Springer Proceedings in Energy Suneet Singh Venkatasailanathan Ramadesigan *Editors* # Advances in Energy Research, Vol. 2 Selected Papers from ICAER 2017 ## Contents | 1 | Mathematical Modeling of Heat Losses from Cylindrical Cavity
Receiver in Solar Parabolic Dish | | |---|--|---| | 2 | Performance Evaluation of Latent Heat Storage Filled
with Paraffin Wax for Solar Thermal Applications
D. Gudeta, S. R. Jena, P. Mahanta and P. S. Robi | 1 | | 3 | Performance Analysis of Spiral and Conical Receivers
for the Paraboloidal Dish Collector Using CFD
Rashmi R. Joshi, Sandeep S. Joshi, Nilesh S. Wakchaure
and Akshay C. Suryawanshi | 2 | | 4 | Performance Analysis of Phase Change Material Storage System
for Solar Thermal Applications.
Sneha Murali, R. P. Saini and Ambuj Punia | 3 | | 5 | Exergy and Energy Analysis of a Packed Bed Thermal Energy
Storage System with Different Heat Transfer Fluids
Ambuj Punia, R. P. Saini and Sneha Murali | 4 | | 6 | Performance Analysis of Parabolic Trough Solar Collector
with 'U'-Tube and Helical Coll Receivers'.
Mohd. Mubashshir Naved, Sandeep S. Joshi and Nikhil A. Bhave | 5 | | 7 | Performance Evaluation of an Improved Dual Purpose
Solar Collector
P. P. Krishnaraj and P. Arun | 6 | | 8 | Experimental Investigation on Farmer-Friendly Hybrid Dryer for Indoor Drying of Mushroom | 8 | | 21 | Optically Enhanced Solar Selective and Thermally Stable Absorber Coating for Concentrated Solar Thermal Application | 217 | |----|--|------| | | S. R. Atchuta, B. Mallikarjun and S. Sakthivel | | | 22 | Liquid Desiccant Dehumidification Using Solar Regenerated | | | | System | 229 | | 23 | Wind Flow Simulation Over a Hilly Terrain for Wind Energy | 220 | | | Harvesting | 239 | | 24 | Theoretical Modeling of Phase Change Material-Based Space | | | | Heating Using Solar Energy Ashwath Vaidhyanathan and N. D. Banker | 251 | | 25 | Investigations on Improving the Efficiency of Solar Air Heater | 261 | | | Using Extended Surfaces S. Babu, S. Senthilvel, F. Paul Gregory and T. Gopi | 201 | | 26 | Productivity Enhancement of Passive Type Solar Still Using
Copper and Aluminum Based Absorber Plate with Al ₂ O ₃ | | | | Copper and Auminium Based Absorber Patte with Al ₂ O ₃ NanoFluid in Water Basin Amrit Kumar Thakur and V. P. Chandramohan | 273 | | 27 | Design and Performance Investigation of Wind Turbine Blade
for Solar Updraft Tower Under Low Wind Speeds
Ramakrishna Balijepalli, V. P. Chandramohan and K. Kirankumar | 283 | | 28 | Numerical Analysis of Heat Transfer Enhancement in Artificially | 20/2 | | | Roughened Solar Air Heater | 297 | | 29 | Design and Weight Minimization of Small Wind Turbine Blade for Operation in Low-Wind Areas Aarti More and Anindita Roy | 311 | | 30 | Thermohydraulic Performance of Packed Bed Solar | 222 | | | Air Heater Parag Jyoti Bezbaruah, Doljit Borah, Rupam Patowary and Debendra Chandra Baruah | 323 | | 31 | | 444 | | | Air Heater
Parag Jyoti Bezbaruah, Aabir Das, Rajat Subhra Das
and Bileach Kumar Sarkur | 341 | | 9 | Wind Speed Forecasting Using New Adaptive Regressive
Smoothing Models. Parikshit G. Jamdade, Prasad A. Godse, Prathamesh P. Kulkarni,
Sujay R. Deole, Sudesh S. Kolekar and Shrinivas G. Jamdade | 92 | |----|---|-----| | 10 | Thermal Performance Analysis of a Heat Pump-Based
