
International Workshop
on

“Micro Services and its Application in Analytics and Cloud”
Technically Sponsored By

Infosys Campus Connect
02nd-03rd Feb. 2019
(Duration: 2 Days)

WORKSHOP REPORT

Perspective: About the Workshop

Objective:

The objective of this workshop is to provide training on Micro Services and its Application in Analytics and
Cloud.

An Introduction to Microservices

Microservices are small, self-contained services that can evolve independently and deploy separately to
support continuous integration and continuous delivery. A microservice architecture promotes developing and
deploying an application or a set of features composed of independent, autonomous, modular, self-contained
units. Each unit is assigned to a team that owns it for improving it. Adoption of microservices, teams can
rapidly ship newer versions of applications or features without disrupting rest of the solution.

Why Microservices?

Enables Agile Processes: Moving away from a waterfall-based mindset that views software projects as large,
multi-year capital expenditures. Microservices helps enterprises to fully adopt agile development and
deployment methods with a strong technology platform that facilitates cloud-native approaches and
microservices architecture setup.

Leverages Best-fit Technology for Each Component: Developers are choosing best-of-breed languages,
frameworks, and tools to write parts of applications. One large application might be composed of
microservices written in Node.js, Ruby on Rails, Python, R, and Java. Each microservice can be written in a
language that is best suited for the task. Teams that develop microservices can make technology decisions that
are right for the job. They can experiment with modern technologies, libraries, languages, and frameworks,
yielding faster innovation cycles.

Modularity and Code Re-usability: Organizations today invest in reusable building blocks that are
composable. Each microservice acts like a Lego block that can be plugged into an application stack. By
investing in a set of core microservices, organizations can assemble them to build applications catering to a
variety of use cases.

Elastic Infrastructure: With multiple cloud infrastructure providers is available in the market, enterprises
today can dynamically provision, configure and orchestrate a few hundred virtual servers. But, instead of
launching multiple instances of the application server, it is possible to scale-out a specific microservice on-
demand. Microservices simplifies load balancing because when the load shifts to other parts of the application,
an earlier microservice will be scaled-in while scaling-out a different microservice.

Ease of CICD (Continuous Integration and Continuous Delivery): Microservices helps small, autonomous,
co-located teams with test driven development, continuous integration and continuous delivery that make the
successful launch of each feature or application.

Decentralized Data and Governance: While microservices encourages its developers to save time by always
using re-usable code libraries established by others, while also giving them the freedom to flirt with alternative
solutions when needed. In addition, a solution with traditional architectures uses a single logical database
across different applications. In a microservice, each service built for specific application or feature usually
manages its unique database.

Building Monolithic Applications

A monolithic application is built as a single unit. Enterprise Applications are built in three parts: a database
(consisting of many tables usually in a relational database management system), a client-side user interface
(consisting of HTML pages and/or JavaScript running in a browser), and a server-side application. This server-
side application will handle HTTP requests, execute some domain-specific logic, retrieve and update data from
the database, and populate the HTML views to be sent to the browser. It is a monolith – a single logical
executable. To make any alterations to the system, a developer must build and deploy an updated version of the
server-side application.

This new application would have a modular hexagonal architecture, like in the following diagram:

At the core of the application is the business logic, which is implemented by modules that define services,
domain objects, and events. Surrounding the core are adapters that interface with the external world. Examples
of adapters include database access components, messaging components that produce and consume messages,
and web components that either expose APIs or implement a UI.

Despite having a logically modular architecture, the application is packaged and deployed as a monolith. The
actual format depends on the application’s language and framework. For example, many Java applications are
packaged as WAR files and deployed on application servers such as Tomcat or Jetty. Other Java applications
are packaged as self-contained executable JARs. Similarly, Rails and Node.js applications are packaged as a
directory hierarchy.

