸𝑧 = 0. In other words, the z 

component of the magnetic field, 𝐻𝑧, must exist 

in order to have energy transmission in the 

guide. Consequently, from a given Helmholtz 

equation, 𝐻𝑧 is not equal to zero, so: 

𝜵𝟐𝑯𝒛 = 𝜸𝟐 𝑯𝒛 

A solution will be of the form 
𝑯𝒛 = (Am Sin (

𝒎𝝅𝒙

𝒂
)+ Bm Cos(

𝒎𝝅𝒙

𝒂
))(Cn Sin(

𝒏𝝅𝒚

𝒃
)+Dn Cos(

𝒏𝝅𝒚

𝒃
)) 𝒆−𝒋𝜷𝒈𝒛 
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The Maxwell equations for a lossless dielectric medium 
becomes in frequency domain as: 

 
𝛁𝐗𝐄 = −𝐣ω µH 

𝛁𝐗𝐇 = jωЄE 

 

Suppose, i,j,k are unit vectors along X, Y and Z 
directions 

Electric field Vector E= 𝐸𝑥 i + 𝐸𝑦 j + 𝐸𝑧 k 

Magnetic field Vector H= 𝐻𝑥 i + 𝐻𝑦 j + 𝐻𝑧 k 

On expanding the curl equations 
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𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= − 𝑗𝜔 µ𝐻𝑥 

 



𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= − 𝑗𝜔 µ𝐻𝑦 

 



𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= − 𝑗𝜔 µ𝐻𝑧 

 



𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔 Є𝐸𝑥 

 



𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔 Є𝐸𝑦 

 



𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔 Є𝐸𝑧 
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If we assume exponential variation of fields with z then, 

 
𝜕

𝜕z
   can be replaced by −jβg 

   

𝐸𝑧=0 for TE modes  

 

Also, 

 from, Case II (Propagation Case) 

 𝜔2 µЄ > 𝑘𝑐
2 

 

 𝛾g = ± j𝛽g= 𝑘𝑐
2− 𝜔2 µЄ 

 

 𝑘𝑐
2 = 𝜔2 µЄ − 𝛽𝑔

2 
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𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= − 𝑗𝜔 µ𝐻𝑥 

 



𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= − 𝑗𝜔 µ𝐻𝑦 

 



𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= − 𝑗𝜔 µ𝐻𝑧 

 



𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔 Є𝐸𝑥 

 



𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔 Є𝐸𝑦 

 



𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔 Є𝐸𝑧 
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 𝐸𝑥 =
−𝑗ωµ

𝑘𝑐
2

𝜕𝐻𝑧

𝜕y
 

 𝐸𝑦 =
𝑗ωµ

𝑘𝑐
2

𝜕𝐻𝑧

𝜕x
 

 𝐸𝑧 = 0 

 𝐻𝑥 =
−𝑗β𝑔

𝑘𝑐
2

𝜕𝐻𝑧

𝜕x
 

 𝐻𝑦 =
−𝑗β𝑔

𝑘𝑐
2

𝜕𝐻𝑧

𝜕y
 

𝑯𝒛  = (Am Sin(
𝒎𝝅𝒙

𝒂
)+ Bm Cos(

𝒎𝝅𝒙

𝒂
))(Cn Sin(

𝒏𝝅𝒚

𝒃
)+ Dn Cos(

𝒏𝝅𝒚

𝒃
)) 𝒆−𝒋𝜷𝒈𝒛 
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The boundary conditions are applied to the field 

equations such that  the tangent E field is zero at a 

surface 

 Since Ex = 0, then 
𝜕Hz

𝜕y
 = 0 at y = 0, b. Hence Cn = 0.  

 Since Ey = 0, then 
𝜕Hz

𝜕x
= 0 at x = 0, a   Hence Am=0 
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Therefore the magnetic field  is given by: 

 

 𝐻𝑧 =H0zCos(
mπx

a
) Cos(

nπy

b
)e−jβgz 

H0z is a constant 
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On substitution of 𝐻𝑧 the other components become 

 

 𝐸𝑥 =
−𝑗ωµ

𝑘𝑐
2

𝜕𝐻𝑧

𝜕y
 

 𝐸𝑦 =
𝑗ωµ

𝑘𝑐
2

𝜕𝐻𝑧

𝜕x
 

 𝐸𝑧 = 0 
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 𝐻𝑥 =
−𝑗β𝑔

𝑘𝑐
2

𝜕𝐻𝑧

𝜕x
 

 𝐻𝑦 =
−𝑗β𝑔

𝑘𝑐
2

𝜕𝐻𝑧

𝜕y
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 𝐸𝑥 =E0xCos(
mπx

a
)Sin(

nπy

b
)e−jβgz 

 

 𝐸𝑦 =E0ySin(
mπx

a
)Cos(

nπy

b
)e−jβgz 

 