Photovoltaic/Thermal System
S. Vaishak and Pumanand V. Bhale | 103 | | 11 | Overall Performance of N Partially Covered Photovoltaic
Thermal-Compound Parabolic Concentrator (PVT-CPC)
Collector with Different Concentration Ratio | 11 | | 12 | Thermo-Hydraulic Performance of Solar Air Heater
Roughened with V-Shaped Ribs Combined with V-Shaped
Perforated Baffles
Vijay Singh Bisht, Anil Kumar Patil and Anirudh Gupta | 12 | | 13 | Highly Efficient Solar Steam Generation Using Carbon
Cloth System
M. W. Higgins, A. R. Shakeelur Rahman and Neetu Jha | 13. | | 14 | Floating Absorber Integrated with Compound Parabolic Concentrator for Effective Solar Water Desalination Chandan and Bala Pesala | 14 | | 15 | Study of Performance of Solar Flat Plate Collector
Using Al ₂ O ₃ /Water Nanofluids
Pankaj Raj, Geleta Fekadu and Sudhakar Subudhi | 14 | | 16 | Thermo-Hydraulic Performance of Solar Air Heater Duct
Provided with Conical Protrusion Rib Roughnesses
Tabish Alam, Asbok Kumar and Nagesh B. Balam | 15 | | 17 | Flocculation-Solar Distillation—an Integrated Energy-Efficient
Technology for Desalination of Seawater
Devlina Das and Nilanjana Mitra | 16 | | 18 | Macro-Encapsulation of PCM Integrated with Double-Pass
Solar Air Heater System
Arun K. Raj, M. Srinivas and S. Jayaraj | 18 | | 19 | Studies on Biomass Torrefaction for Energy Densification of the Fuel. Pradeep Kumar Budde and Jay Pandey | 19 | | 20 | Experimental and Theoretical Investigation of Different Coating on the Performance of the Parabolic Trough Collector | 20 | | | | | Contents | |--|--|--|----------| | 32 | Comparative Performance Assessment of a Solar Hybrid Dryer
with Traditional Drying Techniques
Bhaskar Ranjan Tamuli and Pradyumna Kumar Choudhury | 351 | |----|--|-----| | 33 | Numerical Study of Blade Profiles of Vertical Axis Wind Turbine (VAWT) with Bidirectional Wind Flow in Highway Roads | 361 | | 34 | CCS Combined with Geothermal Energy Generation—Hybrid
Geothermal Energy Concept | 369 | | 35 | Effect of Preheating and Fuel Injection Pressure on Performance
Parameters of Diesel Engine Running with Biodiesel Menelik Walle Mekonen, Niranjan Sahoo and Santosh Kumar Hotta | 379 | | 36 | Experimental Investigation on Range of Fuel Premixing Ratio for Stable Engine Operation of Dual Fuel Engine Using Port Injection of Gasoline/Methanol and Direct Injection of Diesel | 393 | | 37 | Used Temple Oll, a Source for Biodiesel Production Sharanabasappa Saddu, Sangshetty B. Kivode and P. Ramana | 405 | | 38 | An Experimental Study on Late PCCI Technique for Reducing NO ₂ and Smoke Under Optimum Operating Conditions on DI Diesel Engine S. Parodwad Onkar and M. Sutaria Bharatkumar | 413 | | 39 | An Assessment of Properties of Briquettes Produced from Blends of Cascabela Thevetia Seed Shell, Maize Corn Cob and Black Liquor Santhosh Ujjinappa and L. K. Sreepathi | 425 | | 40 | Experimental Investigation of In-situ Biodiesel Production from Castor Seeds (Ricinus communis) Using Combination of Microwave and Ultrasound Intensification | 435 | | 41 | Investigations on the Effects of Diethyl Ether as Fuel Additive in Diesel Engine Fueled with Tamarind Seed Methyl Ester V. Dhana Raju, P. S. Kishore and R. Subbarao | 447 | | 42 | Effect of Nitromethane-n-Butanol-Diesel Blends on Diesel Engine Emissions Naveen Kumar Sain, Ashish Nayyar, Chandan Kumar, K. B. Rana and B. Tripathi | 457 | Content | 43 | Experimental Study on CI Engine Performance for Optimum