Applications written in this style are extremely common. They are simple to develop since our IDEs and other
tools are focused on building a single application. These kinds of applications are also simple to test. You can
implement end-to-end testing by simply launching the application and testing the UI with Selenium.
Monolithic applications are also simple to deploy. You just have to copy the packaged application to a server.
You can also scale the application by running multiple copies behind a load balancer. In the early stages of the
project it works well.

The Benefits of Microservices

The Microservice architecture pattern has a number of important benefits. First, it tackles the problem of
complexity. It decomposes what would otherwise be a monstrous monolithic application into a set of services.
While the total amount of functionality is unchanged, the application has been broken up into manageable
chunks or services. Each service has a well-defined boundary in the form of an RPC- or message-driven API.
The Microservice architecture pattern enforces a level of modularity that in practice is extremely difficult to
achieve with a monolithic code base. Consequently, individual services are much faster to develop, and much
easier to understand and maintain.

Second, this architecture enables each service to be developed independently by a team that is focused on that
service. The developers are free to choose whatever technologies make sense, provided that the service honors
the API contract. Of course, most organizations would want to avoid complete anarchy and limit technology
options. However, this freedom means that developers are no longer obligated to use the possibly obsolete
technologies that existed at the start of a new project. When writing a new service, they have the option of
using current technology. Moreover, since services are relatively small it becomes feasible to rewrite an old
service using current technology.

Third, the Microservice architecture pattern enables each microservice to be deployed independently.
Developers never need to coordinate the deployment of changes that are local to their service. These kinds of
changes can be deployed as soon as they have been tested. The UI team can, for example, perform A|B testing
and rapidly iterate on UI changes. The Microservice architecture pattern makes continuous deployment
possible.

Finally, the Microservice architecture pattern enables each service to be scaled independently. You can deploy
just the number of instances of each service that satisfy its capacity and availability constraints. Moreover, you
can use the hardware that best matches a service’s resource requirements. For example, you can deploy a CPU-
intensive image processing service on EC2 Compute Optimized instances and deploy an in-memory database
service on EC2 Memory-optimized instances.

Microservices Business Benefits

Reduces Time to Market: As each microservice is built and aligned around a business function to reduce the
complexity of the application change-management process. It expedites updating new technologies, libraries,
languages, and frameworks, yielding faster development cycles, including rollback. Each service is
individually changed, tested, and deployed without affecting other services, enabling faster time to market.

Superior Application Quality: By using “divide-and-conquer” approach of microservices architecture, teams
can perform both functional and performance testing of each unit easier than before as components can be
tested in isolation and combined with a full or virtualized set of microservices. It also minimizes test
automation and quality-assurance overhead and facilitate concurrent, A/B release testing on subsystems. Thus,
microservices approach results in overall improvement in application quality.

Zero-Downtime Deployment: Microservices enables versions and releases planning process and backward
compatibility requirements with master and multiple slave containers. It allows you to deploy the latest version
of your microservice without interrupting the operation of the other micro-services.

Enterprises must modernize its applications on regular basis to keep-up the pace of change revolving around
user-experiences, competitive advantage and quality delivery with highest possible performance. This results
in frequent application upgrades with new features and bug fixes.

In the wake of this continuous evolution of adapting changes, traditional architecture has been slowly
disappearing giving rise to microservices architecture. Giants like Amazon, eBay, Netflix, Twitter and many
more are already reaping benefits, having hosted on microservices architecture.

The Drawbacks of Microservices

As Fred Brooks wrote almost 30 years ago, there are no silver bullets. Like every other technology, the
Microservice architecture has drawbacks. One drawback is the name itself. The term microservice places
excessive emphasis on service size. In fact, there are some developers who advocate for building extremely
fine-grained 10-100 LOC services. While small services are preferable, it’s important to remember that they
are a means to an end and not the primary goal. The goal of microservices is to sufficiently decompose the
application in order to facilitate agile application development and deployment.

