Contents lists available at ScienceDirect

Superlattices and Microstructures

journal homepage: www.elsevier.com/locate/superlattices

Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO₃ thin films

Praveen K. Jain ^{a, b, *}, Mohammad Salim ^a, Davinder Kaur ^c

^a Department of Electronics & Communication Engineering, Malaviya National Institute of Technology, Jaipur, India
^b Department of Electronics & Communication Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India

^c Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India

ARTICLE INFO

Article history: Received 29 December 2015 Received in revised form 11 February 2016 Accepted 11 February 2016 Available online 13 February 2016

Keywords: Pulsed Laser Deposition ZnTiO3 Dielectric Properties Phase transformation

ABSTRACT

Zinc titanate (ZnTiO₃) ceramics were prepared by conventional solid state reaction method using ZnO and TiO₂ in a molar ratio of 1:1 with optimized parameters. It was found that the sample sintered at 800 °C for 12 h exhibit single hexagonal phase of ZnTiO₃. ZnTiO₃ thin film have been deposited on ITO coated glass substrate using pulsed laser deposition (PLD) technique employing a KrF laser source ($\lambda = 248$ nm). In present work, the effect of substrate temperature, which leads to transformation of hexagonal phase to cubic phase, has been studied. The XRD pattern revealed that pure hexagonal phase of ZnTiO₃ appear upto 400 °C and more increment in substrate temperature leads to transformation of hexagonal phase to cubic phase. We have observed the blue shift in absorption edge at lower temperature. When the substrate temperature increases from 300 to 400 °C the band gap decreases due to strong hexagonal phase, but more increment in substrate temperature increases the band gap causes by change of phase from hexagonal to cubic. The dielectric constant of ZnTiO₃ thin film increases as the substrate temperature increases due to the enhancement in crystallinity and improved morphology.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

ZnO is a wide band-gap semiconductor with outstanding optical and electrical properties [1,2] and TiO₂ is one of the most important semiconductors with high photocatalytic activity, being non-toxic, stable in aqueous solution, and relatively inexpensive [3,4]. ZnO and TiO₂ have attracted much interest on either single material [5,6] or ZnO–TiO₂ composites [7,8]. Dulin and Rase [9] reported that three compounds exist in the ZnO–TiO₂ system, including ZnTiO₃ (hexagonal and cubic), Zn₂TiO₄ (cubic), and Zn₂Ti₃O₈ (cubic). Among these compounds the stable formation of ZnTiO₃ phase was known to be complicated, mainly due to the decomposition of ZnTiO₃ into Zn₂TiO₄ and rutile TiO₂ at about 945 °C.

With the recent progress of microwave applications, including mobile telephones and satellite communication system, the development of high-quality microwave dielectrics has been intensified so that they can be used as dielectric resonators, capacitors, and filters. ZnTiO₃ is an attractive material for applications in microwave dielectrics [10–13]. ZnTiO₃ has also been regarded as a good candidate for low-temperature cofired ceramics (LTCCs) due to its relatively low sintering temperature and

http://dx.doi.org/10.1016/j.spmi.2016.02.018 0749-6036/© 2016 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Department of Electronics & Communication Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India. Tel.:+91 141 5160400.

E-mail address: praveenjain.spsl@gmail.com (P.K. Jain).