Blending Ratio of Blended Kusum Biodiesel | 467 | |----|--|-----| | 44 | Preparation and Characterization of Biodiesel Extracted
from Acidic Oil: A by-Product of Soybean Oil Refining
Process Abbiject P. Shah, Pankaj S. Ghatage and Rahul S. Khanase | 479 | | 45 | Thermodynamic Analysis of Diesel Engine Primed Trigeneration Configurations. S. D. Bagade, M. N. Shelar and S. R. Mahajan | 489 | | 46 | Investigations on Performance of CI Engine with Waste Palm Oil
Biodiesel-Diesel Blends Using Response Surface Methodology
Jagannath Hirkude and Vivek Belokar | 505 | | 47 | Design and Optimization of Air-Biogas Mixing Device
for Dual Fuel Diesel Engines.
Akash Chandrabhan Chandekar and Biplab Kumar Debnath | 515 | | 48 | Energy Response Function of Stilbene and BCS01 Neutron
Detection System.
Annesha Karmakar, S. Prasad and A. Kelkar | 529 | | 49 | | 54 | | 50 | Experimental Investigation on the Feasibility of Sugarcane
Bagasse for Gasification
Joel George, P. Arun and C. Muralcedharan | 55 | | 51 | Quasi-Dimensional Thermodynamic Simulation Study
of Downsizing on a Four-Cylinder Turbocharged Engine
Prajit Ravi, V. Devanandh, Sunil Kumar Pandey, K. Senthilnathan,
Krishnan Sadagopan and Brijesh P. Patel | 56. | | 52 | Numerical Simulation of Coal Char Gasification with CO ₂
in a Drop Tube Furnace
Hrusikesh Barik, Manaswita Bose, Tao Xu, Mahmud Kibria
and Sankar Bhattacharya | 57 | | 53 | Experimental Analysis of Performance and Emissions of Nanofluid Dosed Pure Neem Biodiesel (PNB)—Eucalyptus Oil (EO)-Water (W)-Surfactant (S) Emulsion Fuel on Diesel Engine V. W. Khond, V. M. Kriplani, S. D. Butaley, Amol Pitale and Pramod Walke | 58 | | 64 | Evaluating the Sensitivity of Biomass Feedstocks to Producer Gas
Composition Using Stoichiometric Equilibrium Model | 715 | |----|---|-----| | 65 | Estimation and Characterization of Tar from an Open-Top
Downdraft Gasifier
Priyanka Tripathi, Sadhan Mahapatra and S. Dasappa | 725 | | 66 | CO ₂ Capture Using Crude Glycerol-Derived Deep Eutectic
Solvents | 735 | | 67 | NO _x Reduction with Coherence of Particulate Matter
for Single-Cylinder Diesel Engine Using Proportional EGR
Technique | 745 | | 68 | Two-Step Modeling for Growth of Microorganisms in Stirred
Tank Photobioreactor | 753 | | 69 | RBFN-Based MPPT Technique for PV System with High Voltage
Gain Four-Phase Interleaved Boost Converter
K. Jyotheeswara Reddy and N. Sudhakar | 763 | | 70 | Analysis and Comparative Study of Various Charging Methods
Implemented for Solid-State Marx Generator
Neelam S. Pinjari, S. Bindu and Ruchi D. Singh | 773 | | 71 | Reliability Modeling of Multiphase DC-DC Boost Converter D. Umarani and R. Seyezhai | 787 | | 72 | A Novel ANN-SMC-Based Maximum Power Point Tracking
for Efficient DC Stage Conversion of a Solar PV Power Plant
Bijit Kumar Dey, Nirabhra Mandal and Ankur Bhattacharjee | 803 | | 73 | Coordinated Control of DC Electric Springs for Reduction
of Main Grid Dependability S. Hari Charan Cherukuri, B. Saravanan and K. S. Swarup | 815 | | 74 | A PI with Fuzzy-Based Multifunctional DSTATCOM Operating
Under Stiff Source.