Another major drawback of microservices is the complexity that arises from the fact that a microservices
application is a distributed system. Developers need to choose and implement an inter-process communication
mechanism based on either messaging or RPC. Moreover, they must also write code to handle partial failure
since the destination of a request might be slow or unavailable. While none of this is rocket science, it’s much
more complex than in a monolithic application where modules invoke one another via language-level
method/procedure calls.

Another challenge with microservices is the partitioned database architecture. Business transactions that update
multiple business entities are fairly common. These kinds of transactions are trivial to implement in a
monolithic application because there is a single database. In a microservices-based application, however, you
need to update multiple databases owned by different services. Using distributed transactions is usually not an
option, and not only because of the CAP theorem. They simply are not supported by many of today’s highly
scalable NoSQL databases and messaging brokers. You end up having to use an eventual consistency based
approach, which is more challenging for developers.

Testing a microservices application is also much more complex. For example, with a modern framework such
as Spring Boot it is trivial to write a test class that starts up a monolithic web application and tests its REST
API. In contrast, a similar test class for a service would need to launch that service and any services that it
depends upon (or at least configure stubs for those services). Once again, this is not rocket science but it’s
important to not underestimate the complexity of doing this.

Another major challenge with the Microservice architecture pattern is implementing changes that span multiple
services. For example, let’s imagine that you are implementing a story that requires changes to services A, B,
and C, where A depends upon B and B depends upon C. In a monolithic application you could simply change

the corresponding modules, integrate the changes, and deploy them in one go. In contrast, in a Microservice
architecture pattern you need to carefully plan and coordinate the rollout of changes to each of the services. For
example, you would need to update service C, followed by service B, and then finally service A. Fortunately,
most changes typically impact only one service and multi-service changes that require coordination are
relatively rare.

Deploying a microservices-based application is also much more complex. A monolithic application is simply
deployed on a set of identical servers behind a traditional load balancer. Each application instance is
configured with the locations (host and ports) of infrastructure services such as the database and a message
broker. In contrast, a microservice application typically consists of a large number of services. For
example, Hailo has 160 different services and Netflix has over 600 according to Adrian Cockcroft. Each
service will have multiple runtime instances. That’s many more moving parts that need to be configured,
deployed, scaled, and monitored. In addition, you will also need to implement a service discovery mechanism
(discussed in a later post) that enables a service to discover the locations (hosts and ports) of any other services
it needs to communicate with. Traditional trouble ticket-based and manual approaches to operations cannot
scale to this level of complexity. Consequently, successfully deploying a microservices application requires
greater control of deployment methods by developers, and a high level of automation.

Deploying analytics microservices in the cloud

Microservices are an architectural approach to creating cloud applications, where each application is built as a
set of services. Each service runs in its own processes and communicates through application programming
interfaces (API).

Services are built around specific business logic, written in any language and they are independently scalable,
upgradeable and deployable. When an application is broken up into its component services, changes only affect
specific services. Likewise, each service can independently scale in response to demand without consuming
unnecessary resources.

One approach to automation is to use an off-the-shelf PaaS such as Cloud Foundry. A PaaS provides
developers with an easy way to deploy and manage their microservices. It insulates them from concerns such
as procuring and configuring IT resources. At the same time, the systems and network professionals who
configure the PaaS can ensure compliance with best practices and with company policies.

Here’s some history on how we’ve moved to using the cloud as a platform: International Data Corporation
(IDC) has outlined a generational shift in IT patterns called the First, Second and Third platforms.

 The First Platform has custom hardware and software; it uses a centralized software architecture and
scales vertically to serve thousands of apps and millions of users.

 The Second Platform is based on enterprise hardware and software. Client-server software architecture
and vertical scaling are used to serve tens of thousands of apps and hundreds of millions of users.

 The Third Platform employs distributed software over horizontally scaling commodity hardware, the
distributed nature of which enables linear scaling to serve millions of apps and billions of users.