 𝐸𝑧 =0 

 

 𝐻𝑥 =H0xSin(
mπx

a
)Cos(

nπy

b
)e−jβgz 

 

 𝐻𝑦=H0yCos(
mπx

a
)Sin(

nπy

b
)e−jβgz 

 

 𝐻𝑧 =H0zCos(
mπx

a
) Cos(

nπy

b
)e−jβgz 
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The cutoff wave number 𝑘𝑐. as defined for the 𝑇𝐸𝑚𝑛 
modes, is given by 

𝑘𝑐 =
𝑚𝜋

𝑎

2

+
𝑛𝜋

𝑏

2

= 𝜔𝑐 µЄ 

where a and b are in meters.  The cut off frequency,  
for the 𝑇𝐸𝑚𝑛 modes, is 

𝑓𝑐 =
1

2 µЄ

𝑚

𝑎

2

+
𝑛

𝑏

2

 

The propagation constant (or the phase constant here) 
is expressed by 

𝛽𝑔 =  𝜔 µЄ 1 −
𝑓𝑐

𝑓

2
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The characteristic wave impedance of 𝑇𝐸𝑚𝑛 modes in the 

guide can be derived 

𝑧𝑔 =
𝐸𝑥

𝐻𝑦
=

−𝐸𝑦

𝐻𝑥
=

𝜔µ

𝛽𝑔
=

𝜂

1 −
𝑓𝑐
𝑓

2

 

 𝐸𝑥 =
−𝑗ωµ

𝑘𝑐
2

𝜕𝐻𝑧

𝜕y
 

 

 𝐻𝑦 =
−𝑗β𝑔

𝑘𝑐
2

𝜕𝐻𝑧

𝜕y
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The wavelength in the guide for the 𝑇𝐸𝑚𝑛 modes is given by 

𝜆𝑔 =
𝜆

1 −
𝑓𝑐
𝑓

2

 

𝛽𝑔= 
2𝜋

𝜆𝑔
= 𝜔 µЄ 1 −

𝑓𝑐

𝑓

2
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TM Modes: 

The TM modes in a rectangular waveguide are 

characterized by 𝐻𝑧  = 0. In other words, the z 

component of the magnetic field, 𝐸𝑧, must exist in 

order to have energy transmission in the guide. 

Consequently, from a given Helmholtz equation, 𝐸𝑧 is 

not equal to zero 

𝛻2𝐸𝑧 = γ2 𝐸𝑧 

A solution will be of the form 

𝑬𝒛  = (Am Sin(
𝒎𝝅𝒙

𝒂
)+ Bm Cos(

𝒎𝝅𝒙

𝒂
))(Cn Sin(

𝒏𝝅𝒚

𝒃
)+ Dn Cos(

𝒏𝝅𝒚

𝒃
)) 𝒆−𝒋𝜷𝒈𝒛 

16 



The boundary conditions are applied to the field 

equations such that  the tangent E field is zero at a 

surface 

 Ez = 0 at x = 0, a then Bm = 0,  

    and for Ez = 0 at y = 0, b then Dn = 0 
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𝑬𝒛  = (Am Sin(
𝒎𝝅𝒙

𝒂
)+ Bm Cos(

𝒎𝝅𝒙

𝒂
))(Cn Sin(

𝒏𝝅𝒚

𝒃
)+ Dn Cos(

𝒏𝝅𝒚

𝒃
)) 𝒆−𝒋𝜷𝒈𝒛 
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Therefore the electric field  is given by: 

𝐸𝑧 =E0zSin(
mπx

a
)Sin(

nπy

b
)e−jβgz 

E0z is a constant 

If either m = 0 or n = 0, the field intensities all vanish. 

So there is no 𝑇𝑀01 or 𝑇𝑀10 mode in a rectangular 

waveguide 
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On again expanding the curl of equations 

 

𝛻XE = −jω µH 

𝛻XH = jωЄE 

 

We have 
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𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= − 𝑗𝜔 µ𝐻𝑥 

 



𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= − 𝑗𝜔 µ𝐻𝑦 

 



𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= − 𝑗𝜔 µ𝐻𝑧 

 



𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔 Є𝐸𝑥 

 



𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔 Є𝐸𝑦 

 



𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔 Є𝐸𝑧 
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If we assume exponential variation of fields with z 

then, 
𝜕

𝜕z
   can be replaced by −jβg 

 

  𝐻𝑧= 0 for TM modes  

 

Also, 

𝑘𝑐
2 = 𝜔2 µЄ − 𝛽𝑔

2 
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𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= − 𝑗𝜔 µ𝐻𝑥  

 



𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= − 𝑗𝜔 µ𝐻𝑦 

 



𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= − 𝑗𝜔 µ𝐻𝑧 

 



𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔 Є𝐸𝑥 

 



𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔 Є𝐸𝑦 

 



𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔 Є𝐸𝑧 
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 𝐻𝑥 =
𝑗𝜔Є

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑦
 

 

 𝐻𝑦 =
−𝑗𝜔Є

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑥
 

 
 𝐻𝑧 = 0 

 

 𝐸𝑥 =
−𝑗𝛽𝑔

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑥
 

 

 𝐸𝑦 =
−𝑗𝛽𝑔

𝑘𝑐
2

𝜕𝐸𝑧

𝜕𝑦
 

 

Ez =E0zSin(
mπx

a
)Sin(

nπy

b
)e−jβgz 
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On substituting Ez the other components will become 

 

 Hx =
jωЄ

kc
2

𝜕Ez

𝜕y
 

 

 Hy =
−jωЄ

kc
2

𝜕Ez

𝜕x
 

 

 Hz = 0 
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 Ex =
−jβg

kc
2

𝜕Ez

𝜕x
 

 

 Ey =
−jβg

kc
2

𝜕Ez

𝜕y
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 Ex =E0xCos(
mπx

a
)Sin(

nπy

b
)e−jβgz 

 

 Ey =E0ySin(
mπx

a
)Cos(

nπy

b
)e−jβgz 

 

 Ez =E0zSin(
mπx

a
)Sin(

nπy

b
)e−jβgz 

 

 Hx =H0xSin(
mπx

a
)Cos(

nπy

b
)e−jβgz 

 

 Hy =H0yCos(
mπx

a
)Sin(

nπy

b
)e−jβgz 

 
 Hz =0 
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The cutoff wave number 𝑘𝑐. as defined for the TMmn modes, is given 
by 

𝑘𝑐 =
𝑚𝜋

𝑎

2

+
𝑛𝜋

𝑏

2

= 𝜔𝑐 µЄ 

where a and b are in meters. The cutoff frequency,  for the TMmn , 
same as that for TE modes is 

𝑓𝑐 =
1

2 µЄ

𝑚

𝑎

2

+
𝑛

𝑏

2

 

The propagation constant (or the phase constant here) is expressed by 

𝛽𝑔 =  𝜔 µЄ 1 −
fc

𝑓

2
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The characteristic wave impedance of TMmn modes in 

the guide can be derived 

z𝑔 =
E𝑥

H𝑦
=

−E𝑦

H𝑥
=

𝛽𝑔

𝜔Є
 =𝜂 1 −

𝑓𝑐

𝑓

2

 

 

 Hy =
−jωЄ

kc
2

𝜕Ez

𝜕x
 

 Ex =
−jβg

kc
2

𝜕Ez

𝜕x
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The wavelength in the guide for the TMmn modes is 

given by 

𝜆𝑔 =
𝜆

1 −
𝑓𝑐
𝑓

2
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TEM Mode: 

Considering, curl equations as before 



𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= − 𝑗𝜔 µ𝐻𝑥 

 



𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= − 𝑗𝜔 µ𝐻𝑦 

 



𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= − 𝑗𝜔 µ𝐻𝑧 

 



𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔 Є𝐸𝑥 

 



𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔 Є𝐸𝑦 

 



𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔 Є𝐸𝑧 
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 TEM modes are characterized by both 𝐸𝑧 and 𝐻𝑧 as 

zero 

 By putting this all the field components become 

zero, so TEM modes do not exist in waveguides 
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𝜕𝐸𝑧

𝜕𝑦
−

𝜕𝐸𝑦

𝜕𝑧
= − 𝑗𝜔 µ𝐻𝑥 

 



𝜕𝐸𝑥

𝜕𝑧
−

𝜕𝐸𝑧

𝜕𝑥
= − 𝑗𝜔 µ𝐻𝑦 

 



𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= − 𝑗𝜔 µ𝐻𝑧 

 



𝜕𝐻𝑧

𝜕𝑦
−

𝜕𝐻𝑦

𝜕𝑧
= 𝑗𝜔 Є𝐸𝑥 

 



𝜕𝐻𝑥

𝜕𝑧
−

𝜕𝐻𝑧

𝜕𝑥
= 𝑗𝜔 Є𝐸𝑦 

 



𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= 𝑗𝜔 Є𝐸𝑧 
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Also, theoretically TEM modes exist only in the 

presence of more than one conductor but waveguides 

have a single conductor so, TEM modes do not exist in 

waveguides 
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 Whenever two or more modes have the same 
cutoff frequency, they are said to be degenerate 
modes.  

 In a rectangular waveguide the corresponding 
𝑇𝐸𝑚𝑛 and 𝑇𝑀𝑚𝑛 modes are always degenerate 

 The 𝑇𝐸10  mode has the longest operating 
wavelength and is designated as the dominant 
mode. It is the mode for the lowest cut off 
frequency that can be propagated in a 
waveguide 

 For TM modes the dominant mode is 𝑇𝑀11 
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