Sampath Kumar Pappula and Sushama Mulaji | 825 | | 75 | A Novel Three-Phase Five-Level Inverter Control
and Its Performance Analysis for a Grid-Connected
Solar PV Power System
Nirabira Mandal, Bijit Kumar Dey, Abhishek Paul
and Ankur Bhattacharjee | 839 | | 54 | A Study on Conversion of Glycerol into Solketal Using Rice
Husk-Derived Catalyst | 599 | |----|--|-----| | 55 | Mathematical Model of Design and Performance Evaluation
of a 210 MW CFB Boiler for Indian Lignite.
S. Naga Kishore, T. Venkateswara Rao and M. L. S. Deva Kumar | 607 | | 56 | Experience of Self-powered Neutron Detectors at TAPS-3&4 | 623 | | 57 | Study of Kinetics and Reactivity Parameters of Indian Coal
and Biomass Blends
Ankii Kumar, Manjula Das Ghatak, Sujan Saha
and Prakash D. Chavan | 633 | | 58 | Impact of Coal Quality on Post-combustion, Amine-Based CO ₂ Capture in Indian Coal Power Plants Pranay C. Phadke, Anand B. Rao and Munish K. Chandel | 643 | | 59 | 3D Kinetic Model for Simulation in Real Time for Full-Scope
Simulator
Suresh Kandpal, M. P. S. Fernando, A. S. Pradhan, P. N. Prasad
and A. K. Balasubrahmanian | 655 | | 60 | Flux Mapping System for Large PHWRs with Boiling
at the Coolant Exit
Abhishek Chakraborty, M. P. S. Fernando, A. S. Pradhan,
P. N. Prasad and A. K. Balasubrahmaniam | 669 | | 61 | CFD Simulation on the Effect of Hydrogen Mass Fraction
and Initial Temperature in a CI Engine Under Hydrogen-Diesel
Dual Fuel Mode
S. Sirajuddin and R. Manimaran | 679 | | 62 | Multi-objective Optimization of Performance and Emissions
Characteristics of CI Engine Using Cottonseed Oil
as an Alternative Fuel | 689 | | 63 | Effect of Compression Ratio on the Performance and Emission
Characteristics of a Raw Biogas Fueled Spark Ignition
Engine.
Santosh Kumar Hotta, Niranjan Sahoo, K. Mohanty, P. Mahanta | 701 | | | and A. I. Chaudhari | | | xiv | | ontents | |-----|---|---------| | 76 | Enhancement of Machine Performance by Deploying
Superconductors with Numerical Analysis and Updated
Characteristics—A Novel Approach
Sasidharan Srinivasan, Sethuraman Sivakumar
and Krishna Kumar Rathinam | . 851 | | 77 | Analysis of Three-Phase Quasi-Switched Boost Inverter Topology
for Renewable Energy Applications
P. Sriramalakshmi, A. Arvindh, S. R. Sanjay Kumar,
M. Prasanth and V. T. Sreedevi | . 863 | | 78 | Unbalanced Voltage Mitigation with Reactive Power Control of Grid-Tied Solar PV System | . 877 | | Λu | thor Index. | . 893 | # Chapter 42 Effect of Nitromethane—n-Butanol—Diesel Blends on Diesel Engine Emissions Naveen Kumar Sain, Ashish Nayyar, Chandan Kumar, K. B. Rana and B. Tripathi Abstract Toxic emissions from diesel engines are great contributors to localized urban and global pollution. Researchers have used different methods to reduce emissions in which the use of alternative fuels and additives seems to be potential solution in current scenario. The present study depicts the effects of nitromethane—butanol—diesel blends on the emissions of diesel engine. N-butanol (B) and nitromethane (NM) were selected as additives for diesel fuel due to their exceptional physico-chemical properties, availability in market, and cost. In the first phase, experiments were performed to optimize n-butanol—diesel blend on diesel engine, and in the second phase, nitromethane was blended in optimum n-butanol—diesel blend (B20) to evaluate the emission characteristics. A single-cylinder four-stroke, water-cooled VCR diesel engine was used for experimentation, and the results of emissions for