The First Platform is made up of mainframe, mini computers with terminals as the user interface. The Second
Platform saw the introduction of PCs, LANs, client-server architecture, and the Internet, with PCs as the main
user interface devices. The Third Platform, cloud native, is the domain of mobile, cloud, big data and social.
The majority of user interactions there take place through mobile devices.

Though there are many differences between the Second and Third platforms, the fundamental shift from
enterprise to low-cost commodity hardware ushers in a level of cost advantage that makes large-scale cloud
infrastructure possible. However, the shift from reliable enterprise hardware to a commodity alternative pushes
the resiliency requirements from the underlying hardware up to the enterprise application.

Historically, enterprise applications were built as monolithic units in three main tiers: a client-side user
interface, a database, and a server-side application.

The server-side application would handle HTTP requests, execute business logic, store, retrieve and update
data from the database, and populate the client-side interface. The application was a single, logical executable.
Any changes to the system involved building and deploying a new version of the server-side application. As
more applications were deployed to the cloud, changes to any part of the application would cause the whole
application to be rebuilt and redeployed. More resources were required to scale the entire application than the
necessary portion of the application that needed scaling.

Cloud-native applications must be designed so that they can tolerate service failures. When a service fails, the
application must respond as gracefully as possible. Thus, microservices require a sophisticated monitoring and
logging setup for each individual service. It’s important to quickly detect failures so you can restore the service
or substitute another, similar service.

A microservices-based architecture promotes an “API First” approach, decoupling APIs from their
implementations for more agile development. It also works well for the continuous delivery software
development process.

Service-oriented architecture (SOA) may sometimes feel like an outmoded IT industry paradigm from the first
decade of the 2000s, but it could not be more relevant to the cloud computing arena of the mid-2010s and
beyond.

Nevertheless, the interoperability pressures that spawned the SOA mania haven’t gone away. From the start,
the point of SOA was to help users reduce their lock in to specific vendor platforms that offered core
application and middleware functions on inflexible stacks. It’s all about maximizing users’ ability to share and
reuse distributed services over a loosely coupled, multiprotocol, interoperability fabric made up of dumb pipes.
Not just that, but SOA is also a paradigm that enables all these services on whatever platform to be accessed
through fine-grained standard interfaces and to evolve independently while maintaining stable, service
invocation interfaces.

The new SOA

None of of those interoperability points is less relevant to IT professionals today than it was 10 years ago. SOA
has evolved into microservices architecture, a term with increasing frequency in recent months in industry
circles. The flexible deployment capabilities implied in that microservices definition go to the heart of SOA,
which has long been practiced in the most complex cloud services environments. Enabling distributed
microservices to function as a distributed application may require a complex middleware fabric of reliable
messaging, transactional rollback and long-running orchestration capabilities. These shared services need to
span diverse microservices interaction patterns, such as hierarchical, parent-child, peer-to-peer or various
blends thereof.

In the intervening years, big data analytics and the Internet of Things moved to the forefront of everybody’s IT
strategy. To the extent that any of those technologies was on the SOA community’s collective radar in the mid-
2000s, it was in big data analytics predecessors such as very large databases (VLDBs) and such precursors of
the Internet of Things as machine-to-machine computing.

The microservices ahead

If you look at the distributed computing cloudscape of 2016 and beyond, clearly edge-oriented, big data
analytics microservices are fast on their way to ubiquity. These microservices are taking the form of
analytics—especially machine learning, deep learning and natural-language processing—that leverage the rich
pallet of sensors on every Internet of Things endpoint. These embedded analytics microservices will be
ubiquitous in every smart device, material or other artifact that comes to market. And data scientists will be
building the embedded analytics microservices that enable all these Internet of Things–enabled artifacts to
handle most of this processing locally and more rapidly and flexibly than any cloud service.

Actually, the micro part is a bit superfluous in this new context of the Internet of Things and big data analytics.
The edge-oriented analytics services may not be any more micro. In other words, granular in functional scope
than the properly factored services called for in established SOA practices. Nevertheless, the endpoints
themselves where these services execute smart sensors, smartphones and so on will indeed be more micro or
rather, nano in their resource constraints than the server clusters assumed in classic SOA.

