Course: Heat Transfer

Course Code: noc20-ch21

Session: 2020-21

Duration: 12 Weeks

Assessment procedures: Weekly Assignment (25%) + proctored certification Exam (75%)

Curriculum of the Course:

Week 1: Physical Origins and Rate Equations, Units and Dimensions, Relevance, Analysis of Heat Transfer Problems: Methodology, Introduction to Conduction, The Conduction Rate Equation, The Thermal Properties of Matter,

Week 2: The Heat Diffusion Equation, Boundary and Initial Conditions, One-Dimensional, Steady-State Conduction, The Plane Wall, Radial Systems,

 $\label{eq:week 3} Week \ 3: Conduction \ with \ Thermal \ Energy \ Generation, \ Heat \ Transfer \ from \ Extended \ Surfaces, \ Introduction \ to \ Two-Dimensional, \ Steady-State \ Conduction$

Week 4: Transient Conduction, The Lumped Capacitance Method, The Plane Wall with Convection, Radial Systems with Convection, The Semi-Infinite Solid

Week 5: The Convection Boundary Layers, Local and Average Convection Coefficients, Laminar and Turbulent Flow, Thermal Boundary Layer Equations and Similarity, The Normalized Boundary Layer Equations, Boundary Layer Analogies

Week 6: External Flow, Convection Calculations, The Flat Plate in Parallel Flow, The Cylinder in Cross Flow, Flow Across Banks of Tubes

Week 7: Internal Flow, Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations for Turbulent Flow in Circular, Non-Circular and Concentric Tube Annulus

Week 8: Free Convection, The Governing Equations for Laminar Boundary Layers, Laminar Free Convection on a Vertical Surface, The Effects of Turbulence, Empirical Correlations for External Free Convection Flows and Within Parallel Plate Channels, Combined Free and Forced Convection

Week 9: Boiling and Condensation, Boiling Modes, Forced Convection Boiling, Condensation - laminar and Turbulent Film in Different Geometries, Dropwise Condensation

Week 10: Heat Exchangers, The Overall Heat Transfer Coefficient, Heat Exchanger Analysis: Use of the Log Mean Temperature Difference, Heat Exchanger Analysis: The Effectiveness–NTU Method, Heat Exchanger Design and Performance Calculations

Week 11: Radiation, Fundamental Concepts, Blackbody Radiation, Absorption, Reflection, and Transmission by Real Surfaces, Kirchhoff's Law, The Gray Surface

Week 12: Radiation Exchange Between Surfaces - The View Factor, Blackbody Radiation Exchange, Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure, Radiation Exchange with Participating Media

List of students enrolled

1	Himanshu Gothwal
2	Hritik Maratha
3	Jatin Dhyawana
4	Prakhar Bhardwaj

5	Rajkumar gangwar
6	Yogendra Singh
7	Vikas Kumar tank