NM—n-butanol—diesel blends were drawn and analyzed. Maximum reduction in smoke and NO_x was achieved up to 82.8% and 13.85%, respectively as compared to pure diesel. **Keywords** Emission • Butanol • Nitromethane • NO_x • Smoke ## 42.1 Introduction At present, diesel engines are major contributors in transportation and automobile sectors worldwide, and their toxic emissions are highly objectionable in natural environment [1]. NO_x and smoke are the two major emissions which put limit on power output from diesel engine and also have many adverse effects on environment as well as human health [2]. In current scenario, the immediate elimination of diesel Department of Mechanical Engineering, Poornima Group of Institutions, Jaipur, India A. Nayyar · C. Kumar (⋈) Department of Mechanical Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India e-mail: chandankrgupta1988@gmail.com C. Kumar · K. B. Rana · B. Tripathi Department of Mechanical Engineering, Rajasthan Technical University, Kota, India N. K. Sain [©] Springer Nature Singapore Pte Ltd. 2020 S. Singh and V. Ramadesigan (eds.), Advances in Energy Research, Vol. 2, Springer Proceedings in Energy, https://doi.org/10.1007/978-981-15-2662-6_42 # Chapter 42 Effect of Nitromethane–n-Butanol–Diesel Blends on Diesel Engine Emissions Naveen Kumar Sain, Ashish Nayyar, Chandan Kumar, K. B. Rana and B. Tripathi Abstract Toxic emissions from diesel engines are great contributors to localized urban and global pollution. Researchers have used different methods to reduce emissions in which the use of alternative fuels and additives seems to be potential solution in current scenario. The present study depicts the effects of nitromethane—butanol—diesel blends on the emissions of diesel engine. *N*-butanol (B) and nitromethane (NM) were selected as additives for diesel fuel due to their exceptional physico-chemical properties, availability in market, and cost. In the first phase, experiments were performed to optimize *n*-butanol—diesel blend on diesel engine, and in the second phase, nitromethane was blended in optimum *n*-butanol—diesel blend (B20) to evaluate the emission characteristics. A single-cylinder four-stroke, water-cooled VCR diesel engine was used for experimentation, and the results of emissions for NM—*n*-butanol—diesel blends were drawn and analyzed. Maximum reduction in smoke and NO_x was achieved up to 82.8% and 13.85%, respectively as compared to pure diesel. **Keywords** Emission • Butanol • Nitromethane • NO_x • Smoke # 42.1 Introduction At present, diesel engines are major contributors in transportation and automobile sectors worldwide, and their toxic emissions are highly objectionable in natural environment [1]. NO_x and smoke are the two major emissions which put limit on power output from diesel engine and also have many adverse effects on environment as well as human health [2]. In current scenario, the immediate elimination of diesel N. K. Sain Department of Mechanical Engineering, Poornima Group of Institutions, Jaipur, India A. Nayyar · C. Kumar (⊠) Department of Mechanical Engineering, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, India e-mail: chandankrgupta1988@gmail.com C. Kumar · K. B. Rana · B. Tripathi Department of Mechanical Engineering, Rajasthan Technical University, Kota, India © Springer Nature Singapore Pte Ltd. 2020 S. Singh and V. Ramadesigan (eds.), *Advances in Energy Research*, Vol. 2, Springer Proceedings in Energy, https://doi.org/10.1007/978-981-15-2662-6_42