Another way of looking at microservices architecture is simply that it’s SOA in the new era of Internet of
Things–centric, big data analytics–infused fog computing.

Technology: Microservices Using Java Eclipse Framework

Trainers: 1. Mr. Kulvaibhav Kaushik, Technology Lead, Infosys Limited

 2. Ms. Ranu Sharma, Technological Analyst, Infosys Limited

Department: CS/IT, 6th & 8th Semester B.Tech. Students

Number of Students: 81

Number of Faculties: 05

Tools Used: Eclipse, Tomcat Server, Spring Framework

Venue: Industry Academia Interface Lab (IAI Lab)

Faculty Participants from SKIT: Dr. Shubhra Saxena, Mr. M.K.Beniwal, Mr. Pankaj
Dadheech, Ms. Anjana Sangwan, Ms. Neha Mathur.

• How the workshop will progress to the conference (ICETCE-2019)

The workshop is beneficial and have progress to the conference as workshop includes
the “Micro Services and its Application in Analytics and Cloud” which directly maps
with our International Conference on “Emerging Technologies in Computer
Engineering: ICETCE-2019” organized on 01st-02nd Feb. 2019 Sponsored By
Department of Science & Technology, Rajasthan, Springer, IETE and Technically
Sponsored by IBM, INFOSYS Campus Connect & Natural Group of Theme
“Microservices in Big Data Analytics”.

Hands On Session:

WORKSHOP SCHEDULE

Microservices and application in Analytics and Cloud

(ICETCE-2019) International Workshop, SKIT Jaipur

2nd - 3rd February, 2019

From To Duration Theme Workshop Topic Mode Anchor

Day 1: 2nd February, 2019

9:00 AM 10:00 AM 1:00 Inagural

Registration SKIT
Team Inaugral Address

Lecture
Objectives and overview of workshop

Infosys
Team

10:00 AM 10:15 AM 0:15 Break

10:15 AM 12:00 Noon 1:45 Microservices

Introduction to Microservices

Lecture
Infosys
Team

Market trends

Comparison with traditional services and SOA

Architecture and Design

Tools for Microserices

12:00
Noon

1:00 PM 1:00 Lunch Break

1:00 PM 3:00 PM 2:00
Application

Security

Microservice applications
Infosys
Team

Introduction to Analytics
Lecture

Infosys
Team Microservice application in analytics

Day 2: 3rd February, 2019

9:00 AM 9:10 AM 0:10
Application

Security

Context Setting for the day

Lecture
Infosys
Team 9:10 AM 10:45 AM 1:35

Introduction to cloud

Microservice application in cloud

10:45 AM 11:00 AM 0:15 Break

11:00 AM 12:00 Noon 1:00 Project

Installation and setup

Practical
Infosys
Team Assignment and Project

12:00
Noon

1:00 PM 1:00 Lunch Break

1:00 PM 2:30 PM 1:30 Project Assignment and Project Practical
Infosys
Team

2:30 PM 3:00 PM 0:30
Feedback and

Closure
Closure, Feedback and Felicitation

SKIT/
Infosys
Team

 Summary

Building complex applications is inherently difficult. A Monolithic architecture only makes sense for simple,
lightweight applications. You will end up in a world of pain if you use it for complex applications. The
Microservice architecture pattern is the better choice for complex, evolving applications despite the drawbacks
and implementation challenges.

 Workshop’s Outcomes (R&D, Placement)

The workshop had a lot of knowledge of recent trends in Java those are very important for the students of pre
final year and final year. This workshop will definitely help the students in their recruitment as well as in
academics.

 Road Ahead

The workshop will help students in future for their minor and major projects of the 7th & 8thsemester students.

We are expecting these knowledgeable workshops in future also.

 Welcome Inaugural Address

Thank You

